-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
139 lines (113 loc) · 3.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import argparse
from datetime import datetime
import torch
from model import build_model, build_backward_model
from model.solver import make_optimizer
from model.engine import do_train, do_evaluation, do_visualization
from data import make_data_loader
from config import get_cfg_defaults
from util.logger import setup_logger
def train(cfg):
# build the model
model = build_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
# load last checkpoint
if cfg.MODEL.WEIGHTS is not "":
model.load_state_dict(torch.load(cfg.MODEL.WEIGHTS))
# build the optimizer
optimizer = make_optimizer(cfg, model)
# build the dataloader
dataloader_train = make_data_loader(cfg, 'train')
# dataloader_val = make_data_loader(cfg, 'val')
dataloader_val = None
# start the training procedure
do_train(
cfg,
model,
dataloader_train,
dataloader_val,
optimizer,
device
)
def evaluation(cfg, dataset='val'):
model = build_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
# load last checkpoint
assert cfg.MODEL.WEIGHTS is not ""
model.load_state_dict(torch.load(cfg.MODEL.WEIGHTS))
# build the dataloader
dataloader = make_data_loader(cfg, dataset)
# start the inferring procedure
do_evaluation(
cfg,
model,
dataloader,
device,
verbose=True
)
def visualization(cfg):
# build the model
model = build_model(cfg, visualizing=True)
backward_model = build_backward_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
backward_model.to(device)
model.eval()
backward_model.eval()
# load last checkpoint
assert cfg.MODEL.WEIGHTS is not ""
model.load_state_dict(torch.load(cfg.MODEL.WEIGHTS))
# build the dataloader
dataloader = make_data_loader(cfg, 'vis')
# start the visualization procedure
do_visualization(
cfg,
model,
backward_model,
dataloader,
device,
)
def main():
parser = argparse.ArgumentParser(description="PyTorch Self-driving Car Training and Inference.")
parser.add_argument(
"--config-file",
default="",
metavar="file",
help="path to config file",
type=str,
)
parser.add_argument(
"--mode",
default="test",
metavar="mode",
help="'train' or 'test'",
type=str,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
# build the config
cfg = get_cfg_defaults()
# cfg.merge_from_file(args.config_file)
# cfg.merge_from_list(args.opts)
cfg.freeze()
# setup the logger
if not os.path.isdir(cfg.OUTPUT.DIR):
os.mkdir(cfg.OUTPUT.DIR)
logger = setup_logger("balad-mobile.train", cfg.OUTPUT.DIR,
'{0:%Y-%m-%d %H:%M:%S}_log'.format(datetime.now()))
logger.info(args)
logger.info("Running with config:\n{}".format(cfg))
# TRAIN
train(cfg)
# Visualize
visualization(cfg)
if __name__ == "__main__":
main()