Skip to content

Commit 932adf4

Browse files
committed
docs: update homepage
1 parent 967995b commit 932adf4

File tree

8 files changed

+23
-23
lines changed

8 files changed

+23
-23
lines changed

CONTRIBUTORS.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ In this guide you will get an overview of the contribution workflow from opening
66

77
## New contributor guide
88

9-
To get an overview of the project, read PySR's [README](README.md). The [PySR docs](https://astroautomata.com/PySR/) give additional information.
9+
To get an overview of the project, read PySR's [README](README.md). The [PySR docs](https://ai.damtp.cam.ac.uk/pysr/) give additional information.
1010
Here are some resources to help you get started with open source contributions in general:
1111

1212
- [Finding ways to contribute to open source on GitHub](https://docs.github.com/en/get-started/exploring-projects-on-github/finding-ways-to-contribute-to-open-source-on-github)
@@ -39,7 +39,7 @@ Scan through our [existing issues](https://github.com/MilesCranmer/PySR/issues)
3939
2. Create a working branch and start with your changes!
4040

4141
3. (Optional) If you would like to make changes to PySR itself, skip to step 4. However, if you are interested in making changes to the _symbolic regression code_ itself,
42-
check out the [guide](https://astroautomata.com/PySR/backend/) on modifying a custom SymbolicRegression.jl library.
42+
check out the [guide](https://ai.damtp.cam.ac.uk/pysr/backend/) on modifying a custom SymbolicRegression.jl library.
4343
In this case, you might instead be interested in making suggestions to the [SymbolicRegression.jl](http://github.com/MilesCranmer/SymbolicRegression.jl) library.
4444

4545
4. You can install your local version of PySR with `python setup.py install`, and run tests with `python -m pysr test main`.

README.md

+8-8
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b174
1111

1212
| **Docs** | **Forums** | **Paper** | **colab demo** |
1313
|:---:|:---:|:---:|:---:|
14-
|[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
14+
|[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://ai.damtp.cam.ac.uk/pysr/)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
1515

1616
| **pip** | **conda** | **Stats** |
1717
| :---: | :---: | :---: |
@@ -20,14 +20,14 @@ https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b174
2020
</div>
2121

2222
If you find PySR useful, please cite the paper [arXiv:2305.01582](https://arxiv.org/abs/2305.01582).
23-
If you've finished a project with PySR, please submit a PR to showcase your work on the [research showcase page](https://astroautomata.com/PySR/papers)!
23+
If you've finished a project with PySR, please submit a PR to showcase your work on the [research showcase page](https://ai.damtp.cam.ac.uk/pysr/papers)!
2424

2525
**Contents**:
2626

2727
- [Why PySR?](#why-pysr)
2828
- [Installation](#installation)
2929
- [Quickstart](#quickstart)
30-
- [→ Documentation](https://astroautomata.com/PySR)
30+
- [→ Documentation](https://ai.damtp.cam.ac.uk/PySR)
3131
- [Contributors](#contributors-)
3232

3333
<div align="center">
@@ -254,16 +254,16 @@ model = PySRRegressor.from_file("hall_of_fame.2022-08-10_100832.281.pkl")
254254

255255
There are several other useful features such as denoising (e.g., `denoise=True`),
256256
feature selection (e.g., `select_k_features=3`).
257-
For examples of these and other features, see the [examples page](https://astroautomata.com/PySR/examples).
258-
For a detailed look at more options, see the [options page](https://astroautomata.com/PySR/options).
259-
You can also see the full API at [this page](https://astroautomata.com/PySR/api).
260-
There are also tips for tuning PySR on [this page](https://astroautomata.com/PySR/tuning).
257+
For examples of these and other features, see the [examples page](https://ai.damtp.cam.ac.uk/pysr/examples).
258+
For a detailed look at more options, see the [options page](https://ai.damtp.cam.ac.uk/pysr/options).
259+
You can also see the full API at [this page](https://ai.damtp.cam.ac.uk/pysr/api).
260+
There are also tips for tuning PySR on [this page](https://ai.damtp.cam.ac.uk/pysr/tuning).
261261

