-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
1,015 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "90e862bb-783a-4f97-a227-8f6e0b4012b8", | ||
"metadata": {}, | ||
"source": [ | ||
"# The Dirac equation for the Hydrogen atom\n", | ||
"\n", | ||
"In this notebook we will illustrate how one can solve the Dirac equation for a Hydrogen atom using the Multiwavelet framework provided by VAMPyR\n", | ||
"\n", | ||
"The Dirac equation can be coincisely written as follows:\n", | ||
"\n", | ||
"\\begin{equation}\n", | ||
"(\\beta m c^2+ c \\boldsymbol{\\alpha} \\cdot \\mathbf{p} + V) \\phi = \\epsilon \\phi \n", | ||
"\\end{equation}\n", | ||
"\n", | ||
"where $\\phi = (\\phi^{L\\alpha}, \\phi^{L\\beta}, \\phi^{S\\alpha}, \\phi^{S\\beta})^t$ represents a 4-component spinor, $\\boldsymbol{\\alpha} = \n", | ||
"\\begin{pmatrix}\n", | ||
"0_2 & \\boldsymbol{\\sigma} \\\\\n", | ||
"\\boldsymbol{\\sigma} & 0_2 & \n", | ||
"\\end{pmatrix}\n", | ||
"$ and\n", | ||
"$\\beta = \n", | ||
"\\begin{pmatrix}\n", | ||
"1_2 & 0_2 \\\\\n", | ||
"0_2 & -1_2\n", | ||
"\\end{pmatrix}\n", | ||
"$ are the 4x4 Dirac matrices, $\\boldsymbol{\\sigma}$ is a cartesian vector collecting the three 2x2 Pauli matrices, $\\mathbf{p}$ is the momentum operator, $c$ is the speed of light, $m$ is the electron mass and $V$ is the nuclear potential.\n", | ||
"\n", | ||
"As for the non-relativistic case, the equation is first rewritten in its integral formulation:\n", | ||
"$$\\phi = \\frac{1}{2mc^2}(\\beta m c^2+ c \\boldsymbol{\\alpha} \\cdot \\mathbf{p} + \\epsilon) \\left[ G_\\mu \\star (V \\psi) \\right]$$\n", | ||
"\n", | ||
"where $G_\\mu(x) = \\frac{e^{-\\mu |x|}}{4 \\pi |x|}$ is the Helmholtz Green's kernel and $\\mu = \\sqrt{\\frac{m^2c^4-\\epsilon}{mc^2}}$. An initial guess can be obtained by taking a Slater orbital or a Gaussian function for the $\\psi^{L\\alpha}$ component and then applying the restricted kinetic balance:\n", | ||
"\n", | ||
"$$\n", | ||
"\\begin{pmatrix}\n", | ||
"\\phi^{S\\alpha} \\\\\n", | ||
"\\phi^{S\\beta}\n", | ||
"\\end{pmatrix}\n", | ||
"= \\frac{1}{2c}\\boldsymbol{\\sigma} \\cdot \\mathbf{p} \n", | ||
"\\begin{pmatrix}\n", | ||
"\\phi^{L\\alpha} \\\\\n", | ||
"0\n", | ||
"\\end{pmatrix}\n", | ||
"$$\n", | ||
"The guess obtained is then plugged into the integral form of the Dirac equation, which can then be iterated until convergence" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "54c75006-0358-42c5-9075-37a5b8a909ba", | ||
"metadata": {}, | ||
"source": [ | ||
"We start by loading the relevant packages: the 3d version of `vampyr`, `numpy`, the `complex_function` class which deals with complex funtions and the `orbital` class which deals with 4-component spinors. Each complex function is handled as a pair of `function_tree`s and each spinor is handled as a 4c vector of complex functions. The `nuclear_potential` package is self-explanatory" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"id": "37e0e6b2-886e-4415-8612-d2a652f24c4f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from vampyr import vampyr3d as vp\n", | ||
"from orbital4c import orbital as orb\n", | ||
"from orbital4c import nuclear_potential as nucpot\n", | ||
"from orbital4c import complex_fcn as cf\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "7fbe4360-9936-47d4-bb6f-d51bb3b34b69", | ||
"metadata": {}, | ||
"source": [ | ||
