-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocessor.py
604 lines (446 loc) · 25.2 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
from abc import ABC, abstractmethod
from enum import Enum
from tqdm import tqdm
import numpy as np
import skimage.metrics
import cv2, util, binascii, math, imutils, sys, logging
class Processor(ABC):
@abstractmethod
def get_info(self):
pass
@abstractmethod
def embed_payload(self):
pass
@abstractmethod
def extract_payload(self):
pass
@abstractmethod
def compare(self):
pass
@abstractmethod
def visual_compare(self):
pass
@abstractmethod
def _get_header(self):
pass
class StegMethod(Enum):
LSB = 1
PVD = 2
EBE = 4
class LSBProcessor(Processor):
def __init__(self, src_image_path):
global_init(self, src_image_path)
self.max_payload_size = self.total_pixels * 3
def _get_header(self):
self.logger.info("Getting image header")
image_header_bits = self._lsb_extract(self.src_img_pixels.flatten()[:128], 128)
header_magic_bits = image_header_bits[:40]
if not np.array_equal(np.packbits(header_magic_bits), np.frombuffer(np.array(["SAMRH"], dtype='|S5'), dtype='uint8')):
self.logger.warn("This image has not been processed with StegArmory!")
return
header_method_bits = image_header_bits[40:48]
header_method = np.frombuffer(np.packbits(header_method_bits), dtype='uint8')[0]
header_payload_size_bits = image_header_bits[48:80]
header_payload_size = np.frombuffer(np.packbits(header_payload_size_bits), dtype='uint32')[0]
header_payload_checksum_bits = image_header_bits[80:112]
header_payload_checksum = np.frombuffer(np.packbits(header_payload_checksum_bits), dtype='uint32')[0]
header_payload_xor_flag_bits = image_header_bits[112:120]
header_payload_xor_flag = np.frombuffer(np.packbits(header_payload_xor_flag_bits), dtype='uint8')[0]
return {
"method": header_method,
"payload_size": header_payload_size,
"payload_checksum": header_payload_checksum,
"payload_xor_encoded": header_payload_xor_flag
}
def _lsb_embed(self, pixel_array, payload_bits):
self.logger.info("Embedding data")
pixel_array_enc = np.copy(pixel_array)
pixel_array_enc = pixel_array_enc.flatten()
req_pixel_space = len(payload_bits)
with tqdm(total=req_pixel_space, file=sys.stdout, leave=False) as prog_bar:
with np.nditer(pixel_array_enc, op_flags=['readwrite'], flags=['c_index']) as iterator:
for pixel in iterator:
if iterator.index >= req_pixel_space:
break
pixel[...] = pixel & 0xFE | payload_bits[iterator.index]
prog_bar.update(1)
return pixel_array_enc
def _lsb_extract(self, pixel_array, payload_size):
payload = []
self.logger.info("Extracting data")
with tqdm(total=payload_size, file=sys.stdout, leave=False) as prog_bar:
with np.nditer(pixel_array, flags=['c_index']) as iterator:
for pixel in iterator:
payload.append(pixel & 1)
prog_bar.update(1)
return payload
def get_info(self):
image_info = ""
image_info += f"\nImage ({self.src_img_path})"
image_info += "\n-----------------------"
image_info += f"\nTransparency: {self.has_alpha}"
image_info += f"\nTotal Pixels: {self.total_pixels}"
image_info += f"\nMax Payload Size: {util.human_readable_size(self.max_payload_size // 8, 2)}"
image_info += "\n-----------------------"
if self.header is not None:
image_info += f"\nEmbedded Header ({self.src_img_path})"
image_info += "\n-----------------------"
image_info += f"\nSteg Method: {StegMethod(self.header['method']).name}"
image_info += f"\nPayload Size: {util.human_readable_size(self.header['payload_size'] // 8, 2)}"
image_info += f"\nPayload Checksum: {hex(self.header['payload_checksum'])}"
image_info += f"\nPayload XOR encoded: {bool(self.header['payload_xor_encoded'])}"
image_info += "\n-----------------------\n"
self.logger.info(image_info)
def embed_payload(self, payload, dst_image, xor_key = 0):
with open(payload, 'rb') as file:
payload_data = file.read()
payload_checksum = binascii.crc32(payload_data)
xor_encoded = False
if xor_key != 0:
if xor_key < 1 or xor_key > 255:
self.logger.critical("XOR key larger outside allowed range (1-255).")
