-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_classifier.py
254 lines (207 loc) · 9.4 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# IMPORT PACKAGES
from prettytable import PrettyTable
from tqdm import tqdm
import numpy as np
import argparse
import random
import yaml
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn as nn
import torch
from utils.classifier_dataset import PneumoniaDataset, ImageTransform
from utils.common_utils import create_folder, print_info
from utils.plot_utils import plot_accuracy
from models.create_model import create_model
# from onnx.export_onnx import export_onnx
# from compression.prune import main_prune
# result reproduction
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.empty_cache()
def set_seed(seed):
"""
Set random seed for reproducibility
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def test(split):
"""
This function takes in a string 'split' and returns the accuracy of the model on the specified data split.
:param split:train/val/test
:return:accuracy
"""
model.eval()
data_info = {'train': train_loader, 'val': val_loader, 'test': test_loader}
data_loader = data_info[split]
total = 0
correct = 0
with torch.no_grad():
for inputs, targets in data_loader:
inputs, targets = inputs.to(DEVICE), targets.to(DEVICE)
outputs = model(inputs)
_, pred = torch.max(outputs, 1)
correct += (pred == targets).sum().item()
total += targets.size(0)
return correct / total
def train(model, epochs):
# Define loss function
criterion = nn.CrossEntropyLoss()
train_acc_all = []
test_acc_all = []
val_acc_all = []
best_acc = 0.0
for epoch in range(1, epochs + 1):
model.train()
total_loss = 0
loop = tqdm(enumerate(train_loader), total=len(train_loader), postfix=dict, mininterval=0.3)
for i, (inputs, targets) in loop:
inputs, targets = inputs.to(DEVICE), targets.to(DEVICE)
outputs = model(inputs)
# Compute loss
loss = criterion(outputs, targets)
# Update model
optimizer.zero_grad()
loss.backward()
total_loss += loss.item()
optimizer.step()
# Add epoch, loss, lr
loop.set_description(f"Epoch [{epoch}/{epochs}]")
loop.set_postfix({'total_loss': total_loss / (i + BATCH_SIZE),
'lr': scheduler.get_last_lr()})
loop.update(1)
scheduler.step()
# evaluate
train_acc = test('train')
test_acc = test('test')
val_acc = test('val')
# Write down accuracy
train_acc_all.append(train_acc)
test_acc_all.append(test_acc)
val_acc_all.append(val_acc)
# Save best model
if val_acc > best_acc:
best_acc = val_acc
torch.save(model.state_dict(), f'{save_dir}/best.pth')
print_info()
print(
f"Save best model to checkpoints file!\t Train Acc: {best_acc * 100.:.2f}% Val Acc: {val_acc * 100.:.2f}% Test Acc: {test_acc * 100.:.2f}")
print_info()
return train_acc_all, test_acc_all, val_acc_all
def get_argparse():
# Define cmd arguments
parser = argparse.ArgumentParser()
# Train Options
parser.add_argument('--batch-size', type=int, default=128, help='batch size for training (default: 32)')
parser.add_argument('--workers', type=int, default=12, help='number of data loading workers')
parser.add_argument('--epochs', type=int, default=40, help='number of epochs for training (default: 20)')
parser.add_argument('--optim-policy', type=str, default='adam', help='optimizer for training. [sgd | adam]')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate (default: 0.001)')
parser.add_argument('--weight-decay', type=float, default=1e-6, help='weight-decay for training. [le-4 | 1e-6]')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum for sgd (default: 0.9)')
parser.add_argument('--lr-policy', type=str, default='cos', help='learning rate decay policy. [step | cos]')
parser.add_argument('--gamma', type=float, default=0.1,
help='multiply by a gamma every lr_decay_epochs (only for step lr policy)')
parser.add_argument('--step-size', type=int, default=20, help='period of lr decay. (default: 20)')
parser.add_argument('--seed', type=int, default=1234, help='random seed. [47 | 3407 | 1234]')
parser.add_argument('--use-gpu', action='store_true', default=True, help='turn on flag to use GPU')
parser.add_argument('--pretrain', action='store_true', default=True, help='whether to fine-tune')
