-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpc_sets.py
executable file
·507 lines (441 loc) · 21.6 KB
/
pc_sets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""
===============================
PC Sets (pc_sets.py)
===============================
Mark Gotham, 2021
LICENCE:
===============================
Creative Commons Attribution-ShareAlike 4.0 International License
https://creativecommons.org/licenses/by-sa/4.0/
ABOUT:
===============================
Properties of pitch class sets, and
functions for retrieving one property directly from another.
Each pitch class set entry features the following properties:
- Forte index;
- prime form (according to Forte's system);
- interval vector;
- number of distinct transformations (non-invariant transpositions and / or inversions).
For the hexachords (only), an additional entry provides the combinatoriality status
from among 5 options:
'A' for all-combinatorial (6 hexachords total),
'T' for transposition only (only 1),
'I' for inversion only (13),
'RI' for retrograde-inversion only (13), and
'' (an empty string) for non-combinatorial (16).
Most of the retrieval function names are in the form
`<call-on-type>To<return-type>`
e.g.
`primeToCombinatoriality`
Some are simple mappings from one entry to another.
Anything starting with pitches involves more calculation.
For more information on set classes and a more detailed list of properties, see
Robert Morris's table and brief explanation (with further sources) here:
http://ecmc.rochester.edu/rdm/pdflib/set-class.table.pdf
"""
from typing import Union, List, Tuple
import transformations
import unittest
# ------------------------------------------------------------------------------
# PC set properties
setClassesList = (
( # Cardinality 0 not supported
None
),
( # Cardinality 1 not supported
None
),
( # Cardinality 2
('2-1', (0, 1), (1, 0, 0, 0, 0, 0), 2),
('2-2', (0, 2), (0, 1, 0, 0, 0, 0), 2),
('2-3', (0, 3), (0, 0, 1, 0, 0, 0), 2),
('2-4', (0, 4), (0, 0, 0, 1, 0, 0), 2),
('2-5', (0, 5), (0, 0, 0, 0, 1, 0), 2),
('2-6', (0, 6), (0, 0, 0, 0, 0, 1), 6)
),
( # Cardinality 3
('3-1', (0, 1, 2), (2, 1, 0, 0, 0, 0), 12),
('3-2', (0, 1, 3), (1, 1, 1, 0, 0, 0), 24),
('3-3', (0, 1, 4), (1, 0, 1, 1, 0, 0), 24),