"As a reference, the exact Dirac energy for the ground state Hydrogen atom is computed in the function below." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"id": "0ef3d827-810b-4411-8ba3-bd63271033e4", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Exact Energy -0.5000066565989982\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"def analytic_1s(light_speed, n, k, Z):\n", | ||
" alpha = 1/light_speed\n", | ||
" gamma = orb.compute_gamma(k,Z,alpha)\n", | ||
" tmp1 = n - np.abs(k) + gamma\n", | ||
" tmp2 = Z * alpha / tmp1\n", | ||
" tmp3 = 1 + tmp2**2\n", | ||
" return light_speed**2 / np.sqrt(tmp3)\n", | ||
"\n", | ||
"light_speed = 137.03599913900001\n", | ||
"alpha = 1/light_speed\n", | ||
"k = -1\n", | ||
"l = 0\n", | ||
"n = 1\n", | ||
"m = 0.5\n", | ||
"Z = 1\n", | ||
"atom = \"H\"\n", | ||
"\n", | ||
"energy_1s = analytic_1s(light_speed, n, k, Z)\n", | ||
"print('Exact Energy',energy_1s - light_speed**2, flush = True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "6277d776-2236-496a-bdd5-41929d11ac3d", | ||
"metadata": {}, | ||
"source": [ | ||
"The `MultiResolutionAnalysis` object defining the simulation box is constructed and passed to the classes for complex functions and spinors" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"id": "5ac41574-6f43-411d-841f-f8fdf0749b66", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mra = vp.MultiResolutionAnalysis(box=[-30,30], order=6)\n", | ||
"prec = 1.0e-4\n", | ||
"origin = [0.1, 0.2, 0.3] # origin moved to avoid placing the nuclar charge on a node\n", | ||
"\n", | ||
"orb.orbital4c.light_speed = light_speed\n", | ||
"orb.orbital4c.mra = mra\n", | ||
"cf.complex_fcn.mra = mra" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "d5abdbe4-ba5b-49d3-ae7e-febab5ced4fe", | ||
"metadata": {}, | ||
"source": [ | ||
"We construct a starting guess by taking a simple Gaussian function and initialize the real part of the $\\phi^{L\\alpha}$ component of the spinor with it. Thereafter the restricted kinetic balance is employed. This is implemented in the `init_small_components` method of the `orbital` class" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"id": "95826623-b759-4318-afc5-e0c225cb5f1d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"a_coeff = 3.0\n", | ||
"b_coeff = np.sqrt(a_coeff/np.pi)**3\n", | ||
"gauss = vp.GaussFunc(b_coeff, a_coeff, origin)\n", | ||
"gauss_tree = vp.FunctionTree(mra)\n", | ||
"vp.advanced.build_grid(out=gauss_tree, inp=gauss)\n", | ||
"vp.advanced.project(prec=prec, out=gauss_tree, inp=gauss)\n", | ||
"gauss_tree.normalize()\n", | ||
"\n", | ||
"spinor_H = orb.orbital4c()\n", | ||
"La_comp = cf.complex_fcn()\n", | ||
"La_comp.copy_fcns(real = gauss_tree)\n", | ||
"spinor_H.copy_components(La = La_comp)\n", | ||
"spinor_H.init_small_components(prec/10)\n", | ||
"spinor_H.normalize()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f6a40ddd-7933-46ee-8128-96caf89f3682", | ||
"metadata": {}, | ||
"source": [ | ||
"The nuclear potential is defined and projected onto the `V_tree`" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"id": "4f0cda6f-217c-4941-8ce5-fa52576c2d98", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"Peps = vp.ScalingProjector(mra, prec)\n", | ||
"f = lambda x: nucpot.coulomb_HFYGB(x, origin, Z, prec)\n", | ||
"V_tree = Peps(f)\n", | ||
"\n", | ||
"default_der = 'BS'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1678bc97-d85d-4a48-9aea-13901631534d", | ||
"metadata": {}, | ||
"source": [ | ||
