-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathgowalla.py
62 lines (54 loc) · 2.69 KB
/
gowalla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# link: https://snap.stanford.edu/data/loc-gowalla.html
import pandas as pd
import os
output_folder = './output'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
traj = pd.read_csv('./input/Gowalla.txt', sep='\t', names=['user', 'check_in_time', 'latitude', 'longitude', 'location_id'])
# 不太确当数据筛选是否应该在这一步做
# filter_num = 20
# traj_group_user = traj.groupby('user').count()
# filter_user = traj_group_user[traj_group_user['check_in_time'] > filter_num]
# user_index = filter_user.index.tolist()
# traj_group_location = traj.groupby('location_id').count()
# filter_location = traj_group_location[traj_group_location['check_in_time'] > 10]
# location_index = filter_location.index.tolist()
# filter_traj = traj[traj['user'].isin(user_index) & traj['location_id'].isin(location_index)]
# 因为他没有单独的 usr 和 loc profile 因此需要先从 traj 中抽出 usr 和 poi 信息
poi_info = traj.filter(items=['latitude', 'longitude', 'location_id'])
# 有些 poi 的经纬度有2个,感觉是定位定飘了,相差在百米范围内,因此取 mean
poi_info = poi_info.groupby('location_id').mean()
poi_info.reset_index(inplace=True)
poi_info['type'] = 'Point'
# 计算 coordinates
coordinates = []
for index, row in poi_info.iterrows():
coordinates.append('[{},{}]'.format(row['longitude'], row['latitude']))
poi_info['coordinates'] = coordinates
poi_info = poi_info.drop(['latitude', 'longitude'], axis=1)
poi_info = poi_info.rename(columns={'location_id': 'geo_id'})
poi_info.to_csv(output_folder + '/gowalla.geo', index=False)
# 处理 usr
usr_info = pd.unique(traj['user'])
usr_info = pd.DataFrame(usr_info, columns=['usr_id'])
# 因为没有 properties 信息所以直接存吧
usr_info.to_csv(output_folder + '/gowalla.usr', index=False)
# 但是有 rel
rel = pd.read_csv('./input/Gowalla_edges.txt', sep='\t', names=['origin_id', 'destination_id'])
# rel 表中包含了一些没有出现在 check_in 里面的 usr,删去之
b = usr_info['usr_id'].tolist()
rel = rel[(rel['origin_id'].isin(b)) & (rel['destination_id'].isin(b))]
rel['rel_id'] = rel.index
rel['type'] = 'usr'
rel = rel.reindex(columns=['rel_id', 'type', 'origin_id', 'destination_id'])
rel.to_csv('./gowalla.rel', index=False)
# 处理 traj
dyna = traj.drop(['latitude', 'longitude'], axis=1)
dyna = dyna.rename(columns={'user': 'entity_id', 'check_in_time': 'time', 'location_id': 'location'})
dyna['type'] = 'trajectory'
# 按照时间的先后顺序排序该 dyna
dyna = dyna.sort_values(by='time')
dyna = dyna.reset_index(drop=True)
dyna['dyna_id'] = dyna.index
dyna = dyna.reindex(columns=['dyna_id', 'type', 'time', 'entity_id', 'location'])
dyna.to_csv(output_folder + '/gowalla.dyna', index=False)