-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.js
246 lines (239 loc) · 7.95 KB
/
model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// EEG Model for the EEG data of multiple tests
//
// Path: model.js
// Compare this snippet from utils.js:
// const fs = require("fs-extra");
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from "@tensorflow/tfjs";
export const IRIS_CLASSES = [
"Iris-setosa",
"Iris-versicolor",
"Iris-virginica",
];
export const IRIS_NUM_CLASSES = IRIS_CLASSES.length;
export const IRIS_NUM_FEATURES = 4; // This will be equal to the number of columns in the data
// Iris flowers data. Source:
// https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
export const IRIS_RAW_DATA = [
[5.1, 3.5, 1.4, 0.2, 0],
[4.9, 3.0, 1.4, 0.2, 0],
[4.7, 3.2, 1.3, 0.2, 0],
[4.6, 3.1, 1.5, 0.2, 0],
[5.0, 3.6, 1.4, 0.2, 0],
[5.4, 3.9, 1.7, 0.4, 0],
[4.6, 3.4, 1.4, 0.3, 0],
[5.0, 3.4, 1.5, 0.2, 0],
[4.4, 2.9, 1.4, 0.2, 0],
[4.9, 3.1, 1.5, 0.1, 0],
[5.4, 3.7, 1.5, 0.2, 0],
[4.8, 3.4, 1.6, 0.2, 0],
[4.8, 3.0, 1.4, 0.1, 0],
[4.3, 3.0, 1.1, 0.1, 0],
[5.8, 4.0, 1.2, 0.2, 0],
[5.7, 4.4, 1.5, 0.4, 0],
[5.4, 3.9, 1.3, 0.4, 0],
[5.1, 3.5, 1.4, 0.3, 0],
[5.7, 3.8, 1.7, 0.3, 0],
[5.1, 3.8, 1.5, 0.3, 0],
[5.4, 3.4, 1.7, 0.2, 0],
[5.1, 3.7, 1.5, 0.4, 0],
[4.6, 3.6, 1.0, 0.2, 0],
[5.1, 3.3, 1.7, 0.5, 0],
[4.8, 3.4, 1.9, 0.2, 0],
[5.0, 3.0, 1.6, 0.2, 0],
[5.0, 3.4, 1.6, 0.4, 0],
[5.2, 3.5, 1.5, 0.2, 0],
[5.2, 3.4, 1.4, 0.2, 0],
[4.7, 3.2, 1.6, 0.2, 0],
[4.8, 3.1, 1.6, 0.2, 0],
[5.4, 3.4, 1.5, 0.4, 0],
[5.2, 4.1, 1.5, 0.1, 0],
[5.5, 4.2, 1.4, 0.2, 0],
[4.9, 3.1, 1.5, 0.1, 0],
[5.0, 3.2, 1.2, 0.2, 0],
[5.5, 3.5, 1.3, 0.2, 0],
[4.9, 3.1, 1.5, 0.1, 0],
[4.4, 3.0, 1.3, 0.2, 0],
[5.1, 3.4, 1.5, 0.2, 0],
[5.0, 3.5, 1.3, 0.3, 0],
[4.5, 2.3, 1.3, 0.3, 0],
[4.4, 3.2, 1.3, 0.2, 0],
[5.0, 3.5, 1.6, 0.6, 0],
[5.1, 3.8, 1.9, 0.4, 0],
[4.8, 3.0, 1.4, 0.3, 0],
[5.1, 3.8, 1.6, 0.2, 0],
[4.6, 3.2, 1.4, 0.2, 0],
[5.3, 3.7, 1.5, 0.2, 0],
[5.0, 3.3, 1.4, 0.2, 0],
[7.0, 3.2, 4.7, 1.4, 1],
[6.4, 3.2, 4.5, 1.5, 1],
[6.9, 3.1, 4.9, 1.5, 1],
[5.5, 2.3, 4.0, 1.3, 1],
[6.5, 2.8, 4.6, 1.5, 1],
[5.7, 2.8, 4.5, 1.3, 1],
[6.3, 3.3, 4.7, 1.6, 1],
[4.9, 2.4, 3.3, 1.0, 1],
[6.6, 2.9, 4.6, 1.3, 1],
[5.2, 2.7, 3.9, 1.4, 1],
[5.0, 2.0, 3.5, 1.0, 1],
[5.9, 3.0, 4.2, 1.5, 1],
[6.0, 2.2, 4.0, 1.0, 1],
[6.1, 2.9, 4.7, 1.4, 1],
[5.6, 2.9, 3.6, 1.3, 1],
[6.7, 3.1, 4.4, 1.4, 1],
[5.6, 3.0, 4.5, 1.5, 1],
