-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathneurord_analysis.py
320 lines (307 loc) · 14.5 KB
/
neurord_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#Python version, i.e. alternative of NRDpostAB
#in python, type ARGS="par1 par2,mol1 mol2,subdir/fileroot,sstart ssend" then execfile('neurord_analysis.py')
#DO NOT PUT ANY SPACES NEXT TO THE COMMAS, DO NOT USE TABS
#e.g. ARGS="Ca GaqGTP,Ca GaqGTP Ip3,../Repo/plc/Model_PLCassay,15 20"
#from outside python, type python neurord_analysis [par1 par2] [mol1 mol2]
#Assumes that molecule outputs are integers, and the hypens used ONLY for parameters
#Can process multiple parameter variations, but all files must use same morphology, and meshfile.
#It will provide region averages (each spine, dendrite submembrane, cytosol) and if spatialaverage=1,
#will calculate an average of n segments along the dendrite,
#or whatever structure name is specified in dend variable
import os
import numpy as np
from matplotlib import pyplot
from string import *
import sys
import glob
import header_parse as hparse
import plot_utils as pu
#######################################################
#indicate the name of the injection spines if you want to exclude them
fake = 'FAKE'
#indicate the name of submembrane region for totaling molecules that are exclusively submembrane
#only relevant for tot_species calculation. this should be name of structure concatenated with sub
submembname='sub'
#Spatial average (=1 to process) only includes the structure "dend", and subdivides into bins:
spatialaverage=0
dend="dend"
bins=10
#how much info to print
prnvox=1
prnheader=0
prninfo=0
showss=0
#outputavg determines whether output files are written
outputavg=0
##change these endings depending on whether using neurord3.x:
meshend="*mesh.txt.out"
concend='conc.txt.out'
## or neurord2.x (uncomment these)
#meshend="*mesh.txt"
#concend='conc.txt'
#Example of how to total some molecule forms; turn off with tot_species={}
#tot_species={
# "PKAtot":["PKA", "PKAcAMP2", "PKAcAMP4", "PKAr"],
# "D1Rtot":["D1R","DaD1R", "GsD1R","DaD1RGs", "pDaD1RGs", "PKAcDaD1RGs"],
# "pde10tot":["PDE10","pPDE10", "PDE10cAMP","pPDE10cAMP","PKAcPDE10", "PKAcPDE10cAMP"],
# "Gitot":["Giabg","AChm4RGi","Gim4R", "GaiGTP", "GaiGDP", "ACGai", "ACGasGai", "ACGasGaiATP"],
# "m4Rtot":["AChm4RGi","Gim4R", "m4R", "AChm4R"]}
tot_species={}
Avogadro=6.023e14 #to convert to nanoMoles
mol_per_nM_u3=Avogadro*1e-15
try:
args = ARGS.split(",")
print "ARGS =", ARGS, "commandline=", args
do_exit = False
except NameError: #NameError refers to an undefined variable (in this case ARGS)
args = sys.argv[1:]
print "commandline =", args
do_exit = True
pattern=args[2]+'*'
if len(args[0]):
params=args[0].split(" ")
for par in params:
pattern=pattern+'-'+par+'*'
else:
params=[]
whole_pattern=pattern+concend
#A single mesh file means that all files in your list must use the same morphology
meshname=pattern.split('-')[0]+meshend
lastslash=rfind(pattern,'/')
subdir=pattern[0:lastslash]
###################################################
def sortorder(ftuple):
ans = ftuple[1]
#print 'sort', ftuple, '->', ans
return ans
fnames = glob.glob(whole_pattern)
print "NUM FILES:", len(fnames), "CURRENT DIRECTORY:", os.getcwd(), ", Target directory:", subdir
if len(fnames)==0:
print "MESHFILES:", os.listdir(subdir+'/'+meshend)
ss_tot=np.zeros((len(fnames),len(tot_species.keys())))
parlist=[]
if len(args[0]):
ftuples,parlist=pu.file_tuple(fnames,params)
ftuples = sorted(ftuples, key=lambda x:x[1])
else:
ftuples=[(fnames[0],1)]
#First, read mesh file to determine how many voxels
if len(fnames)>0:
meshfile=glob.glob(meshname)[0]
else:
print "********** no meshfile **************"
maxvols,vox_volume,xloc,yloc,TotVol,deltaY=hparse.read_mesh(meshfile)
#prepare to plot stuff (instead of calculating averages)
#plot_molecules determines what is plotted
plot_molecules=args[1].split(' ')
fig,axes,col_inc,scale,minpar=pu.plot_setup(plot_molecules,parlist,params)