sys.exit(1)
xor_encoded = True
payload_data = global_xor_encoder(payload_data, xor_key)
payload_bits = np.unpackbits(np.frombuffer(payload_data, dtype="uint8", count=len(payload_data)))
req_pixel_space = len(payload_bits)
self.logger.info(f"Embedding {util.human_readable_size(req_pixel_space // 8, 2)} payload in the cover image")
if req_pixel_space > np.iinfo(np.uint32).max:
self.logger.critical(f"Cannot embed payload larger than {(np.iinfo(np.uint32).max // 8)} bytes")
sys.exit(1)
if req_pixel_space > (self.total_pixels * 3) or req_pixel_space == 0:
self.logger.critical("Cannot embed this payload in the cover image because it is too large")
sys.exit(1)
self.logger.info("Setting header during embed")
header_bits = global_gen_header(StegMethod.LSB, req_pixel_space, payload_checksum, xor_encoded)
complete_payload = np.concatenate((header_bits, payload_bits))
enc_pixels = self._lsb_embed(self.src_img_pixels, complete_payload)
global_save_img_from_pixels(self, enc_pixels, dst_image)
def extract_payload(self, payload_save_path, xor_key = 0):
if self.header is None:
self.logger.critical("Missing embedded header in image! Cannot extract payload.")
sys.exit(1)
header_payload_size = self.header["payload_size"]
header_payload_checksum = self.header["payload_checksum"]
if self.max_payload_size < header_payload_size + 128 or header_payload_size < 1:
self.logger.critical("Invalid payload size specified in header")
sys.exit(1)
self.logger.info(f"Extracting {util.human_readable_size(header_payload_size // 8, 2)} payload from the image")
dec_payload_bits = self._lsb_extract((self.src_img_pixels.flatten())[128:header_payload_size+128], header_payload_size)
payload_bytes = np.ndarray.tobytes(np.packbits(dec_payload_bits))
if self.header['payload_xor_encoded']:
payload_bytes = global_xor_encoder(payload_bytes, xor_key)
payload_checksum = binascii.crc32(payload_bytes)
if payload_checksum != header_payload_checksum:
self.logger.critical("Failed to verify checksum of extracted payload!")
sys.exit(1)
with open(payload_save_path, 'wb') as file:
file.write(payload_bytes)
self.logger.info(f"Successfully extracted payload and saved to {payload_save_path}")
def compare(self, image):
self.logger.info("Comparing images for similarity and quality")
colorA = cv2.cvtColor(self.src_img_pixels, cv2.COLOR_BGR2RGB)
colorB = cv2.cvtColor(image.src_img_pixels, cv2.COLOR_BGR2RGB)
psnr = skimage.metrics.peak_signal_noise_ratio(self.src_img, image.src_img)
(score, diff) = skimage.metrics.structural_similarity(colorA, colorB, full=True, multichannel=True)
self.comparison_stats = {
"psnr": psnr,
"ssim": score
}
self.logger.info("PSNR: " + str(round(psnr, 4)))
self.logger.info("SSIM: " + str(round(score, 4)))
def visual_compare(self, image):
self.logger.info("Comparing images for visual similarity")
grayA = cv2.cvtColor(self.src_img_pixels, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(image.src_img_pixels, cv2.COLOR_BGR2GRAY)
(score, diff) = skimage.metrics.structural_similarity(colorA, colorB, full=True, multichannel=False)
diff = (diff * 255).astype("uint8")
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
filled_after = image.src_img.copy()
for c in contours:
cv2.drawContours(filled_after, [c], 0, (0,255,0), -1)
cv2.imshow('filled after',filled_after)
cv2.waitKey(0)
class PVDProcessor(Processor):
def __init__(self, src_image_path):
global_init(self, src_image_path)
def _get_header(self):
self.logger.info("Getting image header")
header_stop_pixel = self._pvd_get_header_boundary(self.src_img_pixels)
image_header_bits = self._pvd_extract(self.src_img_pixels, 0, header_stop_pixel[0], 128)
header_magic_bits = image_header_bits[:40]
header_magic_bits = image_header_bits[:40]
if not np.array_equal(np.packbits(header_magic_bits), np.frombuffer(np.array(["SAMRH"], dtype='|S5'), dtype='uint8')):
self.logger.warn("This image has not been processed with StegArmory!")