262262
### Detailed Example
263263

264264
The following code makes use of as many PySR features as possible.
265265
Note that is just a demonstration of features and you should not use this example as-is.
266-
For details on what each parameter does, check out the [API page](https://astroautomata.com/PySR/api/).
266+
For details on what each parameter does, check out the [API page](https://ai.damtp.cam.ac.uk/pysr/api/).
267267

268268
```python
269269
model = PySRRegressor(

docs/backend.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -33,9 +33,9 @@ The main search code can be found in `src/SymbolicRegression.jl`.
3333

3434
Here are some tips:
3535

36-
- The documentation for the backend is given [here](https://astroautomata.com/SymbolicRegression.jl/dev/).
36+
- The documentation for the backend is given [here](https://ai.damtp.cam.ac.uk/symbolicregression/dev/).
3737
- Throughout the package, you will often see template functions which typically use a symbol `T` (such as in the string `where {T<:Real}`). Here, `T` is simply the datatype of the input data and stored constants, such as `Float32` or `Float64`. Writing functions in this way lets us write functions generic to types, while still having access to the specific type specified at compilation time.
38-
- Expressions are stored as binary trees, using the `Node{T}` type, described [here](https://astroautomata.com/SymbolicRegression.jl/dev/types/#SymbolicRegression.CoreModule.EquationModule.Node).
38+
- Expressions are stored as binary trees, using the `Node{T}` type, described [here](https://ai.damtp.cam.ac.uk/symbolicregression/dev/types/#SymbolicRegression.CoreModule.EquationModule.Node).
3939
- For reference, the main loop itself is found in the `equation_search` function inside [`src/SymbolicRegression.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/SymbolicRegression.jl).
4040
- Parts of the code which are typically edited by users include:
4141
- [`src/CheckConstraints.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/CheckConstraints.jl), particularly the function `check_constraints`. This function checks whether a given expression satisfies constraints, such as having a complexity lower than `maxsize`, and whether it contains any forbidden nestings of functions.
@@ -70,6 +70,6 @@ For more information on `juliapkg.json`, see [`pyjuliapkg`](https://github.com/J
7070

7171
## Additional notes
7272

73-
If you get comfortable enough with the backend, you might consider using the Julia package directly: the API is given on the [SymbolicRegression.jl documentation](https://astroautomata.com/SymbolicRegression.jl/dev/).
73+
If you get comfortable enough with the backend, you might consider using the Julia package directly: the API is given on the [SymbolicRegression.jl documentation](https://ai.damtp.cam.ac.uk/symbolicregression/dev/).
7474

7575
If you make a change that you think could be useful to other users, don't hesitate to open a pull request on either the PySR or SymbolicRegression.jl repositories! Contributions are very appreciated.

docs/examples.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -345,7 +345,7 @@ a real number from the loss function). But, you don't need to worry about this,
345345
make sure to return a scalar number of type `L`.
346346

347347
The `tree` argument is the current expression being evaluated. You can read
348-
about the `tree` fields [here](https://astroautomata.com/SymbolicRegression.jl/stable/types/).
348+
about the `tree` fields [here](https://ai.damtp.cam.ac.uk/symbolicregression/stable/types/).
349349

350350
For example, let's fix a symbolic form of an expression,
351351
as a rational function. i.e., $P(X)/Q(X)$ for polynomials $P$ and $Q$.

docs/options.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -276,7 +276,7 @@ model = PySRRegressor(..., weights=weights, elementwise_loss="myloss(x, y, w) =
276276
model.fit(..., weights=weights)
277277
```
278278