('3-4', (0, 1, 5), (1, 0, 0, 1, 1, 0), 24),
('3-5', (0, 1, 6), (1, 0, 0, 0, 1, 1), 24),
('3-6', (0, 2, 4), (0, 2, 0, 1, 0, 0), 12),
('3-7', (0, 2, 5), (0, 1, 1, 0, 1, 0), 24),
('3-8', (0, 2, 6), (0, 1, 0, 1, 0, 1), 24),
('3-9', (0, 2, 7), (0, 1, 0, 0, 2, 0), 12),
('3-10', (0, 3, 6), (0, 0, 2, 0, 0, 1), 12),
('3-11', (0, 3, 7), (0, 0, 1, 1, 1, 0), 24),
('3-12', (0, 4, 8), (0, 0, 0, 3, 0, 0), 4)
),
( # Cardinality 4
('4-1', (0, 1, 2, 3), (3, 2, 1, 0, 0, 0), 12),
('4-2', (0, 1, 2, 4), (2, 2, 1, 1, 0, 0), 24),
('4-3', (0, 1, 3, 4), (2, 1, 2, 1, 0, 0), 12),
('4-4', (0, 1, 2, 5), (2, 1, 1, 1, 1, 0), 24),
('4-5', (0, 1, 2, 6), (2, 1, 0, 1, 1, 1), 24),
('4-6', (0, 1, 2, 7), (2, 1, 0, 0, 2, 1), 12),
('4-7', (0, 1, 4, 5), (2, 0, 1, 2, 1, 0), 12),
('4-8', (0, 1, 5, 6), (2, 0, 0, 1, 2, 1), 12),
('4-9', (0, 1, 6, 7), (2, 0, 0, 0, 2, 2), 6),
('4-10', (0, 2, 3, 5), (1, 2, 2, 0, 1, 0), 12),
('4-11', (0, 1, 3, 5), (1, 2, 1, 1, 1, 0), 24),
('4-12', (0, 2, 3, 6), (1, 1, 2, 1, 0, 1), 24),
('4-13', (0, 1, 3, 6), (1, 1, 2, 0, 1, 1), 24),
('4-14', (0, 2, 3, 7), (1, 1, 1, 1, 2, 0), 24),
('4-Z15', (0, 1, 4, 6), (1, 1, 1, 1, 1, 1), 24),
('4-16', (0, 1, 5, 7), (1, 1, 0, 1, 2, 1), 24),
('4-17', (0, 3, 4, 7), (1, 0, 2, 2, 1, 0), 12),
('4-18', (0, 1, 4, 7), (1, 0, 2, 1, 1, 1), 24),
('4-19', (0, 1, 4, 8), (1, 0, 1, 3, 1, 0), 24),
('4-20', (0, 1, 5, 8), (1, 0, 1, 2, 2, 0), 12),
('4-21', (0, 2, 4, 6), (0, 3, 0, 2, 0, 1), 12),
('4-22', (0, 2, 4, 7), (0, 2, 1, 1, 2, 0), 24),
('4-23', (0, 2, 5, 7), (0, 2, 1, 0, 3, 0), 12),
('4-24', (0, 2, 4, 8), (0, 2, 0, 3, 0, 1), 12),
('4-25', (0, 2, 6, 8), (0, 2, 0, 2, 0, 2), 6),
('4-26', (0, 3, 5, 8), (0, 1, 2, 1, 2, 0), 12),
('4-27', (0, 2, 5, 8), (0, 1, 2, 1, 1, 1), 24),
('4-28', (0, 3, 6, 9), (0, 0, 4, 0, 0, 2), 3),
('4-Z29', (0, 1, 3, 7), (1, 1, 1, 1, 1, 1), 24)
),
( # Cardinality 5
('5-1', (0, 1, 2, 3, 4), (4, 3, 2, 1, 0, 0), 12),
('5-2', (0, 1, 2, 3, 5), (3, 3, 2, 1, 1, 0), 24),
('5-3', (0, 1, 2, 4, 5), (3, 2, 2, 2, 1, 0), 24),
('5-4', (0, 1, 2, 3, 6), (3, 2, 2, 1, 1, 1), 24),
('5-5', (0, 1, 2, 3, 7), (3, 2, 1, 1, 2, 1), 24),
('5-6', (0, 1, 2, 5, 6), (3, 1, 1, 2, 2, 1), 24),
('5-7', (0, 1, 2, 6, 7), (3, 1, 0, 1, 3, 2), 24),
('5-8', (0, 2, 3, 4, 6), (2, 3, 2, 2, 0, 1), 12),
