-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspkt_gen.py
160 lines (136 loc) · 5.33 KB
/
spkt_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
'''
this is the code for generating the spike times for 10seconds of A and C fibers
created by K. Sekiguchi (18th July 20)
'''
import numpy as np
from cfg_mechanical import cfg
def rate_SAI():
t = [ x for x in np.arange(0, 10001, 1) ]
rate = []
for i, key in enumerate(t):
if i < len(t):
freq_SAI = (-1.45433609113392e-10 * key ** 3 + 1.340603396708e-6 * key ** 2 - 0.00378224210238498 * key + 4.52737468545426) * 8
rate.append(freq_SAI)
return rate, t
def rate_SAII():
t = [ x for x in np.arange(0, 10001, 1) ]
rate = []
for i, key in enumerate(t):
if i < len(t):
freq_SAII = (-1.45433609113392e-10 * key ** 3 + 1.340603396708e-6 * key ** 2 - 0.00378224210238498 * key + 4.52737468545426) * 8
rate.append(freq_SAII)
return rate, t
def rate_Ad():
t = [ x for x in np.arange(0, 10001, 1) ]
rate = []
for i, key in enumerate(t):
if i < len(t):
freq_Ad = ( -7.265297e-15 * key ** 4 + 1.573831e-10 * key ** 3 - 8.201529e-7 * key ** 2 - 0.002539930 * key + 27.18412 ) * cfg.stim_ratios
rate.append(freq_Ad)
return rate, t
def rate_C():
t = [ x for x in np.arange(0, 10001, 1) ]
rate = []
for i, key in enumerate(t):
if i < len(t):
freq_C = ( 9.630390e-15 * key ** 4 - 2.844577e-10 * key ** 3 + 3.012887e-6 * key ** 2 - 0.01400381 * key + 31.86546 ) * cfg.stim_ratios
rate.append(freq_C)
return rate, t
def poisson_generator(rate, t_start=0.0, t_stop=1000.0, seed=None):
"""
Returns a SpikeTrain whose spikes are a realization of a Poisson process
with the given rate (Hz) and stopping time t_stop (milliseconds).
Note: t_start is always 0.0, thus all realizations are as if
they spiked at t=0.0, though this spike is not included in the SpikeList.
Inputs:
-------
rate - the rate of the discharge (in Hz)
t_start - the beginning of the SpikeTrain (in ms)
t_stop - the end of the SpikeTrain (in ms)
array - if True, a np array of sorted spikes is returned,
rather than a SpikeTrain object.
Examples:
--------
>> gen.poisson_generator(50, 0, 1000)
>> gen.poisson_generator(20, 5000, 10000, array=True)
See also:
--------
inh_poisson_generator, inh_gamma_generator, inh_adaptingmarkov_generator
"""
rng = np.random.RandomState(seed)
#number = int((t_stop-t_start)/1000.0*2.0*rate)
# less wasteful than double length method above
n = (t_stop-t_start)/1000.0*rate
number = np.ceil(n+3*np.sqrt(n))
if number<100:
number = min(5+np.ceil(2*n),100)
if number > 0:
isi = rng.exponential(1.0/rate, int(number))*1000.0
if number > 1:
spikes = np.add.accumulate(isi)
else:
spikes = isi
else:
spikes = np.array([])
spikes+=t_start
i = np.searchsorted(spikes, t_stop)
extra_spikes = []
if i==len(spikes):
# ISI buf overrun
t_last = spikes[-1] + rng.exponential(1.0/rate, 1)[0]*1000.0
while (t_last<t_stop):
extra_spikes.append(t_last)
t_last += rng.exponential(1.0/rate, 1)[0]*1000.0
spikes = np.concatenate((spikes,extra_spikes))
else:
spikes = np.resize(spikes,(i,))
return spikes
def inh_poisson_generator(rate, t, t_stop, seed=None):
"""
Returns a SpikeTrain whose spikes are a realization of an inhomogeneous
poisson process (dynamic rate). The implementation uses the thinning
method, as presented in the references.
Inputs:
-------
rate - an array of the rates (Hz) where rate[i] is active on interval
[t[i],t[i+1]]
t - an array specifying the time bins (in milliseconds) at which to
specify the rate
t_stop - length of time to simulate process (in ms)
array - if True, a np array of sorted spikes is returned,
rather than a SpikeList object.
Note:
-----
t_start=t[0]
References:
-----------
Eilif Muller, Lars Buesing, Johannes Schemmel, and Karlheinz Meier
Spike-Frequency Adapting Neural Ensembles: Beyond Mean Adaptation and Renewal Theories
Neural Comput. 2007 19: 2958-3010.
Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag.
Examples:
--------
>> time = arange(0,1000)
>> stgen.inh_poisson_generator(time,sin(time), 1000)
See also:
--------
poisson_generator, inh_gamma_generator, inh_adaptingmarkov_generator
"""
rng = np.random.RandomState(seed)
if np.shape(t)!=np.shape(rate):
raise ValueError('shape mismatch: t,rate must be of the same shape')
# get max rate and generate poisson process to be thinned
rmax = np.max(rate)
ps = poisson_generator(rate=rmax, t_start=t[0], t_stop=t_stop, seed=None)
# return empty if no spikes
if len(ps) == 0:
np.array([])
# gen uniform rand on 0,1 for each spike
rn = np.array(rng.uniform(0, 1, len(ps)))
# instantaneous rate for each spike
idx = np.searchsorted(t, ps) - 1
#spike_rate = rate[idx]
spike_rate = np.array([rate[i] for i in idx])
# thin and return spikes
spike_train = ps[rn<spike_rate/rmax]
return list(spike_train)