return
header_method_bits = image_header_bits[40:48]
header_method = np.frombuffer(np.packbits(header_method_bits), dtype='uint8')[0]
header_payload_size_bits = image_header_bits[48:80]
header_payload_size = np.frombuffer(np.packbits(header_payload_size_bits), dtype='uint32')[0]
header_payload_checksum_bits = image_header_bits[80:112]
header_payload_checksum = np.frombuffer(np.packbits(header_payload_checksum_bits), dtype='uint32')[0]
header_payload_xor_flag_bits = image_header_bits[112:120]
header_payload_xor_flag = np.frombuffer(np.packbits(header_payload_xor_flag_bits), dtype='uint8')[0]
return {
"method": header_method,
"payload_size": header_payload_size,
"payload_checksum": header_payload_checksum,
"payload_xor_encoded": header_payload_xor_flag
}
def _get_payload_chunk(self, start, count, payload_bits):
packed_bits = np.packbits(payload_bits[0:4][::-1])
return int.from_bytes(np.ndarray.tobytes(packed_bits), byteorder='little')
def _calc_new_pixel_pair(self, pixels, m_val, orig_diff):
pixel_a = pixels[0]
pixel_b = pixels[1]
if orig_diff % 2 != 0: # Diff is an odd number
pixels = [
pixel_a - math.ceil(m_val / 2),
pixel_b + math.floor(m_val / 2)
]
else: # Diff is an even number
pixels = [
pixel_a - math.floor(m_val / 2),
pixel_b + math.ceil(m_val / 2)
]
return np.floor(pixels).astype('int32').tolist()
def _get_range_keys(self, pixel_difference):
wu_tsai_ranges = [
[0, 1, 1],
[2, 3, 1],
[4, 7, 2],
[8, 11, 2],
[12, 15, 2],
[16, 23, 3],
[24, 31, 3],
[32, 47, 4],
[48, 63, 4],
[64, 95, 5],
[96, 127, 5],
[128, 191, 6],
[192, 255, 6]
]
for sub_range in wu_tsai_ranges:
if sub_range[0] <= pixel_difference <= sub_range[1]: # If pixel_difference belongs to a subrange
return sub_range
def _pvd_get_header_boundary(self, enc_pixels):
self.logger.info("Finding header boundary:")
embed_space = 0
pixel_array = self.src_img_pixels.flatten()
with tqdm(total=128, file=sys.stdout, leave=False) as prog_bar:
for i in range(0, pixel_array.size - 1, 2):
if embed_space >= 128:
prog_bar.total = embed_space
#prog_bar.update(prog_bar.total - prog_bar.n)
return [i, t_val - (embed_space - 128)] # Returns index aka number of pixels needed to retrieve header
pixel_pair = pixel_array[i:i+2]
pixel_diff = int(pixel_pair[1]) - int(pixel_pair[0])
range_keys = self._get_range_keys(abs(pixel_diff))
bounds_check_pixels = self._calc_new_pixel_pair(pixel_pair, range_keys[1] - pixel_diff, pixel_diff)
if bounds_check_pixels[0] < 0 or bounds_check_pixels[1] > 255:
continue
t_val = range_keys[2] # Number of bits to embed
embed_space += t_val
prog_bar.update(t_val)
def _pvd_calculate_space(self):
self.logger.info("Calculating maximum payload size:")
embed_space = 0
pixel_array = self.src_img_pixels.flatten()
total_size = pixel_array.size - 1
with tqdm(total=total_size+1, file=sys.stdout, leave=False) as prog_bar:
for i in range(0, total_size, 2):
pixel_pair = pixel_array[i:i+2]
pixel_diff = int(pixel_pair[1]) - int(pixel_pair[0])
range_keys = self._get_range_keys(abs(pixel_diff))
prog_bar.update(2)
bounds_check_pixels = self._calc_new_pixel_pair(pixel_pair, range_keys[1] - pixel_diff, pixel_diff)