('5-9', (0, 1, 2, 4, 6), (2, 3, 1, 2, 1, 1), 24),
('5-10', (0, 1, 3, 4, 6), (2, 2, 3, 1, 1, 1), 24),
('5-11', (0, 2, 3, 4, 7), (2, 2, 2, 2, 2, 0), 24),
('5-12', (0, 1, 3, 5, 6), (2, 2, 2, 1, 2, 1), 12),
('5-13', (0, 1, 2, 4, 8), (2, 2, 1, 3, 1, 1), 24),
('5-14', (0, 1, 2, 5, 7), (2, 2, 1, 1, 3, 1), 24),
('5-15', (0, 1, 2, 6, 8), (2, 2, 0, 2, 2, 2), 12),
('5-16', (0, 1, 3, 4, 7), (2, 1, 3, 2, 1, 1), 24),
('5-17', (0, 1, 3, 4, 8), (2, 1, 2, 3, 2, 0), 12),
('5-18', (0, 1, 4, 5, 7), (2, 1, 2, 2, 2, 1), 24),
('5-19', (0, 1, 3, 6, 7), (2, 1, 2, 1, 2, 2), 24),
('5-20', (0, 1, 3, 7, 8), (2, 1, 1, 2, 3, 1), 24),
('5-21', (0, 1, 4, 5, 8), (2, 0, 2, 4, 2, 0), 24),
('5-22', (0, 1, 4, 7, 8), (2, 0, 2, 3, 2, 1), 12),
('5-23', (0, 2, 3, 5, 7), (1, 3, 2, 1, 3, 0), 24),
('5-24', (0, 1, 3, 5, 7), (1, 3, 1, 2, 2, 1), 24),
('5-25', (0, 2, 3, 5, 8), (1, 2, 3, 1, 2, 1), 24),
('5-26', (0, 2, 4, 5, 8), (1, 2, 2, 3, 1, 1), 24),
('5-27', (0, 1, 3, 5, 8), (1, 2, 2, 2, 3, 0), 24),
('5-28', (0, 2, 3, 6, 8), (1, 2, 2, 2, 1, 2), 24),
('5-29', (0, 1, 3, 6, 8), (1, 2, 2, 1, 3, 1), 24),
('5-30', (0, 1, 4, 6, 8), (1, 2, 1, 3, 2, 1), 24),
('5-31', (0, 1, 3, 6, 9), (1, 1, 4, 1, 1, 2), 24),
('5-32', (0, 1, 4, 6, 9), (1, 1, 3, 2, 2, 1), 24),
('5-33', (0, 2, 4, 6, 8), (0, 4, 0, 4, 0, 2), 12),
('5-34', (0, 2, 4, 6, 9), (0, 3, 2, 2, 2, 1), 12),
('5-35', (0, 2, 4, 7, 9), (0, 3, 2, 1, 4, 0), 12),
('5-36', (0, 1, 2, 4, 7), (2, 2, 2, 1, 2, 1), 24),
('5-37', (0, 3, 4, 5, 8), (2, 1, 2, 3, 2, 0), 12),
('5-38', (0, 1, 2, 5, 8), (2, 1, 2, 2, 2, 1), 24)
),
( # Cardinality 6
('6-1', (0, 1, 2, 3, 4, 5), (5, 4, 3, 2, 1, 0), 12, 'A'),
('6-2', (0, 1, 2, 3, 4, 6), (4, 4, 3, 2, 1, 1), 24, 'I'),
('6-Z3', (0, 1, 2, 3, 5, 6), (4, 3, 3, 2, 2, 1), 24, ''),
('6-Z4', (0, 1, 2, 4, 5, 6), (4, 3, 2, 3, 2, 1), 12, 'RI'),
('6-5', (0, 1, 2, 3, 6, 7), (4, 2, 2, 2, 3, 2), 24, 'I'),
('6-Z6', (0, 1, 2, 5, 6, 7), (4, 2, 1, 2, 4, 2), 12, 'RI'),
('6-7', (0, 1, 2, 6, 7, 8), (4, 2, 0, 2, 4, 3), 6, 'A'),
('6-8', (0, 2, 3, 4, 5, 7), (3, 4, 3, 2, 3, 0), 12, 'A'),
('6-9', (0, 1, 2, 3, 5, 7), (3, 4, 2, 2, 3, 1), 24, 'I'),
('6-Z10', (0, 1, 3, 4, 5, 7), (3, 3, 3, 3, 2, 1), 24, ''),
('6-Z11', (0, 1, 2, 4, 5, 7), (3, 3, 3, 2, 3, 1), 24, ''),
('6-Z12', (0, 1, 2, 4, 6, 7), (3, 3, 2, 2, 3, 2), 24, ''),