"The orbital is optimized by iterating the integral version of the Dirac equation as follows:\n", | ||
"1. Application of the Dirac Hamiltonian $f^n = \\hat{h}_D \\phi^n = (\\beta m c^2+ c \\boldsymbol{\\alpha} \\cdot \\mathbf{p}) \\phi^n$\n", | ||
"2. Application of the potnetial operator $g^n = \\hat{V} \\phi^n$\n", | ||
"3. Sum $h^n = f^n + g^n$\n", | ||
"4. Expectation value of the energy $\\left\\langle \\phi^n | h^n \\right\\rangle$\n", | ||
"5. Calculation of the Helmholtz parameter $\\mu$\n", | ||
"6. Convolution with the Helmholtz kernel $t^n = G_\\mu \\star g^n$\n", | ||
"7. application of the shifted Dirac Hamiltonian $\\tilde{\\phi}^{n+1} = (\\hat{h}_D + \\epsilon) t^n$\n", | ||
"8. normalization of the new iterate\n", | ||
"9. calculation of the change in the orbital $\\delta \\phi^n = \\phi^{n+1}-\\phi^n$\n", | ||
"\n", | ||
"Once the orbital error is below the requested threshold the iteration is interrupted and the final energy is computed." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"id": "40a443b6-33f4-4771-8b06-ccd12c9da35d", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Energy -0.14180720307558659\n", | ||
"Error 0.3648353655184581\n", | ||
"Energy -0.49611934473068686\n", | ||
"Error 0.0024839139737050653\n", | ||
"Energy -0.4997319277244969\n", | ||
"Error 0.00023304055836475225\n", | ||
"Energy -0.49998214000152075\n", | ||
"Error 2.3987883028320866e-05\n", | ||
"Final Energy -0.5000042447172746\n", | ||
"Exact Energy -0.5000066565989982\n", | ||
"Difference -2.411881723674014e-06\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"orbital_error = 1\n", | ||
"while orbital_error > prec:\n", | ||
" # 1. Application of the Dirac Hamiltonian\n", | ||
" hd_psi = orb.apply_dirac_hamiltonian(spinor_H, prec, der = default_der)\n", | ||
" # 2. Application of the potnetial operator\n", | ||
" v_psi = orb.apply_potential(-1.0, V_tree, spinor_H, prec)\n", | ||
" # 3. Sum\n", | ||
" add_psi = hd_psi + v_psi\n", | ||
" # 4. Expectation value of the energy\n", | ||
" energy = (spinor_H.dot(add_psi)).real\n", | ||
" print('Energy',energy-light_speed**2)\n", | ||
" # 5. Calculation of the Helmholtz parameter\n", | ||
" mu = orb.calc_dirac_mu(energy, light_speed)\n", | ||
" # 6. Convolution with the Helmholtz kernel\n", | ||
" tmp = orb.apply_helmholtz(v_psi, mu, prec)\n", | ||
" tmp.crop(prec/10)\n", | ||
" # 7. application of the shifted Dirac Hamiltonian\n", | ||
" new_orbital = orb.apply_dirac_hamiltonian(tmp, prec, energy, der = default_der) \n", | ||
" new_orbital.crop(prec/10)\n", | ||
" # 8. normalization of the new iterate\n", | ||
" new_orbital.normalize()\n", | ||
" delta_psi = new_orbital - spinor_H\n", | ||
" # 9. calculation of the change in the orbital\n", | ||
" orbital_error = (delta_psi.dot(delta_psi)).real\n", | ||
" print('Error',orbital_error, flush = True)\n", | ||
" spinor_H = new_orbital\n", | ||
"\n", | ||
"# Computing the final energy\n", | ||
"hd_psi = orb.apply_dirac_hamiltonian(spinor_H, prec, der = default_der)\n", | ||
"v_psi = orb.apply_potential(-1.0, V_tree, spinor_H, prec)\n", | ||
"add_psi = hd_psi + v_psi\n", | ||
"energy = (spinor_H.dot(add_psi)).real\n", | ||
"print('Final Energy',energy - light_speed**2)\n", | ||
"\n", | ||
"energy_1s = analytic_1s(light_speed, n, k, Z)\n", | ||
"\n", | ||
"print('Exact Energy',energy_1s - light_speed**2)\n", | ||
"print('Difference',energy_1s - energy)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
|
Oops, something went wrong.