-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathclassifier.py
501 lines (439 loc) · 20.4 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import math
import os
import sys
from copy import deepcopy
import numpy as np
import timm
import torch
import torch.nn as nn
import wandb
from metrics.accuracy import Accuracy
from torch.utils.data import DataLoader
from torchvision.models import densenet, inception, resnet
from torchvision.transforms import (ColorJitter, RandomCrop,
RandomHorizontalFlip, Resize)
from tqdm import tqdm
from models.base_model import BaseModel
class Classifier(BaseModel):
def __init__(self,
num_classes,
in_channels=3,
architecture='resnet18',
pretrained=False,
name='Classifier',
*args,
**kwargs):
super().__init__(name, *args, **kwargs)
self.num_classes = num_classes
self.in_channels = in_channels
self.pretrained = pretrained
self.model = self._build_model(architecture, pretrained)
self.model.to(self.device)
self.architecture = architecture
self.to(self.device)
def _build_model(self, architecture, pretrained):
architecture = architecture.lower().replace('-',
'').replace('_',
'').strip()
if 'resnet' in architecture:
if architecture == 'resnet18':
weights = resnet.ResNet18_Weights.DEFAULT if pretrained else None
model = resnet.resnet18(weights=weights)
elif architecture == 'resnet34':
weights = resnet.ResNet34_Weights.DEFAULT if pretrained else None
model = resnet.resnet34(weights=weights)
elif architecture == 'resnet50':
weights = resnet.ResNet50_Weights.DEFAULT if pretrained else None
model = resnet.resnet50(weights=weights)
elif architecture == 'resnet101':
weights = resnet.ResNet101_Weights.DEFAULT if pretrained else None
model = resnet.resnet101(weights=weights)
elif architecture == 'resnet152':
weights = resnet.ResNet152_Weights.DEFAULT if pretrained else None
model = resnet.resnet152(weights=weights)
else:
raise RuntimeError(
f'No ResNet with the name {architecture} available'
)
if self.num_classes != model.fc.out_features:
# exchange the last layer to match the desired numbers of classes
model.fc = nn.Linear(model.fc.in_features, self.num_classes)
return model
elif 'resnext' in architecture:
if architecture == 'resnext50':
weights = resnet.ResNeXt50_32X4D_Weights.DEFAULT if pretrained else None
model = resnet.resnext50_32x4d(weights=weights)
elif architecture == 'resnext101':
weights = resnet.ResNeXt101_32X8D_Weights.DEFAULT if pretrained else None
model = resnet.resnext101_32x8d(weights=weights)
else:
raise RuntimeError(
f'No ResNext with the name {architecture} available')
if self.num_classes != model.fc.out_features:
# exchange the last layer to match the desired numbers of classes
model.fc = nn.Linear(model.fc.in_features, self.num_classes)
return model
elif 'resnest' in architecture:
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)
if architecture == 'resnest50':
model = torch.hub.load('zhanghang1989/ResNeSt',
'resnest50',
pretrained=True)
elif architecture == 'resnest101':
model = torch.hub.load('zhanghang1989/ResNeSt',
'resnest101',
pretrained=True)
elif architecture == 'resnest200':
model = torch.hub.load('zhanghang1989/ResNeSt',
'resnest200',
pretrained=True)
elif architecture == 'resnest269':
model = torch.hub.load('zhanghang1989/ResNeSt',
'resnest269',
pretrained=True)
else:
raise RuntimeError(
f'No ResNeSt with the name {architecture} available')
if self.num_classes != model.fc.out_features:
# exchange the last layer to match the desired numbers of classes
model.fc = nn.Linear(model.fc.in_features, self.num_classes)
return model
elif 'densenet' in architecture:
if architecture == 'densenet121':
weights = densenet.DenseNet121_Weights.DEFAULT if pretrained else None
model = densenet.densenet121(weights=weights)
elif architecture == 'densenet161':
weights = densenet.DenseNet161_Weights.DEFAULT if pretrained else None
model = densenet.densenet161(weights=weights)
elif architecture == 'densenet169':
weights = densenet.DenseNet169_Weights.DEFAULT if pretrained else None
model = densenet.densenet169(weights=weights)
elif architecture == 'densenet201':
weights = densenet.DenseNet201_Weights.DEFAULT if pretrained else None
model = densenet.densenet201(weights=weights)
else:
raise RuntimeError(
f'No DenseNet with the name {architecture} available')
if self.num_classes != model.classifier.out_features:
# exchange the last layer to match the desired numbers of classes
model.classifier = nn.Linear(model.classifier.in_features,
self.num_classes)
return model
# Note: inception_v3 expects input tensors with a size of N x 3 x 299 x 299, aux_logits are used per default
elif 'inception' in architecture:
weights = inception.Inception_V3_Weights.DEFAULT if pretrained else None
model = inception.inception_v3(weights=weights,
aux_logits=True,
init_weights=True)
if self.num_classes != model.fc.out_features:
# exchange the last layer to match the desired numbers of classes
model.fc = nn.Linear(model.fc.in_features, self.num_classes)
return model
elif 'vit' in architecture:
if architecture == 'vitb16':
model = timm.create_model('vit_base_patch16_224',
pretrained=pretrained)
elif architecture == 'vitb32':
model = timm.create_model('vit_base_patch32_224',
pretrained=pretrained)
elif architecture == 'vitl16':
model = timm.create_model('vit_large_patch16_224',
pretrained=pretrained)
elif architecture == 'vitl32':
model = timm.create_model('vit_large_patch32_224',
pretrained=pretrained)
elif architecture == 'vith14':
model = timm.create_model('vit_huge_patch14_224',
pretrained=pretrained)
else:
raise RuntimeError(
f'No ViT with the name {architecture} available')
if self.num_classes != model.head.out_features:
# exchange the last layer to match the desired numbers of classes
model.head = nn.Linear(model.head.in_features,
self.num_classes)
return model
else:
raise RuntimeError(
f'No network with the name {architecture} available')
def forward(self, x):
if type(x) is np.ndarray:
x = torch.tensor(x, dtype=torch.float).to(self.device)
out = self.model(x)
return out
def fit(self,
training_data,
validation_data=None,
test_data=None,
optimizer=None,
lr_scheduler=None,
criterion=nn.CrossEntropyLoss(),
metric=Accuracy,
rtpt=None,
config=None,
batch_size=64,
num_epochs=30,
dataloader_num_workers=8,
enable_logging=False,
wandb_init_args=None,
save_base_path="",
config_file=None,
ls_scheduler=None):
trainloader = DataLoader(training_data,
batch_size=batch_size,
shuffle=True,
num_workers=dataloader_num_workers,
pin_memory=True)
if rtpt is None:
print('Please use RTPT (Remaining Time to Process Title)')
# Initialize WandB logging
if enable_logging:
if wandb_init_args is None:
wandb_init_args = dict()
wandb_config = {
"Dataset": config.dataset['type'],
'Epochs': num_epochs,
'Batch_size': batch_size,
'Seed': config.seed,
'Initial_lr': optimizer.param_groups[0]['lr'],
'Architecture': self.architecture,
'Pretrained': self.pretrained,
'Optimizer': optimizer,
'Trainingset_size': len(training_data),
'Num_classes': self.num_classes,
'Label_smoothing': criterion.label_smoothing,
'Total_parameters':
self.count_parameters(only_trainable=False),
'Trainable_parameters':
self.count_parameters(only_trainable=True)
}
for t in training_data.transform.transforms:
if type(t) is Resize:
wandb_config['Resize'] = t.size
elif type(t) is RandomCrop:
wandb_config['RandomCrop'] = t.size
elif type(t) is ColorJitter:
wandb_config['BrightnessJitter'] = t.brightness
wandb_config['ContrastJitter'] = t.contrast
wandb_config['SaturationJitter'] = t.saturation
wandb_config['HueJitter'] = t.hue
elif type(t) is RandomHorizontalFlip:
wandb_config['HorizontalFlip'] = t.p
if validation_data:
wandb_config['Validationset_size'] = len(validation_data)
if test_data:
wandb_config['Testset_size'] = len(test_data)
wandb.init(**wandb_init_args, config=wandb_config, reinit=True)
wandb.watch(self.model)
if config_file:
wandb.save(config_file)
# Training cycle
best_model_values = {
'validation_metric': 0.0,
'validation_loss': float('inf'),
'model_state_dict': None,
'model_optimizer_state_dict': None,
'training_metric': 0,
'training_loss': 0,
}
metric_train = metric()
print('----------------------- START TRAINING -----------------------')
for epoch in range(num_epochs):
# Training
print(f'Epoch {epoch + 1}/{num_epochs}')
running_total_loss = 0.0
running_main_loss = 0.0
running_aux_loss = 0.0
metric_train.reset()
self.train()
self.to(self.device)
# apply label smoothing scheduler
if ls_scheduler:
ls_alpha = ls_scheduler(epoch)
criterion.label_smoothing = ls_alpha
for inputs, labels in tqdm(trainloader,
desc='training',
leave=False,
file=sys.stdout):
inputs, labels = inputs.to(self.device,
non_blocking=True), labels.to(
self.device, non_blocking=True)
optimizer.zero_grad()
model_output = self.forward(inputs)
aux_loss = torch.tensor(0.0, device=self.device)
# Separate Inception_v3 outputs
aux_logits = None
if isinstance(model_output, inception.InceptionOutputs):
if self.model.aux_logits:
model_output, aux_logits = model_output
main_loss = criterion(model_output, labels)
if aux_logits is not None:
aux_loss += criterion(aux_logits, labels).sum()
num_samples = inputs.shape[0]
loss = main_loss + aux_loss
loss.backward()
optimizer.step()
running_total_loss += loss * num_samples
running_main_loss += main_loss * num_samples
running_aux_loss += aux_loss * num_samples