('6-Z13', (0, 1, 3, 4, 6, 7), (3, 2, 4, 2, 2, 2), 12, 'RI'),
('6-14', (0, 1, 3, 4, 5, 8), (3, 2, 3, 4, 3, 0), 24, 'T'),
('6-15', (0, 1, 2, 4, 5, 8), (3, 2, 3, 4, 2, 1), 24, 'I'),
('6-16', (0, 1, 4, 5, 6, 8), (3, 2, 2, 4, 3, 1), 24, 'I'),
('6-Z17', (0, 1, 2, 4, 7, 8), (3, 2, 2, 3, 3, 2), 24, ''),
('6-18', (0, 1, 2, 5, 7, 8), (3, 2, 2, 2, 4, 2), 24, 'I'),
('6-Z19', (0, 1, 3, 4, 7, 8), (3, 1, 3, 4, 3, 1), 24, ''),
('6-20', (0, 1, 4, 5, 8, 9), (3, 0, 3, 6, 3, 0), 4, 'A'),
('6-21', (0, 2, 3, 4, 6, 8), (2, 4, 2, 4, 1, 2), 24, 'I'),
('6-22', (0, 1, 2, 4, 6, 8), (2, 4, 1, 4, 2, 2), 24, 'I'),
('6-Z23', (0, 2, 3, 5, 6, 8), (2, 3, 4, 2, 2, 2), 12, 'RI'),
('6-Z24', (0, 1, 3, 4, 6, 8), (2, 3, 3, 3, 3, 1), 24, ''),
('6-Z25', (0, 1, 3, 5, 6, 8), (2, 3, 3, 2, 4, 1), 24, ''),
('6-Z26', (0, 1, 3, 5, 7, 8), (2, 3, 2, 3, 4, 1), 12, 'RI'),
('6-27', (0, 1, 3, 4, 6, 9), (2, 2, 5, 2, 2, 2), 24, 'I'),
('6-Z28', (0, 1, 3, 5, 6, 9), (2, 2, 4, 3, 2, 2), 12, 'RI'),
('6-Z29', (0, 1, 3, 6, 8, 9), (2, 2, 4, 2, 3, 2), 12, 'RI'),
('6-30', (0, 1, 3, 6, 7, 9), (2, 2, 4, 2, 2, 3), 12, 'I'),
('6-31', (0, 1, 3, 5, 8, 9), (2, 2, 3, 4, 3, 1), 24, 'I'),
('6-32', (0, 2, 4, 5, 7, 9), (1, 4, 3, 2, 5, 0), 12, 'A'),
('6-33', (0, 2, 3, 5, 7, 9), (1, 4, 3, 2, 4, 1), 24, 'I'),
('6-34', (0, 1, 3, 5, 7, 9), (1, 4, 2, 4, 2, 2), 24, 'I'),
('6-35', (0, 2, 4, 6, 8, 10), (0, 6, 0, 6, 0, 3), 2, 'A'),
('6-Z36', (0, 1, 2, 3, 4, 7), (4, 3, 3, 2, 2, 1), 24, ''),
('6-Z37', (0, 1, 2, 3, 4, 8), (4, 3, 2, 3, 2, 1), 12, 'RI'),
('6-Z38', (0, 1, 2, 3, 7, 8), (4, 2, 1, 2, 4, 2), 12, 'RI'),
('6-Z39', (0, 2, 3, 4, 5, 8), (3, 3, 3, 3, 2, 1), 24, ''),
('6-Z40', (0, 1, 2, 3, 5, 8), (3, 3, 3, 2, 3, 1), 24, ''),
('6-Z41', (0, 1, 2, 3, 6, 8), (3, 3, 2, 2, 3, 2), 24, ''),
('6-Z42', (0, 1, 2, 3, 6, 9), (3, 2, 4, 2, 2, 2), 12, 'RI'),
('6-Z43', (0, 1, 2, 5, 6, 8), (3, 2, 2, 3, 3, 2), 24, ''),
('6-Z44', (0, 1, 2, 5, 6, 9), (3, 1, 3, 4, 3, 1), 24, ''),
('6-Z45', (0, 2, 3, 4, 6, 9), (2, 3, 4, 2, 2, 2), 12, 'RI'),
('6-Z46', (0, 1, 2, 4, 6, 9), (2, 3, 3, 3, 3, 1), 24, ''),
('6-Z47', (0, 1, 2, 4, 7, 9), (2, 3, 3, 2, 4, 1), 24, ''),
('6-Z48', (0, 1, 2, 5, 7, 9), (2, 3, 2, 3, 4, 1), 12, 'RI'),
('6-Z49', (0, 1, 3, 4, 7, 9), (2, 2, 4, 3, 2, 2), 12, 'RI'),
