-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTanAndoniPriebe2013_BrianCode.py
261 lines (223 loc) · 8.22 KB
/
TanAndoniPriebe2013_BrianCode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Brian 1.4 code
# Brian is available at http://briansimulator.org/
# Tan AY, Andoni S, Priebe NJ
# A spontaneous state of weakly correlated
# synaptic excitation and inhibition in visual cortex.
# Neuroscience. 2013 Sep 5;247:364-75.
# doi: 10.1016/j.neuroscience.2013.05.037.
from brian import *
import time
# Subthreshold parameters for conductance based integrate-and-fire neuron
taum = 20 * msecond
taue = 5 * msecond
taui = 10 * msecond
vrest = -70 * mvolt
Ee = 0 * mvolt - vrest
Ei = -70 * mvolt - vrest
start_time = time.time()
eqs = Equations('''
dv/dt = (-v+ge*(Ee-v)+gi*(Ei-v))*(1./taum) : mvolt
dge/dt = -ge*(1./taue) : 1
dgi/dt = -gi*(1./taui) : 1
''')
# NB 1: conductances are in units of the leak conductance
# NB 2: multiplication is faster than division
# Thalamic neurons
tneuronnum=10
tpoissonrate=1
TC1 = PoissonGroup(tneuronnum,tpoissonrate)
TC2 = PoissonGroup(tneuronnum,tpoissonrate)
TC3 = PoissonGroup(tneuronnum,tpoissonrate)
TC4 = PoissonGroup(tneuronnum,tpoissonrate)
TC5 = PoissonGroup(tneuronnum,tpoissonrate)
TC6 = PoissonGroup(tneuronnum,tpoissonrate)
TC7 = PoissonGroup(tneuronnum,tpoissonrate)
TC8 = PoissonGroup(tneuronnum,tpoissonrate)
TC9 = PoissonGroup(tneuronnum,tpoissonrate)
# Cortical neurons
vthold = 20 * mvolt
vreset = -20 * mvolt
Ge=NeuronGroup(N=100, model=eqs, threshold=vthold,
reset=vreset, refractory=3 * msecond,
order=1, compile=True)
Gi=NeuronGroup(N=25, model=eqs, threshold=vthold,
reset=vreset, refractory=3 * msecond,
order=1, compile=True)
# Readout neurons
RON=NeuronGroup(N=10, model=eqs, threshold=vthold,
reset=vreset, refractory=3 * msecond,
order=1, compile=True)
# Synaptic weights
#wtc0=25; we=2./100.; wi=we; tcrie=2; cxrie=3.5; #Asynchronous state r~0.3
wtc0=75; we=2./100.; wi=we; tcrie=2; cxrie=1; #Up and down state r~0.8
wtc1= wtc0/1000. # Thalamocortical weight
wtc2= wtc0/ 800. # Thalamocortical weight
wtc3= wtc0/ 400. # Thalamocortical weight
wtc4= wtc0/ 200. # Thalamocortical weight
wtc5= wtc0/ 100. # Thalamocortical weight
wtc6= wtc0/ 200. # Thalamocortical weight
wtc7= wtc0/ 400. # Thalamocortical weight
wtc8= wtc0/ 800. # Thalamocortical weight
wtc9= wtc0/1000. # Thalamocortical weight
we = we # Intracortical excitatory weight
wi = wi # Intracortical inhibitory weight
tcrie=tcrie; cxrie=cxrie;
# Thalamocortical connections
CteTC1 = Connection(TC1, Ge, 'ge')
WteTC1=lognormal(0,1,(len(TC1),len(Ge)))*wtc1
CteTC1.connect( TC1, Ge, WteTC1 )
CtiTC1 = Connection(TC1, Gi, 'ge')
WtiTC1=lognormal(0,1,(len(TC1),len(Gi)))*wtc1*tcrie
CtiTC1.connect( TC1, Gi, WtiTC1 )
CteTC2 = Connection(TC2, Ge, 'ge')
WteTC2=lognormal(0,1,(len(TC2),len(Ge)))*wtc2