[5.8, 2.7, 4.1, 1.0, 1],
[6.2, 2.2, 4.5, 1.5, 1],
[5.6, 2.5, 3.9, 1.1, 1],
[5.9, 3.2, 4.8, 1.8, 1],
[6.1, 2.8, 4.0, 1.3, 1],
[6.3, 2.5, 4.9, 1.5, 1],
[6.1, 2.8, 4.7, 1.2, 1],
[6.4, 2.9, 4.3, 1.3, 1],
[6.6, 3.0, 4.4, 1.4, 1],
[6.8, 2.8, 4.8, 1.4, 1],
[6.7, 3.0, 5.0, 1.7, 1],
[6.0, 2.9, 4.5, 1.5, 1],
[5.7, 2.6, 3.5, 1.0, 1],
[5.5, 2.4, 3.8, 1.1, 1],
[5.5, 2.4, 3.7, 1.0, 1],
[5.8, 2.7, 3.9, 1.2, 1],
[6.0, 2.7, 5.1, 1.6, 1],
[5.4, 3.0, 4.5, 1.5, 1],
[6.0, 3.4, 4.5, 1.6, 1],
[6.7, 3.1, 4.7, 1.5, 1],
[6.3, 2.3, 4.4, 1.3, 1],
[5.6, 3.0, 4.1, 1.3, 1],
[5.5, 2.5, 4.0, 1.3, 1],
[5.5, 2.6, 4.4, 1.2, 1],
[6.1, 3.0, 4.6, 1.4, 1],
[5.8, 2.6, 4.0, 1.2, 1],
[5.0, 2.3, 3.3, 1.0, 1],
[5.6, 2.7, 4.2, 1.3, 1],
[5.7, 3.0, 4.2, 1.2, 1],
[5.7, 2.9, 4.2, 1.3, 1],
[6.2, 2.9, 4.3, 1.3, 1],
[5.1, 2.5, 3.0, 1.1, 1],
[5.7, 2.8, 4.1, 1.3, 1],
[6.3, 3.3, 6.0, 2.5, 2],
[5.8, 2.7, 5.1, 1.9, 2],
[7.1, 3.0, 5.9, 2.1, 2],
[6.3, 2.9, 5.6, 1.8, 2],
[6.5, 3.0, 5.8, 2.2, 2],
[7.6, 3.0, 6.6, 2.1, 2],
[4.9, 2.5, 4.5, 1.7, 2],
[7.3, 2.9, 6.3, 1.8, 2],
[6.7, 2.5, 5.8, 1.8, 2],
[7.2, 3.6, 6.1, 2.5, 2],
[6.5, 3.2, 5.1, 2.0, 2],
[6.4, 2.7, 5.3, 1.9, 2],
[6.8, 3.0, 5.5, 2.1, 2],
[5.7, 2.5, 5.0, 2.0, 2],
[5.8, 2.8, 5.1, 2.4, 2],
[6.4, 3.2, 5.3, 2.3, 2],
[6.5, 3.0, 5.5, 1.8, 2],
[7.7, 3.8, 6.7, 2.2, 2],
[7.7, 2.6, 6.9, 2.3, 2],
[6.0, 2.2, 5.0, 1.5, 2],
[6.9, 3.2, 5.7, 2.3, 2],
[5.6, 2.8, 4.9, 2.0, 2],
[7.7, 2.8, 6.7, 2.0, 2],
[6.3, 2.7, 4.9, 1.8, 2],
[6.7, 3.3, 5.7, 2.1, 2],
[7.2, 3.2, 6.0, 1.8, 2],
[6.2, 2.8, 4.8, 1.8, 2],
[6.1, 3.0, 4.9, 1.8, 2],
[6.4, 2.8, 5.6, 2.1, 2],
[7.2, 3.0, 5.8, 1.6, 2],
[7.4, 2.8, 6.1, 1.9, 2],
[7.9, 3.8, 6.4, 2.0, 2],
[6.4, 2.8, 5.6, 2.2, 2],
[6.3, 2.8, 5.1, 1.5, 2],
[6.1, 2.6, 5.6, 1.4, 2],
[7.7, 3.0, 6.1, 2.3, 2],
[6.3, 3.4, 5.6, 2.4, 2],
[6.4, 3.1, 5.5, 1.8, 2],
[6.0, 3.0, 4.8, 1.8, 2],
[6.9, 3.1, 5.4, 2.1, 2],
[6.7, 3.1, 5.6, 2.4, 2],
[6.9, 3.1, 5.1, 2.3, 2],
[5.8, 2.7, 5.1, 1.9, 2],
[6.8, 3.2, 5.9, 2.3, 2],
[6.7, 3.3, 5.7, 2.5, 2],
[6.7, 3.0, 5.2, 2.3, 2],
[6.3, 2.5, 5.0, 1.9, 2],
[6.5, 3.0, 5.2, 2.0, 2],
[6.2, 3.4, 5.4, 2.3, 2],
[5.9, 3.0, 5.1, 1.8, 2],
];
/**
* Converts an integer into its one-hot representation and returns
* the data as a JS Array.
*/
export function flatOneHot(idx) {
// TODO(bileschi): Remove 'Array.from' from here once tf.data supports typed
// arrays https://github.com/tensorflow/tfjs/issues/1041
// TODO(bileschi): Remove '.dataSync()' from here once tf.data supports