('6-Z50', (0, 1, 4, 6, 7, 9), (2, 2, 4, 2, 3, 2), 12, 'RI')
),
( # Cardinality 7
('7-1', (0, 1, 2, 3, 4, 5, 6), (6, 5, 4, 3, 2, 1), 12),
('7-2', (0, 1, 2, 3, 4, 5, 7), (5, 5, 4, 3, 3, 1), 24),
('7-3', (0, 1, 2, 3, 4, 5, 8), (5, 4, 4, 4, 3, 1), 24),
('7-4', (0, 1, 2, 3, 4, 6, 7), (5, 4, 4, 3, 3, 2), 24),
('7-5', (0, 1, 2, 3, 5, 6, 7), (5, 4, 3, 3, 4, 2), 24),
('7-6', (0, 1, 2, 3, 4, 7, 8), (5, 3, 3, 4, 4, 2), 24),
('7-7', (0, 1, 2, 3, 6, 7, 8), (5, 3, 2, 3, 5, 3), 24),
('7-8', (0, 2, 3, 4, 5, 6, 8), (4, 5, 4, 4, 2, 2), 12),
('7-9', (0, 1, 2, 3, 4, 6, 8), (4, 5, 3, 4, 3, 2), 24),
('7-10', (0, 1, 2, 3, 4, 6, 9), (4, 4, 5, 3, 3, 2), 24),
('7-11', (0, 1, 3, 4, 5, 6, 8), (4, 4, 4, 4, 4, 1), 24),
('7-Z12', (0, 1, 2, 3, 4, 7, 9), (4, 4, 4, 3, 4, 2), 12),
('7-13', (0, 1, 2, 4, 5, 6, 8), (4, 4, 3, 5, 3, 2), 24),
('7-14', (0, 1, 2, 3, 5, 7, 8), (4, 4, 3, 3, 5, 2), 24),
('7-15', (0, 1, 2, 4, 6, 7, 8), (4, 4, 2, 4, 4, 3), 12),
('7-16', (0, 1, 2, 3, 5, 6, 9), (4, 3, 5, 4, 3, 2), 24),
('7-Z17', (0, 1, 2, 4, 5, 6, 9), (4, 3, 4, 5, 4, 1), 12),
('7-Z18', (0, 1, 2, 3, 5, 8, 9), (4, 3, 4, 4, 4, 2), 24),
('7-19', (0, 1, 2, 3, 6, 7, 9), (4, 3, 4, 3, 4, 3), 24),
('7-20', (0, 1, 2, 4, 7, 8, 9), (4, 3, 3, 4, 5, 2), 24),
('7-21', (0, 1, 2, 4, 5, 8, 9), (4, 2, 4, 6, 4, 1), 24),
('7-22', (0, 1, 2, 5, 6, 8, 9), (4, 2, 4, 5, 4, 2), 12),
('7-23', (0, 2, 3, 4, 5, 7, 9), (3, 5, 4, 3, 5, 1), 24),
('7-24', (0, 1, 2, 3, 5, 7, 9), (3, 5, 3, 4, 4, 2), 24),
('7-25', (0, 2, 3, 4, 6, 7, 9), (3, 4, 5, 3, 4, 2), 24),
('7-26', (0, 1, 3, 4, 5, 7, 9), (3, 4, 4, 5, 3, 2), 24),
('7-27', (0, 1, 2, 4, 5, 7, 9), (3, 4, 4, 4, 5, 1), 24),
('7-28', (0, 1, 3, 5, 6, 7, 9), (3, 4, 4, 4, 3, 3), 24),
('7-29', (0, 1, 2, 4, 6, 7, 9), (3, 4, 4, 3, 5, 2), 24),
('7-30', (0, 1, 2, 4, 6, 8, 9), (3, 4, 3, 5, 4, 2), 24),
('7-31', (0, 1, 3, 4, 6, 7, 9), (3, 3, 6, 3, 3, 3), 24),
('7-32', (0, 1, 3, 4, 6, 8, 9), (3, 3, 5, 4, 4, 2), 24),
('7-33', (0, 1, 2, 4, 6, 8, 10), (2, 6, 2, 6, 2, 3), 12),
('7-34', (0, 1, 3, 4, 6, 8, 10), (2, 5, 4, 4, 4, 2), 12),
('7-35', (0, 1, 3, 5, 6, 8, 10), (2, 5, 4, 3, 6, 1), 12),
('7-Z36', (0, 1, 2, 3, 5, 6, 8), (4, 4, 4, 3, 4, 2), 24),
('7-Z37', (0, 1, 3, 4, 5, 7, 8), (4, 3, 4, 5, 4, 1), 12),
('7-Z38', (0, 1, 2, 4, 5, 7, 8), (4, 3, 4, 4, 4, 2), 24)
),