279-
Built-in loss (faster) (see [losses](https://astroautomata.com/SymbolicRegression.jl/dev/losses/)).
279+
Built-in loss (faster) (see [losses](https://ai.damtp.cam.ac.uk/symbolicregression/dev/losses/)).
280280
This one computes the L3 norm:
281281

282282
```python

examples/pysr_demo.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -321,7 +321,7 @@
321321
"id": "qvgVbOoSFtQY"
322322
},
323323
"source": [
324-
"A full list of operators is given here: https://astroautomata.com/PySR/operators,\n",
324+
"A full list of operators is given here: https://ai.damtp.cam.ac.uk/pysr/operators,\n",
325325
"but we can also use any binary or unary operator in `julia`, or define our own as arbitrary functions.\n",
326326
"\n",
327327
"Say that we want a command to do quartic powers:\n",
@@ -1498,7 +1498,7 @@
14981498
"id": "S5dO61g1bDhk"
14991499
},
15001500
"source": [
1501-
"The full list of PySR parameters can be found here: https://astroautomata.com/PySR/api"
1501+
"The full list of PySR parameters can be found here: https://ai.damtp.cam.ac.uk/pysr/api"
15021502
]
15031503
}
15041504
],

mkdocs.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ nav:
3636
- interactive-docs.md
3737

3838
extra:
39-
homepage: https://astroautomata.com/PySR
39+
homepage: https://ai.damtp.cam.ac.uk/pysr
4040

4141
extra_css:
4242
- stylesheets/extra.css

pysr/sr.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ def _process_constraints(binary_operators, unary_operators, constraints):
7676
"One typical constraint is to use `constraints={..., '^': (-1, 1)}`, which "
7777
"will allow arbitrary-complexity base (-1) but only powers such as "
7878
"a constant or variable (1). "
79-
"For more tips, please see https://astroautomata.com/PySR/tuning/"
79+
"For more tips, please see https://ai.damtp.cam.ac.uk/pysr/tuning/"
8080
)
8181
constraints[op] = (-1, -1)
8282
if op in ["plus", "sub", "+", "-"]:
@@ -221,7 +221,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
221221
Most default parameters have been tuned over several example equations,
222222
but you should adjust `niterations`, `binary_operators`, `unary_operators`
223223
to your requirements. You can view more detailed explanations of the options
224-
on the [options page](https://astroautomata.com/PySR/options) of the
224+
on the [options page](https://ai.damtp.cam.ac.uk/pysr/options) of the
225225
documentation.
226226
227227
Parameters
@@ -241,7 +241,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
241241
most accurate model.
242242
binary_operators : list[str]
243243
List of strings for binary operators used in the search.
244-
See the [operators page](https://astroautomata.com/PySR/operators/)
244+
See the [operators page](https://ai.damtp.cam.ac.uk/pysr/operators/)
245245
for more details.
246246
Default is `["+", "-", "*", "/"]`.
247247
unary_operators : list[str]
@@ -943,7 +943,7 @@ def __init__(
943943
elif k == "julia_project":
944944
warnings.warn(
945945
"The `julia_project` parameter has been deprecated. To use a custom "
946-
"julia project, please see `https://astroautomata.com/PySR/backend`.",
946+
"julia project, please see `https://ai.damtp.cam.ac.uk/pysr/backend`.",
947947
FutureWarning,
948948
)
949949
elif k == "julia_kwargs":
@@ -2046,7 +2046,7 @@ def fit(
20462046
if X.shape[0] > 10000 and not self.batching:
20472047
warnings.warn(
20482048
"Note: you are running with more than 10,000 datapoints. "
2049-
"You should consider turning on batching (https://astroautomata.com/PySR/options/#batching). "
2049+
"You should consider turning on batching (https://ai.damtp.cam.ac.uk/pysr/options/#batching). "
20502050
"You should also reconsider if you need that many datapoints. "
20512051
"Unless you have a large amount of noise (in which case you "
20522052
"should smooth your dataset first), generally < 10,000 datapoints "

0 commit comments

Comments
 (0)