fig.suptitle(pattern.split('/')[-1])
ss=np.zeros((len(fnames),len(plot_molecules)))
slope=np.zeros((len(fnames),len(plot_molecules)))
peaktime=np.zeros((len(fnames),len(plot_molecules)))
baseline=np.zeros((len(fnames),len(plot_molecules)))
peakval=np.zeros((len(fnames),len(plot_molecules)))
lowval=np.zeros((len(fnames),len(plot_molecules)))
parval=[]
for fnum,ftuple in enumerate(ftuples):
fname=ftuple[0]
parval.append(ftuple[1])
if fnum == 0:
f = open(fname, 'r+')
#parse the header to determine identity/structure of voxels and molecules
data=f.readline()
if (prnheader==1):
print "header",data
else:
print "header not printed"
#UPDATE maxvols, or number of voxels in this function
regionID,structType,molecules,volnums,maxvols=hparse.header_parse(data,maxvols,prninfo)
print "in neurord_analysis: vox#", volnums
print " regions",regionID
print " structures",structType
print " mols",molecules
f.close()
#all voxels should be read in now with labels
#extract number of unique regions (e.g. dendrite, or sa1[0]),
#and create list of subvolumes which contribute to that region
if maxvols>1:
region_list,region_vox,region_col,region_struct_list,region_struct_vox,region_struct_col=hparse.subvol_list(structType,regionID,volnums,fake)
RegVol=hparse.region_volume(region_list,region_vox,vox_volume,prnvox)
RegStructVol=hparse.region_volume(region_struct_list,region_struct_vox,vox_volume,prnvox)
submembVol=0
for region in region_list:
smname=region+submembname
if smname in region_struct_list:
submembVol+=RegStructVol[region_struct_list.index(smname)]
#
if spatialaverage:
hparse.spatial_average(xloc,yloc,bins,regionID,structType,volnums)
#
#Lastly, read in the data and output separate files of region averages
#Can do all molecules in a list without a batch file
alldata=np.loadtxt(fname,skiprows=1)
time=alldata[:,0]/1000
dt=time[1]
data=alldata[:,1:alldata.shape[1]]
del alldata
#the above eliminates the time column from the data, so that e.g., column 0 = voxel 0
#
#reshape the data to create a separate dimension for each molecule
rows=data.shape[0]
arrays=len(molecules)
if maxvols*arrays == data.shape[1]:
molecule_array=np.reshape(data, (rows,arrays,maxvols))
del data
else:
print "UH OH! voxels:", maxvols, "molecules:", len(molecules), "columns:", data.shape[1]
plot_array=np.zeros((rows,len(plot_molecules)))
sstart=int(float(args[3].split(" ")[0])/dt)
ssend=int(float(args[3].split(" ")[1])/dt)
##now, calculate various averages such as soma and dend, subm vs cyt,
#use the above lists and volume of each region, and each region-structure
#
if maxvols>1:
data=np.zeros((rows,maxvols))
for imol in range(arrays):
if molecules[imol] in plot_molecules:
data=molecule_array[:,imol,:]
RegionMeans=np.zeros((len(time),len(region_list)))
header='#time' #Header for output file
for itime in range(len(time)):
for j in range(len(region_list)):
for k in region_col[j]:
RegionMeans[itime,j]+=data[itime,k]
#sum the molecules of the voxels in the structure, divide by Avogadro and volume
#
for j in range(len(region_list)):
RegionMeans[:,j]/=(RegVol[j]*mol_per_nM_u3)
header=header+' '+molecules[imol]+region_list[j] #Header for output file
#
#Repeat for regionStructures and overall mean
RegionStructMeans=np.zeros((len(time),len(region_struct_list)))
OverallMean=np.zeros(len(time))
#
for itime in range(len(time)):
for j in range(len(region_struct_list)):
for k in region_struct_col[j]:
RegionStructMeans[itime,j]+=data[itime,k]
for k in range(maxvols):
OverallMean[itime]+=data[itime,k]
#
for j in range(len(region_struct_list)):
RegionStructMeans[:,j]/=(RegStructVol[j]*mol_per_nM_u3)
header=header+' '+molecules[imol]+region_struct_list[j] #Header for output file
#
if (data[:,1:-1].all==0):
OverallMean[:]/=(submembVol*mol_per_nM_u3)
else:
OverallMean[:]/=(TotVol*mol_per_nM_u3)
header=header+' '+molecules[imol]+'AvgTot\n'
#
if molecules[imol] in plot_molecules:
plot_index=plot_molecules.index(molecules[imol])
plot_array[:,plot_index]=OverallMean