( # Cardinality 8
('8-1', (0, 1, 2, 3, 4, 5, 6, 7), (7, 6, 5, 4, 4, 2), 12),
('8-2', (0, 1, 2, 3, 4, 5, 6, 8), (6, 6, 5, 5, 4, 2), 24),
('8-3', (0, 1, 2, 3, 4, 5, 6, 9), (6, 5, 6, 5, 4, 2), 12),
('8-4', (0, 1, 2, 3, 4, 5, 7, 8), (6, 5, 5, 5, 5, 2), 24),
('8-5', (0, 1, 2, 3, 4, 6, 7, 8), (6, 5, 4, 5, 5, 3), 24),
('8-6', (0, 1, 2, 3, 5, 6, 7, 8), (6, 5, 4, 4, 6, 3), 12),
('8-7', (0, 1, 2, 3, 4, 5, 8, 9), (6, 4, 5, 6, 5, 2), 12),
('8-8', (0, 1, 2, 3, 4, 7, 8, 9), (6, 4, 4, 5, 6, 3), 12),
('8-9', (0, 1, 2, 3, 6, 7, 8, 9), (6, 4, 4, 4, 6, 4), 6),
('8-10', (0, 2, 3, 4, 5, 6, 7, 9), (5, 6, 6, 4, 5, 2), 12),
('8-11', (0, 1, 2, 3, 4, 5, 7, 9), (5, 6, 5, 5, 5, 2), 24),
('8-12', (0, 1, 3, 4, 5, 6, 7, 9), (5, 5, 6, 5, 4, 3), 24),
('8-13', (0, 1, 2, 3, 4, 6, 7, 9), (5, 5, 6, 4, 5, 3), 24),
('8-14', (0, 1, 2, 4, 5, 6, 7, 9), (5, 5, 5, 5, 6, 2), 24),
('8-Z15', (0, 1, 2, 3, 4, 6, 8, 9), (5, 5, 5, 5, 5, 3), 24),
('8-16', (0, 1, 2, 3, 5, 7, 8, 9), (5, 5, 4, 5, 6, 3), 24),
('8-17', (0, 1, 3, 4, 5, 6, 8, 9), (5, 4, 6, 6, 5, 2), 12),
('8-18', (0, 1, 2, 3, 5, 6, 8, 9), (5, 4, 6, 5, 5, 3), 24),
('8-19', (0, 1, 2, 4, 5, 6, 8, 9), (5, 4, 5, 7, 5, 2), 24),
('8-20', (0, 1, 2, 4, 5, 7, 8, 9), (5, 4, 5, 6, 6, 2), 12),
('8-21', (0, 1, 2, 3, 4, 6, 8, 10), (4, 7, 4, 6, 4, 3), 12),
('8-22', (0, 1, 2, 3, 5, 6, 8, 10), (4, 6, 5, 5, 6, 2), 24),
('8-23', (0, 1, 2, 3, 5, 7, 8, 10), (4, 6, 5, 4, 7, 2), 12),
('8-24', (0, 1, 2, 4, 5, 6, 8, 10), (4, 6, 4, 7, 4, 3), 12),
('8-25', (0, 1, 2, 4, 6, 7, 8, 10), (4, 6, 4, 6, 4, 4), 6),
('8-26', (0, 1, 2, 4, 5, 7, 9, 10), (4, 5, 6, 5, 6, 2), 12),
('8-27', (0, 1, 2, 4, 5, 7, 8, 10), (4, 5, 6, 5, 5, 3), 24),
('8-28', (0, 1, 3, 4, 6, 7, 9, 10), (4, 4, 8, 4, 4, 4), 3),
('8-Z29', (0, 1, 2, 3, 5, 6, 7, 9), (5, 5, 5, 5, 5, 3), 24)
),
( # Cardinality 9
('9-1', (0, 1, 2, 3, 4, 5, 6, 7, 8), (8, 7, 6, 6, 6, 3), 12),
('9-2', (0, 1, 2, 3, 4, 5, 6, 7, 9), (7, 7, 7, 6, 6, 3), 24),
('9-3', (0, 1, 2, 3, 4, 5, 6, 8, 9), (7, 6, 7, 7, 6, 3), 24),
('9-4', (0, 1, 2, 3, 4, 5, 7, 8, 9), (7, 6, 6, 7, 7, 3), 24),
('9-5', (0, 1, 2, 3, 4, 6, 7, 8, 9), (7, 6, 6, 6, 7, 4), 24),
('9-6', (0, 1, 2, 3, 4, 5, 6, 8, 10), (6, 8, 6, 7, 6, 3), 12),
('9-7', (0, 1, 2, 3, 4, 5, 7, 8, 10), (6, 7, 7, 6, 7, 3), 24),