CteTC2.connect( TC2, Ge, WteTC2 )
CtiTC2 = Connection(TC2, Gi, 'ge')
WtiTC2=lognormal(0,1,(len(TC2),len(Gi)))*wtc2*tcrie
CtiTC2.connect( TC2, Gi, WtiTC2 )
CteTC3 = Connection(TC3, Ge, 'ge')
WteTC3=lognormal(0,1,(len(TC3),len(Ge)))*wtc3
CteTC3.connect( TC3, Ge, WteTC3 )
CtiTC3 = Connection(TC3, Gi, 'ge')
WtiTC3=lognormal(0,1,(len(TC3),len(Gi)))*wtc3*tcrie
CtiTC3.connect( TC3, Gi, WtiTC3 )
CteTC4 = Connection(TC4, Ge, 'ge')
WteTC4=lognormal(0,1,(len(TC4),len(Ge)))*wtc4
CteTC4.connect( TC4, Ge, WteTC4 )
CtiTC4 = Connection(TC4, Gi, 'ge')
WtiTC4=lognormal(0,1,(len(TC4),len(Gi)))*wtc4*tcrie
CtiTC4.connect( TC4, Gi, WtiTC4 )
CteTC5 = Connection(TC5, Ge, 'ge')
WteTC5=lognormal(0,1,(len(TC5),len(Ge)))*wtc5
CteTC5.connect( TC5, Ge, WteTC5 )
CtiTC5 = Connection(TC5, Gi, 'ge')
WtiTC5=lognormal(0,1,(len(TC5),len(Gi)))*wtc5*tcrie
CtiTC5.connect( TC5, Gi, WtiTC5 )
CteTC6 = Connection(TC6, Ge, 'ge')
WteTC6=lognormal(0,1,(len(TC6),len(Ge)))*wtc6
CteTC6.connect( TC6, Ge, WteTC6 )
CtiTC6 = Connection(TC6, Gi, 'ge')
WtiTC6=lognormal(0,1,(len(TC6),len(Gi)))*wtc6*tcrie
CtiTC6.connect( TC6, Gi, WtiTC6 )
CteTC7 = Connection(TC7, Ge, 'ge')
WteTC7=lognormal(0,1,(len(TC7),len(Ge)))*wtc7
CteTC7.connect( TC7, Ge, WteTC7 )
CtiTC7 = Connection(TC7, Gi, 'ge')
WtiTC7=lognormal(0,1,(len(TC7),len(Gi)))*wtc7*tcrie
CtiTC7.connect( TC7, Gi, WtiTC7 )
CteTC8 = Connection(TC8, Ge, 'ge')
WteTC8=lognormal(0,1,(len(TC8),len(Ge)))*wtc8
CteTC8.connect( TC8, Ge, WteTC8 )
CtiTC8 = Connection(TC8, Gi, 'ge')
WtiTC8=lognormal(0,1,(len(TC8),len(Gi)))*wtc8*tcrie
CtiTC8.connect( TC8, Gi, WtiTC8 )
CteTC9 = Connection(TC9, Ge, 'ge')
WteTC9=lognormal(0,1,(len(TC9),len(Ge)))*wtc9
CteTC9.connect( TC9, Ge, WteTC9 )
CtiTC9 = Connection(TC9, Gi, 'ge')
WtiTC9=lognormal(0,1,(len(TC9),len(Gi)))*wtc9*tcrie
CtiTC9.connect( TC9, Gi, WtiTC9 )
# Intracortical connections
Cee = Connection(Ge, Ge, 'ge')
Cee.connect( Ge, Ge, lognormal(0,1,(len(Ge),len(Ge)))*we )
Cei = Connection(Ge, Gi, 'ge')
Cei.connect( Ge, Gi, lognormal(0,1,(len(Ge),len(Gi)))*we )
Cie = Connection(Gi, Ge, 'gi')
Cie.connect( Gi, Ge, lognormal(0,1,(len(Gi),len(Ge)))*wi*cxrie )
Cii = Connection(Gi, Gi, 'gi')
Cii.connect( Gi, Gi, lognormal(0,1,(len(Gi),len(Gi)))*wi*cxrie )
# Connect readout neurons
CtronTC1 = Connection(TC1, RON, 'ge')
WtronTC1=lognormal(0,1,(len(TC1),len(RON)))*wtc1*0.1
CtronTC1.connect( TC1, RON, WtronTC1 )
CtronTC2 = Connection(TC2, RON, 'ge')
WtronTC2=lognormal(0,1,(len(TC2),len(RON)))*wtc2*0.1
CtronTC2.connect( TC2, RON, WtronTC2 )
CtronTC3 = Connection(TC3, RON, 'ge')
WtronTC3=lognormal(0,1,(len(TC3),len(RON)))*wtc3*0.1
CtronTC3.connect( TC3, RON, WtronTC3 )
CtronTC4 = Connection(TC4, RON, 'ge')
WtronTC4=lognormal(0,1,(len(TC4),len(RON)))*wtc4*0.1
CtronTC4.connect( TC4, RON, WtronTC4 )
CtronTC5 = Connection(TC5, RON, 'ge')
WtronTC5=lognormal(0,1,(len(TC5),len(RON)))*wtc5*0.1