ss[fnum,plot_index]=plot_array[sstart:ssend,plot_index].mean()
#
#Repeat for spatial averages if specified
if spatialaverage:
SpatialMeans=np.zeros((len(time),bins))
for itime in range(len(time)):
for j in range(bins):
for k in bincolumns[j]:
SpatialMeans[itime,j]+=data[itime,k]
for j in range(bins):
print "j, vol=", j, SpatialVol[j]
if (SpatialVol[j] != 0):
SpatialMeans[:,j]/=(SpatialVol[j]*mol_per_nM_u3)
print SpatialMeans[1:10,j]
#
#write averages to separate files
if outputavg:
outfname=fname[0:-8]+molecules[imol]+'_avg.txt'
if molecules[imol] in plot_molecules:
print 'output file: ', outfname
outdata=np.column_stack((time,RegionMeans,RegionStructMeans,OverallMean))
f=open(outfname, 'w')
f.write(header)
np.savetxt(f, outdata, fmt='%.4f', delimiter=' ')
f.close()
#
#write space
if spatialaverage:
outnamespace=fname[0:-8]+'-'+molecules[imol]+'_space.txt'
outdata=np.column_stack((time,SpatialMeans))
f=open(outnamespace, 'w')
f.write(header+'\n')
np.savetxt(f, outdata, fmt='%.4f', delimiter=' ')
f.close()
else:
#no processing needed if only a single voxel. Just extract, calculate ss, and plot specified molecules
#0 in 3 index of molecule_array indicates that for 1 voxel structures 0th array has total
for imol,mol in enumerate(plot_molecules):
plot_array[:,imol]=molecule_array[:,molecules.index(mol),0]/TotVol/mol_per_nM_u3
ss[fnum,imol]=plot_array[int(sstart/time[1]):int(ssend/time[1]),imol].mean()
#
#in both cases (single voxel and multi-voxel):
#total some molecule forms - specified by hand above for now
for imol,mol in enumerate(tot_species.keys()):
for subspecies in tot_species[mol]:
mol_sum=molecule_array[0,molecules.index(subspecies),:].sum()
#print imol,mol,subspecies,molecule_array[0,molecules.index(subspecies),:],mol_sum
ss_tot[fnum,imol]+=mol_sum/TotVol/mol_per_nM_u3
print imol,mol,ss_tot[fnum,imol],"nM, or in picoSD:", ss_tot[fnum,imol]*(TotVol/submembVol)*deltaY[0]
#after main processing, extract a few characteristics of molecule trajectory
#
print params, parval[fnum]
print " molecule baseline peakval ptime slope min ratio"
for imol,mol in enumerate(plot_molecules):
baseline[fnum,imol]=plot_array[sstart:ssend,imol].mean()
peakpt=plot_array[ssend:,imol].argmax()+ssend
peaktime[fnum,imol]=peakpt*dt
peakval[fnum,imol]=plot_array[peakpt-10:peakpt+10,imol].mean()
lowpt=plot_array[ssend:,imol].argmin()+ssend
lowval[fnum,imol]=plot_array[lowpt-10:lowpt+10,imol].mean()
begin_slopeval=0.2*(peakval[fnum,imol]-baseline[fnum,imol])+baseline[fnum,imol]
end_slopeval=0.8*(peakval[fnum,imol]-baseline[fnum,imol])+baseline[fnum,imol]
exceedsthresh=np.where(plot_array[ssend:,imol]>begin_slopeval)
begin_slopept=0
end_slopept=0
found=0
if len(exceedsthresh[0]):
begin_slopept=np.min(exceedsthresh)+ssend
found=1
exceedsthresh=np.where(plot_array[begin_slopept:,imol]>end_slopeval)
if len(exceedsthresh):
end_slopept=np.min(exceedsthresh)+begin_slopept
else:
found=0
if found and len(plot_array[begin_slopept:end_slopept,imol])>1:
slope[fnum,imol]=(peakval[fnum,imol]-baseline[fnum,imol])/((end_slopept-begin_slopept)*dt)
else:
slope[fnum,imol]=-9999
print mol.rjust(14),"%8.2f" % baseline[fnum,imol],"%8.2f" %peakval[fnum,imol],
print "%8.2f" % peaktime[fnum,imol], "%8.3f" %slope[fnum,imol],
print "%8.2f" %lowval[fnum,imol], "%8.2f" %(peakval[fnum,imol]/baseline[fnum,imol])
#
#Now plot some of these molcules, either single voxel or overall average if multi-voxel
#
pu.plottrace(plot_molecules,time,plot_array,parval[fnum],axes,fig,col_inc,scale,minpar)
#
#then plot the steady state versus parameter value for each molecule
if len(params)>1:
print np.column_stack((parval,ss))
xval=np.zeros(len(parval))
for i,pv in enumerate(parval):
if len(parlist[0])>len(parlist[1]):
xval[i]=pv[0]
else:
xval[i]=pv[1]
if showss:
pu.plotss(plot_molecules,xval,ss)
else:
if showss:
#also plot the totaled molecule forms
if len(tot_species.keys()):
pu.plotss(plot_molecules+tot_species.keys(),parval,np.hstack((ss,ss_tot)))
else:
pu.plotss(plot_molecules,parval,ss)