('9-8', (0, 1, 2, 3, 4, 6, 7, 8, 10), (6, 7, 6, 7, 6, 4), 24),
('9-9', (0, 1, 2, 3, 5, 6, 7, 8, 10), (6, 7, 6, 6, 8, 3), 12),
('9-10', (0, 1, 2, 3, 4, 6, 7, 9, 10), (6, 6, 8, 6, 6, 4), 12),
('9-11', (0, 1, 2, 3, 5, 6, 7, 9, 10), (6, 6, 7, 7, 7, 3), 24),
('9-12', (0, 1, 2, 4, 5, 6, 8, 9, 10), (6, 6, 6, 9, 6, 3), 4)
),
( # Cardinality 10
('10-1', (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), (9, 8, 8, 8, 8, 4), 12),
('10-2', (0, 1, 2, 3, 4, 5, 6, 7, 8, 10), (8, 9, 8, 8, 8, 4), 12),
('10-3', (0, 1, 2, 3, 4, 5, 6, 7, 9, 10), (8, 8, 9, 8, 8, 4), 12),
('10-4', (0, 1, 2, 3, 4, 5, 6, 8, 9, 10), (8, 8, 8, 9, 8, 4), 12),
('10-5', (0, 1, 2, 3, 4, 5, 7, 8, 9, 10), (8, 8, 8, 8, 9, 4), 12),
('10-6', (0, 1, 2, 3, 4, 6, 7, 8, 9, 10), (8, 8, 8, 8, 8, 5), 6)
),
( # Cardinality 11 not supported
None
),
( # Cardinality 12 not supported
None
)
)
def setClassesFromCardinality(cardinality: int):
"""
In: a cardinality (2-10).
Out: the pitch class set data for that cardinality.
"""
if not (1 < cardinality < 11):
raise ValueError('Invalid cardinality: must be 2-10 (inclusive).')
else:
return setClassesList[cardinality]
def primeToCombinatoriality(prime: Tuple[int]):
"""
In: a prime form expressed as a Tuple of integers.
Out: the combinatoriality status as a string.
"""
data = setClassesFromCardinality(len(prime))
for x in data:
if x[1] == prime:
return x[3]
raise ValueError(f'{prime} is not a valid prime form')
def intervalVectorToCombinatoriality(vector: Tuple[int]):
"""
In: an interval vector for any set with 2-10 distinct pitches,
expressed as a Tuple of 6 integers.
Out: the combinatoriality status of any valid interval vector as a
string (one of T, I, RI, A, or an empty string for non-combinatorial cases).
"""
if len(vector) != 6:
raise ValueError(f'{vector} is not a valid interval vector')
total = sum(vector)
totalToCardinality = {1: 2,
3: 3,
6: 4,
15: 6}
data = setClassesFromCardinality(totalToCardinality[total])
for x in data:
if x[2] == vector:
return x[-1]
raise ValueError(f'{vector} is not a valid interval vector')
def pitchesToCombinatoriality(pitches: Union[List[int], Tuple[int]]):
"""
In: a list or tuple of pitches expressed as integers (0–11) for sets with 2-10 distinct pitches.
Out: the combinatoriality status as a string.