CtronTC5.connect( TC5, RON, WtronTC5 )
CtronTC6 = Connection(TC6, RON, 'ge')
WtronTC6=lognormal(0,1,(len(TC6),len(RON)))*wtc6*0.1
CtronTC6.connect( TC6, RON, WtronTC6 )
CtronTC7 = Connection(TC7, RON, 'ge')
WtronTC7=lognormal(0,1,(len(TC7),len(RON)))*wtc7*0.1
CtronTC7.connect( TC7, RON, WtronTC7 )
CtronTC8 = Connection(TC8, RON, 'ge')
WtronTC8=lognormal(0,1,(len(TC8),len(RON)))*wtc8*0.1
CtronTC8.connect( TC8, RON, WtronTC8 )
CtronTC9 = Connection(TC9, RON, 'ge')
WtronTC9=lognormal(0,1,(len(TC9),len(RON)))*wtc9*0.1
CtronTC9.connect( TC9, RON, WtronTC9 )
Ceron = Connection(Ge, RON, 'ge')
Ceron.connect( Ge, RON, lognormal(0,1,(len(Ge),len(RON)))*we*0.1 )
Ciron = Connection(Gi, RON, 'gi')
Ciron.connect( Gi, RON, lognormal(0,1,(len(Gi),len(RON)))*wi*cxrie*0.1 )
# Initialize network neurons
Ge.v = 0*mvolt
Ge.ge = 0
Ge.gi = 0
Gi.v = 0*mvolt
Gi.ge = 0
Gi.gi = 0
# Initialize readout neurons
RON.v = 0*mvolt
RON.ge = 0
RON.gi = 0
# Monitor network neurons
#M = SpikeMonitor(TC5)
#M = SpikeMonitor(S5)
M = SpikeMonitor(Ge)
#M = SpikeMonitor(Gi)
Mv = StateMonitor(Ge, 'v', record=[0,10,20,30,40,50,60,70,80,90])
Mge = StateMonitor(Ge, 'ge', record=[0,10,20,30,40,50,60,70,80,90])
Mgi = StateMonitor(Ge, 'gi', record=[0,10,20,30,40,50,60,70,80,90])
# Monitor readout neurons
Mronv = StateMonitor(RON, 'v', record=[0,1,2,3,4,5,6,7,8,9])
Mronge = StateMonitor(RON, 'ge', record=[0,1,2,3,4,5,6,7,8,9])
Mrongi = StateMonitor(RON, 'gi', record=[0,1,2,3,4,5,6,7,8,9])
run(30000 * ms)
# Plot network neurons
fig1=plt.figure(1)
subplot(211)
raster_plot(M, title='nnetwork_lognormalw', newfigure=False)
subplot(223)
plot(Mv.times / ms, Mv[0] / mV)
xlabel('Time (ms)')
ylabel('V (mV)')
subplot(224)
plot(Mge.times / ms, Mge[0])
plot(Mgi.times / ms, Mgi[0])
xlabel('Time (ms)')
ylabel('ge and gi')
#legend(('ge', 'gi'), 'upper right')
# Plot readout neurons (and network neurons raster)
fig2=plt.figure(2)
subplot(211)
raster_plot(M, title='nnetwork_lognormalw', newfigure=False)
subplot(223)
plot(Mronv.times / ms, Mronv[0] / mV)
xlabel('Time (ms)')
ylabel('V (mV)')
subplot(224)
plot(Mronge.times / ms, Mronge[0])
plot(Mrongi.times / ms, Mrongi[0])
xlabel('Time (ms)')
ylabel('ge and gi')
#legend(('ge', 'gi'), 'upper right')
show()
# Save network neurons & readout neurons
import scipy.io as sio
#sio.savemat('nnetwork_lognormalw_Data_M',{'M':M.spikes})
#sio.savemat('nnetwork_lognormalw_Data_Mtime',{'Mtime':Mv.times})
#sio.savemat('nnetwork_lognormalw_Data_Mv',{'Mv':Mv.values})
#sio.savemat('nnetwork_lognormalw_Data_Mge',{'Mge':Mge.values})
#sio.savemat('nnetwork_lognormalw_Data_Mgi',{'Mgi':Mgi.values})
#sio.savemat('nnetwork_lognormalw_Data_Mronv',{'Mronv':Mronv.values})
#sio.savemat('nnetwork_lognormalw_Data_Mronge',{'Mronge':Mronge.values})
#sio.savemat('nnetwork_lognormalw_Data_Mrongi',{'Mrongi':Mrongi.values})