// datasets built from tensors.
// https://github.com/tensorflow/tfjs/issues/1046
return Array.from(tf.oneHot([idx], 3).dataSync());
}
/**
* Obtains Iris data, split into training and test sets and with the label
* converted into one-hot format.
*
* @param testSplit Fraction of the data at the end to split as test data: a
* number between 0 and 1.
*
* @param returns A list of two datasets, [trainingData, testingData].
* The datasets represent a shuffled partition of the raw IRIS data.
* Elements of the yielded data will consist of [Features, Labels].
* - Features as a rank-1 `Tensor` of length-4 of numbers.
* - Labels as a rank-1 `Tensor` in one-hot format.
*/
export async function getIrisData(testSplit) {
// TODO(bileschi): Update shuffle etc. to use the tf.data API calls once
// it is possible to cache the results for performance and train-test split
// stability across epochs. Once caching is available, perform batching first
// and then map the preprocessing functions across the batches.
// https://github.com/tensorflow/tfjs/issues/1025
// Shuffle a copy of the raw data.
const shuffled = IRIS_RAW_DATA.slice();
tf.util.shuffle(shuffled);
// Split the data into training and testing portions.
const numTestExamples = Math.round(IRIS_RAW_DATA.length * testSplit);
const numTrainExamples = IRIS_RAW_DATA.length - numTestExamples;
const train = shuffled.slice(0, numTrainExamples);
const test = shuffled.slice(numTrainExamples);
// Split the data into into X & y and apply feature mapping transformations
const trainX = tf.data.array(train.map((r) => r.slice(0, 4)));
const testX = tf.data.array(test.map((r) => r.slice(0, 4)));
// TODO(we should be able to just directly use tensors built from oneHot here
// instead of converting to tensor and back using datasync & Array.from.
// This causes an internal disposal error however.
// See https://github.com/tensorflow/tfjs/issues/1071
//
// const trainY = tf.data.array(train.map(r => tf.oneHot([r[4]], 3)));
// const testY = tf.data.array(test.map(r => tf.oneHot([r[4]], 3)));
const trainY = tf.data.array(train.map((r) => flatOneHot(r[4])));
const testY = tf.data.array(test.map((r) => flatOneHot(r[4])));
// Recombine the X and y portions of the data.
const trainDataset = tf.data.zip({ xs: trainX, ys: trainY });
const testDataset = tf.data.zip({ xs: testX, ys: testY });
return [trainDataset, testDataset];
}