"""
icv = pitchesToIntervalVector(pitches)
return intervalVectorToCombinatoriality(icv)
def distinctPCs(pitches: Union[List, Tuple]) -> list:
"""
In: a list or tuple of pitches (any integers).
Out: a list of distinct PCs in the range 0-11.
"""
pitches = list(set(pitches)) # remove any duplicates
return [p % 12 for p in pitches]
def pitchesToIntervalVector(pitches: Union[List[int], Tuple[int]]):
"""
In: a list or tuple of pitches.
Out: the interval vector.
"""
pitches = distinctPCs(pitches)
vector = [0, 0, 0, 0, 0, 0]
from itertools import combinations
for p in combinations(pitches, 2):
ic = p[1] - p[0]
if ic < 0:
ic *= -1
if ic > 6:
ic = 12 - ic
vector[ic - 1] += 1
return tuple(vector)
def pitchesToForteClass(pitches: Union[List[int], Tuple[int]]):
"""
In: a list or tuple of pitches expressed as integers (0–11) for sets with 2-10 distinct pitches.
Out: the Forte class.
"""
data = setClassesFromCardinality(len(pitches))
prime = pitchesToPrime(pitches)
for x in data:
if x[1] == prime:
return x[0]
raise ValueError(f'{pitches} is not a valid entry.')
def pitchesToPrime(pitches: Union[List[int], Tuple[int]]):
"""
In: a list or tuple of pitches expressed as integers (0–11) for sets with 2-10 distinct pitches.
Out: the prime form.
The function first converts the pitches to their interval vector (easy, fast).
That vector unambiguously gives the prime form for cases except those with Z-related pairs.
This affects one pair of tetrachords (so 2 prime forms) and 15 pairs of hexachords (30 primes).
In those cases, the prime form is worked out by comparing the pitch list against the pair of
options in both inversions until a match is found.
"""
pitches = distinctPCs(pitches)
vector = pitchesToIntervalVector(pitches)
primes = []
data = setClassesFromCardinality(len(set(pitches)))
for x in data:
if x[2] == vector:
primes.append(x[1])
if len(primes) == 1:
return primes[0]
elif len(primes) > 1:
for prime in primes: # each possible prime form
invertedPrime = transformations.invert(prime)
for t in [prime, invertedPrime]:
if transpositionEquivalent(t, pitches):
return prime
def transpositionEquivalent(set1, set2):
"""
Supporting function for determining whether two sets are transposition equivalent
as part of determining prime forms with `pitchesToPrime`.
"""
sortedSet2 = sorted(list(set2))
for i in range(12):
testCase = sorted(list(transformations.transposeBy(set1, i)))
if testCase == sortedSet2:
return True
# ------------------------------------------------------------------------------
class PCTester(unittest.TestCase):
def testPitchesToPrime(self):
"""
Tests one case through the interval vector, and another that requires transformation.
"""
prime = pitchesToPrime((0, 2, 3))
self.assertEqual(prime, (0, 1, 3))
# Test one case of numbers beyond 0-11
prime = pitchesToPrime((100, 102, 103))
self.assertEqual(prime, (0, 1, 3))
prime = pitchesToPrime((8, 2, 4, 7)) # via I [0,2,5,6], t2 [2,4,7,8], and shuffle.
self.assertEqual(prime, (0, 1, 4, 6))
def testSelfComplementHexachords(self):
"""
Tests that all and only the hexachords without a Z-related pair are self-complementary.
(In so doing, this also tests the pitches-to-prime routine.)
"""
countHexachords = 0
countTotal = 0
for entry in setClassesFromCardinality(6):
hexachord = entry[1]
complement = tuple([x for x in range(12) if x not in hexachord])
complementPrime = pitchesToPrime(complement)
if hexachord == complementPrime:
self.assertFalse('Z' in entry[0])
countHexachords += 1
countTotal += entry[3]
else:
self.assertTrue('Z' in entry[0])
self.assertEqual(countHexachords, 20) # 20/50, so 40%
self.assertEqual(countTotal, 372) # 372/924, so 35.4%
# ------------------------------------------------------------------------------
if __name__ == '__main__':
unittest.main()