-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·174 lines (131 loc) · 7.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from utils.constants import UNIVARIATE_ARCHIVE_NAMES as ARCHIVE_NAMES
from utils.constants import NB_ITERATIONS
from utils.constants import MAX_PROTOTYPES_PER_CLASS
from utils.constants import UNIVARIATE_DATASET_NAMES_2018 as DATASET_NAMES
from utils.constants import DATA_CLUSTERING_ALGORITHMS
from utils.utils import read_all_datasets
from utils.utils import calculate_metrics
from utils.utils import transform_labels
from utils.utils import create_directory
from utils.utils import get_random_initial_for_kmeans
from utils.utils import read_dataset
from utils.utils import check_if_file_exits
from utils.utils import get_random_initial_for_kmeans_not_per_class
import utils
from kmeans import kmeans_save_itr
from kshape import KShape_save_itr
import numpy as np
import sys
import matplotlib.pyplot as plt
from averages.dba import dba
from averages.shapedba import shapedba
from averages.mean import mean
from averages.softdba import softdba
import time
def read_data_from_dataset(use_init_clusters=True):
dataset_out_dir = root_dir_output + archive_name + '/' + dataset_name + '/'
x_train = datasets_dict[dataset_name][0]
y_train = datasets_dict[dataset_name][1]
x_test = datasets_dict[dataset_name][2]
y_test = datasets_dict[dataset_name][3]
nb_classes = len(np.unique(np.concatenate((y_train, y_test), axis=0)))
y_train, y_test = transform_labels(y_train, y_test)
classes, classes_counts = np.unique(y_train, return_counts=True)
max_prototypes = min(classes_counts.max() + 1,
MAX_PROTOTYPES_PER_CLASS + 1)
init_clusters = None
if use_init_clusters == True:
init_clusters = get_random_initial_for_kmeans(x_train, y_train,
max_prototypes, nb_classes, dataset_out_dir)
return x_train, y_train, x_test, y_test, nb_classes, classes, max_prototypes, init_clusters
def data_culstering_function(curr_dir, data_clustering_algorithm_name, x_train,
K, init_clusters):
if data_clustering_algorithm_name == 'kmeans_shapedba_shapedtw':
return kmeans_save_itr(curr_dir, x_train, K, init_clusters=init_clusters,
distance_algorithm='shapedtw', averaging_algorithm='shapedba')
if data_clustering_algorithm_name == 'kmeans_dba_dtw':
return kmeans_save_itr(curr_dir, x_train, K, init_clusters=init_clusters,
distance_algorithm='dtw', averaging_algorithm='dba')
if data_clustering_algorithm_name == 'kmeans_softdba_softdtw':
return kmeans_save_itr(curr_dir, x_train, K, init_clusters=init_clusters,
distance_algorithm='softdtw', averaging_algorithm='softdba')
if data_clustering_algorithm_name == 'kmeans_mean_ed':
return kmeans_save_itr(curr_dir, x_train, K, init_clusters=init_clusters,
distance_algorithm='ed', averaging_algorithm='mean')
if data_clustering_algorithm_name == 'kshape':
return KShape_save_itr(curr_dir, x_train, K, init_clusters=init_clusters)
root_dir = '/home/aismailfawaz/phd/others_code/shape_dba/'
root_dir_output = root_dir + 'results/'
root_dir_dataset_archive = '/home/aismailfawaz/datasets/TSC/'
if sys.argv[1] == 'data_clustering':
for archive_name in ARCHIVE_NAMES:
datasets_dict = read_all_datasets(root_dir_dataset_archive, archive_name)
d_names = utils.constants.dataset_names_for_archive[archive_name]
for dataset_name in d_names:
print('dataset_name: ', dataset_name)
x_train, y_train, x_test, y_test, nb_classes, classes, max_prototypes, \
init_clusters = read_data_from_dataset(use_init_clusters=False)
dataset_out_dir = root_dir_output + archive_name + '/' + dataset_name + '/'
init_clusters = get_random_initial_for_kmeans_not_per_class(
x_train, y_train, nb_classes, dataset_out_dir)
for data_clustering_algorithm_name in DATA_CLUSTERING_ALGORITHMS:
for itr in range(NB_ITERATIONS):
new_out_dir = dataset_out_dir + data_clustering_algorithm_name + \
'/itr_' + str(itr) + '/'
temp = new_out_dir
if check_if_file_exits(new_out_dir + 'df_metrics.csv'):
print('Already_done:', temp)
continue
new_out_dir_test = create_directory(new_out_dir + 'Doing/')
if new_out_dir_test is None:
print('Running:', temp)
continue
print('Doing:', temp)
# concat train and test since it is unsupervised
y_true = np.concatenate((y_train, y_test), axis=0)
x = np.concatenate((x_train, x_test), axis=0)
start_time = time.time()
# apply the clustering algorithm
_, y_pred = data_culstering_function(new_out_dir, data_clustering_algorithm_name,
x, nb_classes, init_clusters[itr])
duration = time.time() - start_time
# calculate the metrics
df_metrics = calculate_metrics(y_true, y_pred, duration, clustering=True)
# save
df_metrics.to_csv(new_out_dir + 'df_metrics.csv')
print(df_metrics)
print('DONE')
elif sys.argv[1] == 'visualize_average':
dataset_name = sys.argv[2]
archive_name = sys.argv[3]
averaging_method = sys.argv[4]
datasets_dict = read_dataset(root_dir_dataset_archive, archive_name,
dataset_name)
x_train, y_train, x_test, y_test, nb_classes, classes, max_prototypes, init_clusters = \
read_data_from_dataset()
create_directory(directory_path=root_dir_output + archive_name + '/' + dataset_name + '/average_visualization')
create_directory(directory_path=root_dir_output + archive_name + '/' + dataset_name + '/average_visualization/' + averaging_method)
X = np.concatenate((x_train, x_test), axis=0)
Y = np.concatenate((y_train, y_test), axis=0)
if averaging_method == 'shapeDBA':
reach = utils.constants.DISTANCE_ALGORITHMS_PARAMS['shapedtw']['shape_reach']
tseries_pad = np.pad(np.asarray(X), ((0, 0), (reach, reach)), mode='edge')
plt.figure(figsize=(20,10))
for c in range(nb_classes):
if averaging_method == 'shapeDBA':
avg = shapedba(tseries=X[Y == c], tseries_pad=tseries_pad)
elif averaging_method == 'DBA':
avg = dba(tseries=X[Y == c])
elif averaging_method == 'mean':
avg = mean(tseries=X[Y == c])
elif averaging_method == 'softDBA':
avg = softdba(tseries=X[Y == c])
else:
raise ValueError("No such averaging method exists.")
plt.plot(X[Y == c].T, color='blue', alpha=0.7, lw=3)
plt.plot(avg, lw=3, color='red', label='Average Time Series')
plt.legend(prop={'size' : 20})
plt.savefig(root_dir_output + archive_name + '/' + dataset_name + '/average_visualization/' + averaging_method + '/avg_class_'+str(c)+'.pdf')
plt.cla()
plt.clf()
plt.close()