-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIL.mod
110 lines (92 loc) · 1.98 KB
/
IL.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
: $Id: IL.mod,v 1.5 2009/01/13 14:32:37 billl Exp $
TITLE High threshold calcium current
:
: Ca++ current, L type channels, responsible for calcium spikes
: Differential equations
:
: Model of Huguenard & McCormick, J Neurophysiol, 1992
: Formalism of Goldman-Hodgkin-Katz
:
: Kinetic functions were fitted from data of hippocampal pyr cells
: (Kay & Wong, J. Physiol. 392: 603, 1987)
:
: Written by Alain Destexhe, Salk Institute, Sept 18, 1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ical
USEION Ca READ Cai, Cao WRITE iCa VALENCE 2
RANGE pcabar, g
GLOBAL m_inf, tau_m, sh1, sh2, rat
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
eCa = 120 (mV)
Cai = .00005 (mM) : initial [Ca]i = 50 nM
Cao = 2 (mM) : [Ca]o = 2 mM
pcabar = .003 (mho/cm2) : gL is about 2x that of IT (McCormick)
sh1 = 0
sh2 = 0
rat = 1
}
STATE {
m
}
INITIAL {
tadj = 3 ^ ((celsius-21.0)/10)
evaluate_fct(v)
m = m_inf
}
ASSIGNED {
iCa (mA/cm2)
g (mho/cm2)
m_inf
tau_m (ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = pcabar * m * m
iCa = g * ghk(v, Cai, Cao)
}
DERIVATIVE states {
evaluate_fct(v)
m' = (m_inf - m) / tau_m
}
UNITSOFF
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b
:
: activation kinetics of Kay-Wong were at 20-22 deg. C
: transformation to 36 deg assuming Q10=3
:
a = 1.6 / (1 + exp(-0.072*(v+sh1+5)) )
b = 0.02 * (v+sh2-1.31) / ( exp((v+sh2-1.31)/5.36) - 1)
tau_m = 1.0 / (a + b) / tadj
m_inf = a / (a + b)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
LOCAL z, eci, eco
z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
eco = co*efun(z)*rat
eci = ci*efun(-z)
:high co charge moves inward
:negative potential charge moves inward
ghk = (.001)*2*FARADAY*(eci - eco)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
UNITSON