if bounds_check_pixels[0] < 0 or bounds_check_pixels[1] > 255:
continue
t_val = range_keys[2] # Number of bits to embed
embed_space += t_val
return embed_space
def _pvd_embed(self, pixel_array, payload_bits):
self.logger.info("Embedding data")
pixel_array_enc = np.copy(pixel_array)
pixel_array_enc = pixel_array_enc.flatten()
req_pixel_space = len(payload_bits)
payload_bit_index = 0
with tqdm(total=req_pixel_space, file=sys.stdout, leave=False) as prog_bar:
for i in range(0, pixel_array_enc.size - 1, 2):
pixel_pair = pixel_array_enc[i:i+2]
pixel_diff = int(pixel_pair[1]) - int(pixel_pair[0])
range_keys = self._get_range_keys(abs(pixel_diff))
bounds_check_pixels = self._calc_new_pixel_pair(pixel_pair, range_keys[1] - pixel_diff, pixel_diff)
if bounds_check_pixels[0] < 0 or bounds_check_pixels[1] > 255:
continue
t_val = range_keys[2] # Number of bits to embed
bits_to_embed = payload_bits[payload_bit_index:payload_bit_index+t_val]
bits_to_embed_size = len(bits_to_embed)
if bits_to_embed_size < t_val:
bits_to_embed = np.pad(bits_to_embed, mode='constant', pad_width=(0, t_val - bits_to_embed_size))
bits_packed = np.packbits(bits_to_embed[::-1], bitorder='little')
bits_decimal_val = int.from_bytes(np.ndarray.tobytes(bits_packed), byteorder='little')
if pixel_diff >= 0:
new_diff = range_keys[0] + bits_decimal_val
else:
new_diff = -(range_keys[0] + bits_decimal_val)
m_val = new_diff - pixel_diff
pixel_pair_new = self._calc_new_pixel_pair(pixel_pair, m_val, pixel_diff)
pixel_array_enc[i] = pixel_pair_new[0]
pixel_array_enc[i+1] = pixel_pair_new[1]
payload_bit_index += bits_to_embed_size
prog_bar.update(bits_to_embed_size)
if payload_bit_index >= req_pixel_space:
return pixel_array_enc
return pixel_array_enc
def _pvd_extract(self, enc_pixels, pixel_start_index, pixel_stop_index, bits_to_extract, bit_start_index = 0):
self.logger.info("Extracting data")
payload = []
enc_pixels = enc_pixels.flatten()
with tqdm(total=bits_to_extract, file=sys.stdout, leave=False) as prog_bar:
for i in range(pixel_start_index, pixel_stop_index, 2):
if len(payload) >= bits_to_extract:
prog_bar.total = len(payload)
return payload
pixel_pair = enc_pixels[i:i+2]
pixel_diff = int(pixel_pair[1]) - int(pixel_pair[0])
range_keys = self._get_range_keys(abs(pixel_diff))
bounds_check_pixels = self._calc_new_pixel_pair(pixel_pair, range_keys[1] - pixel_diff, pixel_diff)
if bounds_check_pixels[0] < 0 or bounds_check_pixels[1] > 255:
continue
b_val = abs(pixel_diff - range_keys[0]) # Diff - Lower Val
t_val = range_keys[2]
bits_extracted = np.unpackbits(np.array([b_val], dtype=np.uint8))[-t_val:].tolist()
if bit_start_index != 0:
bits_extracted = bits_extracted[bit_start_index:]
bit_start_index = 0
payload.extend(bits_extracted)
prog_bar.update(len(bits_extracted))
prog_bar.total = len(payload)
return payload
def get_info(self):
if self.max_payload_size is None:
self.max_payload_size = self._pvd_calculate_space()
image_info = ""
image_info += f"\nImage ({self.src_img_path})"
image_info += "\n-----------------------"
image_info += f"\nTransparency: {self.has_alpha}"
image_info += f"\nTotal Pixels: {self.total_pixels}"