# Model Options
parser.add_argument('--model_name', type=str, default='resnet18-sam',
help='CNN [resnet18-cbam | resnet18 | seresnet18 | resnet34 | vgg16 | vgg19 | mobilenetv2 | alexnet]')
parser.add_argument('--use-pretrained', action='store_true', default=False,
help='whether to fine-tune on pretrained model')
'''
# Prune Options
parser.add_argument('--baseline', type=str,
default='checkpoints/cls/exp_fake_scratch_pretrained_test/pneumonia_best.pth',
help='base model for pruning')
parser.add_argument('--prune', action='store_true', default=False, help='start pruning')
parser.add_argument('--prune-policy', type=str, default='fpgm', help='pruning policy. [l1 | l2 | fpgm] ')
parser.add_argument('--sparse', type=float, default=0.8, help='pruning ratio (default: 0.8)')
'''
# File Management Options
parser.add_argument('--name', type=str, default='exp1',
help='exp name for training')
return parser
if __name__ == '__main__':
args = get_argparse().parse_args()
# hyper-parameters
NUM_EPOCHS = args.epochs
BATCH_SIZE = args.batch_size
WORKERS = args.workers
LR = args.lr
MOMENTUM = args.momentum
DEVICE = 'cuda' if args.use_gpu and torch.cuda.is_available() else 'cpu'
# data info
with open('./configs/config.yaml', 'r', encoding='utf-8') as f:
yaml_info = yaml.load(f.read(), Loader=yaml.FullLoader)
dataset_root1 = yaml_info['root1']
dataset_root2 = yaml_info['root2']
n_channels = yaml_info['n_channels']
n_classes = yaml_info['n_classes']
image_size = yaml_info['image_size']
# Set save dir
train_infos = [args.name, 'lr', LR, args.lr_policy, args.step_size]
log_info = "_".join(str(i) for i in train_infos)
save_dir = f"checkpoints/cls/{log_info}"
create_folder(save_dir)
# print(f"save_dir={save_dir}")
# Create the table object, name, and alignment
table = PrettyTable(['Hyper-Parameters & data infos', 'Value'])
table.align['Hyper-Parameters & data infos'] = 'l'
table.align['Value'] = 'r'
# Add to table
table.add_row(['Batch size', BATCH_SIZE])
table.add_row(['Workers', WORKERS])
table.add_row(['Num epochs', NUM_EPOCHS])
table.add_row(['Optimizer strategy', args.optim_policy])
table.add_row(['Weight decay', args.weight_decay])
table.add_row(['Learning rate', LR])
table.add_row(['Momentum', MOMENTUM])
table.add_row(['LR policy', args.lr_policy])
table.add_row(['gamma', args.gamma])
table.add_row(['step-size', args.step_size])
table.add_row(['random seed', args.seed])
table.add_row(['Device', DEVICE])
table.add_row(["", ""])
table.add_row(['dataset_root1', dataset_root1])
table.add_row(['dataset_root2', dataset_root2])
table.add_row(['n_channels', n_channels])
table.add_row(['n_classes', n_classes])
table.add_row(['image_size', image_size])
print(table)
set_seed(args.seed)
# Get dataset and prepare dataloader
print_info()
print('==> Getting dataloader..')
train_dataset = PneumoniaDataset(dataset_root1, dataset_root2, mode='train', transform=ImageTransform())
print_info()
val_dataset = PneumoniaDataset(dataset_root1, dataset_root2, mode='val', transform=ImageTransform())
print_info()
test_dataset = PneumoniaDataset(dataset_root1, dataset_root2, mode='test', transform=ImageTransform())
print_info()
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=WORKERS)
val_loader = DataLoader(val_dataset, batch_size=2 * BATCH_SIZE, shuffle=False, num_workers=WORKERS)
test_loader = DataLoader(test_dataset, batch_size=4 * BATCH_SIZE, shuffle=False, num_workers=WORKERS)
# Create models
print_info()
print('==> Building model..')
model = create_model(args.model_name, args.use_pretrained)
print_info()
print('==> Defining optimizer and scheduler..')
if args.optim_policy == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=LR, momentum=MOMENTUM)
else:
optimizer = optim.Adam(model.parameters(), lr=LR, weight_decay=args.weight_decay)
if args.lr_policy == 'cos':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=100, eta_min=0)
elif args.lr_policy == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.step_size, gamma=args.gamma, last_epoch=-1)
print_info()
print('==> Training model..')
train_acc_set, test_acc_set, val_acc_set = train(model, NUM_EPOCHS)
plot_accuracy(NUM_EPOCHS, train_acc_set, test_acc_set, val_acc_set, save_dir)