metric_train.update(model_output, labels)
print(
f'Training {metric_train.name}: {metric_train.compute_metric():.2%}',
f'\t Epoch total loss: {running_total_loss / len(training_data):.4f}',
f'\t Epoch main loss: {running_main_loss / len(training_data):.4f}',
f'\t Aux loss: {running_aux_loss / len(training_data):.4f}')
if enable_logging:
wandb.log(
{
f'Training {metric_train.name}':
metric_train.compute_metric(),
'Training Loss':
running_total_loss / len(training_data),
'Learning Rate':
optimizer.param_groups[0]['lr'],
},
step=epoch)
# Validation
if validation_data:
self.eval()
val_metric, val_loss = self.evaluate(
validation_data,
batch_size,
metric,
criterion,
dataloader_num_workers=dataloader_num_workers)
print(
f'Validation {metric_train.name}: {val_metric:.2%} \t Validation Loss: {val_loss:.4f}'
)
# Save best model
if val_metric > best_model_values['validation_metric']:
print('Copying better model')
best_model_values['validation_metric'] = val_metric
best_model_values['validation_loss'] = val_loss
best_model_values['model_state_dict'] = deepcopy(
self.state_dict())
best_model_values['model_optimizer_state_dict'] = deepcopy(
optimizer.state_dict())
best_model_values[
'training_metric'] = metric_train.compute_metric()
best_model_values[
'training_loss'] = running_total_loss / len(
trainloader)
if enable_logging:
wandb.log(
{
f'Validation {metric_train.name}': val_metric,
'Validation Loss': val_loss,
},
step=epoch)
else:
best_model_values['validation_metric'] = None
best_model_values['validation_loss'] = None
best_model_values['model_state_dict'] = deepcopy(
self.state_dict())
best_model_values['model_optimizer_state_dict'] = deepcopy(
optimizer.state_dict())
best_model_values[
'training_metric'] = metric_train.compute_metric()
best_model_values['training_loss'] = running_total_loss / len(
trainloader)
# Update the RTPT
if rtpt:
rtpt.step(
subtitle=f"loss={running_total_loss / len(trainloader):.4f}"
)
# make the lr scheduler step
if lr_scheduler is not None:
lr_scheduler.step()
# save the final model
if validation_data:
self.load_state_dict(best_model_values['model_state_dict'])
if save_base_path:
if not os.path.exists(save_base_path):
os.makedirs(save_base_path)
if validation_data:
model_path = os.path.join(
save_base_path, self.name +
f'_{best_model_values["validation_metric"]:.4f}' + '.pth')
else:
model_path = os.path.join(
save_base_path, self.name +
f'_{best_model_values["training_metric"]:.4f}_no_val' +
'.pth')
else:
model_path = self.name
torch.save(
{
'epoch':
num_epochs,
'model_state_dict':
best_model_values['model_state_dict'],
'optimizer_state_dict':
best_model_values['model_optimizer_state_dict'],
}, model_path)
# Test final model
test_metric, test_loss = None, None
if test_data:
test_metric, test_loss = self.evaluate(
test_data,
batch_size,
metric,
criterion,
dataloader_num_workers=dataloader_num_workers)
print(
'----------------------- FINISH TRAINING -----------------------'
)
print(
f'Final Test {metric_train.name}: {test_metric:.2%} \t Test Loss: {test_loss:.4f} \n'
)
if enable_logging:
wandb.save(model_path)
wandb.run.summary[
f'Validation {metric_train.name}'] = best_model_values[
'validation_metric']
wandb.run.summary['Validation Loss'] = best_model_values[
'validation_loss']
wandb.run.summary[
f'Training {metric_train.name}'] = best_model_values[
'training_metric']
wandb.run.summary['Training Loss'] = best_model_values[
'training_loss']
wandb.run.summary[f'Test {metric_train.name}'] = test_metric
wandb.run.summary['Test Loss'] = test_loss
wandb.config.update({'model_path': model_path})
wandb.config.update({'config_path': config_file})
wandb.finish()
def evaluate(self,
evaluation_data,
batch_size=128,
metric=Accuracy,
criterion=nn.CrossEntropyLoss(),
dataloader_num_workers=4):
evalloader = DataLoader(evaluation_data,
batch_size=batch_size,
shuffle=False,
num_workers=dataloader_num_workers,
pin_memory=True)
metric = metric()
self.eval()
with torch.no_grad():
running_loss = torch.tensor(0.0, device=self.device)
for inputs, labels in tqdm(evalloader,
desc='Evaluating',
leave=False,
file=sys.stdout):
inputs, labels = inputs.to(self.device), labels.to(self.device)
model_output = self.forward(inputs)
metric.update(model_output, labels)
running_loss += criterion(model_output,
labels).cpu() * inputs.shape[0]
metric_result = metric.compute_metric()
return metric_result, running_loss.item() / len(evaluation_data)
def freeze_bn(self):
for m in self.modules():
if isinstance(m, nn.modules.batchnorm._BatchNorm):
m.eval()
def unfreeze_bn(self):
for m in self.modules():
if isinstance(m, nn.modules.batchnorm._BatchNorm):
m.train()