image_info += f"\nMax Payload Size: {util.human_readable_size(self.max_payload_size // 8, 2)}"
image_info += "\n-----------------------"
if self.header is not None:
image_info += f"\nEmbedded Header ({self.src_img_path})"
image_info += "\n-----------------------"
image_info += f"\nSteg Method: {StegMethod(self.header['method']).name}"
image_info += f"\nPayload Size: {util.human_readable_size(self.header['payload_size'] // 8, 2)}"
image_info += f"\nPayload Checksum: {hex(self.header['payload_checksum'])}"
image_info += f"\nPayload XOR encoded: {bool(self.header['payload_xor_encoded'])}"
image_info += "\n-----------------------\n"
self.logger.info(image_info)
def embed_payload(self, payload, dst_image, xor_key = 0):
with open(payload, 'rb') as file:
payload_data = file.read()
payload_checksum = binascii.crc32(payload_data)
xor_encoded = False
if xor_key != 0:
if xor_key < 1 or xor_key > 255:
self.logger.critical("XOR key larger outside allowed range (1-255).")
sys.exit(1)
xor_encoded = True
payload_data = global_xor_encoder(payload_data, xor_key)
payload_bits = np.unpackbits(np.frombuffer(payload_data, dtype="uint8", count=len(payload_data)))
req_pixel_space = len(payload_bits)
self.logger.info(f"Embedding {util.human_readable_size(req_pixel_space // 8, 2)} payload in the cover image")
if req_pixel_space > np.iinfo(np.uint32).max:
self.logger.critical(f"Cannot embed payload larger than {(np.iinfo(np.uint32).max // 8)} bytes")
sys.exit(1)
if self.max_payload_size is None:
self.max_payload_size = self._pvd_calculate_space()
if req_pixel_space > self.max_payload_size:
self.logger.critical("Cannot embed this payload in the cover image because it is too large")
sys.exit(1)
self.logger.info("Setting header during embed")
header_bits = global_gen_header(StegMethod.PVD, req_pixel_space, payload_checksum, xor_encoded)
complete_payload = np.concatenate((header_bits, payload_bits))
enc_pixels = self._pvd_embed(self.src_img_pixels, complete_payload)
global_save_img_from_pixels(self, enc_pixels, dst_image)
def extract_payload(self, payload_save_path, xor_key):
if self.header is None:
self.logger.critical("Missing embedded header in image! Cannot extract payload.")
sys.exit(1)
header_payload_size = self.header["payload_size"]
header_payload_checksum = self.header["payload_checksum"]
self.logger.info(f"Extracting {util.human_readable_size(header_payload_size // 8, 2)} payload from the image")
header_stop_pixel = self._pvd_get_header_boundary(self.src_img_pixels)
if header_stop_pixel[1] != 0:
header_stop_pixel[0] -= 2 # Start at previous pixel pair in case header didn't consume all bits in pair
dec_payload_bits = self._pvd_extract(self.src_img_pixels, header_stop_pixel[0], self.src_img_pixels.size - 1, header_payload_size, header_stop_pixel[1])[:header_payload_size]
payload_bytes = np.ndarray.tobytes(np.packbits(dec_payload_bits))
if self.header['payload_xor_encoded']:
payload_bytes = global_xor_encoder(payload_bytes, xor_key)
payload_checksum = binascii.crc32(payload_bytes)
if payload_checksum != header_payload_checksum:
self.logger.critical("Failed to verify checksum of extracted payload!")
sys.exit(1)
with open(payload_save_path, 'wb') as file:
file.write(payload_bytes)
self.logger.info(f"Successfully extracted payload and saved to {payload_save_path}")
def compare(self, image):
colorA = cv2.cvtColor(self.src_img_pixels, cv2.COLOR_BGR2RGB)
colorB = cv2.cvtColor(image.src_img_pixels, cv2.COLOR_BGR2RGB)
psnr = skimage.metrics.peak_signal_noise_ratio(self.src_img, image.src_img)
(score, diff) = skimage.metrics.structural_similarity(colorA, colorB, full=True, multichannel=True)
self.comparison_stats = {
"psnr": psnr,
"ssim": score
}
self.logger.info("PSNR: " + str(round(psnr, 4)))
self.logger.info("SSIM: " + str(round(score, 4)))
def visual_compare(self, image):
grayA = cv2.cvtColor(self.src_img_pixels, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(image.src_img_pixels, cv2.COLOR_BGR2GRAY)
(score, diff) = skimage.metrics.structural_similarity(colorA, colorB, full=True, multichannel=False)
diff = (diff * 255).astype("uint8")
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
filled_after = image.src_img.copy()
for c in contours:
cv2.drawContours(filled_after, [c], 0, (0,255,0), -1)
cv2.imshow('filled after',filled_after)
cv2.waitKey(0)
def global_init(self, src_image_path):
self.logger = logging.LoggerAdapter(logging.getLogger(), {"caller":self.__class__.__name__})
self.logger.debug("Performing global initialization of processor")
self.src_img_path = src_image_path
self.src_img = cv2.imread(src_image_path, cv2.IMREAD_UNCHANGED)
self.has_alpha = len(self.src_img.shape) > 2 and self.src_img.shape[2] == 4
self.width = self.src_img.shape[1]
self.height = self.src_img.shape[0]
self.total_pixels = self.width * self.height
self.src_img_pixels = cv2.cvtColor(self.src_img, cv2.COLOR_BGR2RGBA) if self.has_alpha else cv2.cvtColor(self.src_img, cv2.COLOR_BGR2RGB)
self.max_payload_size = None
self.header = self._get_header()
self.comparison_stats = None
def global_gen_header(method, payload_size, payload_checksum, payload_xor_encoded = False):
header_magic = "SAMRH" # Magic Bytes [5 bytes]
header_method = method.value # (refer to StegMethod enum values) [1 byte]
header_payload_size = payload_size # Size of payload (bits) [4 bytes]
header_payload_checksum = payload_checksum # CRC32 of payload (unsigned CRC32) [4 bytes]
header_xor_encoded = int(payload_xor_encoded) # Flag to specify whether payload is XOR encoded [1 byte]
header_payload_reserved = 0 # Reserved Byte [1 byte]
header_data = np.array([(header_magic, header_method, header_payload_size, header_payload_checksum, header_xor_encoded, header_payload_reserved)], dtype='|S5, int8, uint32, uint32, int8, int8')[0]
header_data_bits = np.unpackbits(np.frombuffer(header_data, dtype="uint8", count=header_data.nbytes))
return header_data_bits
def global_save_img_from_pixels(self, pixels, save_path):
pixels = np.reshape(pixels, self.src_img_pixels.shape)
if self.has_alpha:
pixels = cv2.cvtColor(pixels, cv2.COLOR_RGBA2BGRA)
else:
pixels = cv2.cvtColor(pixels, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_path, pixels)
self.logger.info("Successfully embedded payload in cover image")
def global_xor_encoder(data, xor_key):
return bytes([b ^ xor_key for b in data])