-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpost.py
500 lines (429 loc) · 22.3 KB
/
post.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
'''
Author: Mengjie Zheng
Email: mengjie.zheng@colorado.edu;zhengmengjie18@mails.ucas.ac.cn
Date: 2024-06-10 10:29:45
LastEditTime: 2024-06-20 11:47:42
LastEditors: Mengjie Zheng
Description:
FilePath: /Projects/Alaska.Proj/MCMC_Compliance/post.py
'''
import sys
sys.path.append('/Users/mengjie/Projects/Alaska.Proj/MCMC_Compliance')
import numpy as np
from compliance import ncomp_fortran, cal_Ps_delay
from model import Model, Params
import arviz as az
import xarray as xr
from tqdm import tqdm
import h5py
class ComplyMisfit:
def __init__(self, model, data_obs, wdepth):
self.model = model
self.data_obs = data_obs
self.wdepth = wdepth
def _cal_misfit(self):
freqs, ncomp_obs, ncomp_err = self.data_obs[:, 0], self.data_obs[:, 1], self.data_obs[:, 2]
layer_model = self.model.to_layer_model() # z(in meter), vs, vp, rho
layer_model[:, [1, 3]] = layer_model[:, [3, 1]]
layer_model[:, 0] *= 1000
ncomp_pred = ncomp_fortran(self.wdepth, freqs, layer_model)
# chiSqr = np.sum((ncomp_pred - ncomp_obs)**2 / ncomp_err**2)
chiSqr = np.sum(((ncomp_pred - ncomp_obs) / ncomp_err)**2)
misfit = np.sqrt(chiSqr / len(ncomp_obs))
return ncomp_pred, chiSqr, misfit
class PsMisfit:
def __init__(self, model, data_obs):
self.model = model
self.data_obs = data_obs
def _cal_misfit(self):
Ps_obs, Ps_err = self.data_obs[0], self.data_obs[1]
sediment_layer = self.model.layers[0]
sediment_thickness = sediment_layer.thickness.values
_, vs, vp, _ = sediment_layer.create_model()
vs_ave, vp_ave = np.mean(vs), np.mean(vp)
Ps_pred = cal_Ps_delay(vs_ave, vp_ave, sediment_thickness)
chiSqr = np.sum((Ps_pred - Ps_obs)**2 / Ps_err**2)
misfit = np.sqrt(chiSqr)
return Ps_pred, chiSqr, misfit
class Posterior:
def __init__(self, trace, model, posterior_stats):
self.trace = trace
self.model = model
self.posterior_stats = posterior_stats
def update_model(self, inpara):
new_model = self.model.clone()
param_index = 0
for i, layer in enumerate(new_model.layers):
new_params = {}
for attr_name in ["vs", "vp", "rho"]:
param = getattr(layer, attr_name)
if isinstance(param, Params) and param.inversion:
length = len(param.values)
new_params[attr_name] = inpara[param_index:param_index + length]
param_index += length
new_params["thickness"] = inpara[param_index]
param_index += 1
layer.update(**new_params)
new_model.adjust_last_layer_thickness()
return new_model
def _evaluate(self):
"""
Evaluate the misfit of the posterior samples,
and return the indices of the enhanced samples.
"""
comply_misfit = self.posterior_stats["comply_misfit"].squeeze()
comply_chiSqr = self.posterior_stats["comply_chiSqr"].squeeze()
p2s_misfit = self.posterior_stats["p2s_misfit"].squeeze()
p2s_chiSqr = self.posterior_stats["p2s_chiSqr"].squeeze()
# Only compliance available
if np.all(np.isnan(p2s_misfit.values.flatten())):
comply_misfit_min = comply_misfit.min().values
if comply_misfit_min >= 0.5:
x_crit = 2 * comply_misfit_min
else:
x_crit = comply_misfit_min + 0.5
index_accept = np.where(comply_misfit.values <= x_crit)
joint_misfit = comply_misfit
Ps_min_index = np.nan
else:
comply_misfit_norm = (comply_misfit - comply_misfit.min()) / (comply_misfit.max() - comply_misfit.min())
p2s_misfit_norm = (p2s_misfit - p2s_misfit.min()) / (p2s_misfit.max() - p2s_misfit.min())
joint_misfit = (comply_misfit_norm + p2s_misfit_norm) / 2
joint_misfit_min = joint_misfit.min().values
x_crit = joint_misfit_min + 0.5
index_accept = np.where(joint_misfit.values <= x_crit)
samples_accept_dict = {
"chain_index_accept": index_accept[0],
"draw_index_accept": index_accept[1],
"joint_misfit_accept": joint_misfit.values[index_accept],
"comply_misfit_accept": comply_misfit.values[index_accept],
"p2s_misfit_accept": p2s_misfit.values[index_accept],
"comply_chiSqr_accept": comply_chiSqr.values[index_accept],
"p2s_chiSqr_accept": p2s_chiSqr.values[index_accept]
}
return samples_accept_dict
def _estimate_direct(self):
"""
Average the model parameters of the enhanced samples
"""
samples_accept_dict = self._evaluate()
index_accept = (samples_accept_dict["chain_index_accept"], samples_accept_dict["draw_index_accept"])
joint_misfit_accept = samples_accept_dict["joint_misfit_accept"]
f = lambda x: np.where(x <= 1, 1 / x, np.exp(1 - x))
weight = f(joint_misfit_accept)
weight /= weight.sum()
# Calculate the averaged model parameters (not velocity profile itself)
params_accept = [self.trace.posterior[var].values.squeeze()[index_accept] for var in self.trace.posterior.data_vars]
params_accept = np.array(params_accept)
params_ave = np.average(params_accept, axis=1, weights=weight)
params_ave_dict = {}
for var_name, value in zip(self.trace.posterior.data_vars, params_ave):
params_ave_dict[var_name] = value
model_paras = {}
for i, layer in enumerate(self.model.layers):
for attr_name, param_idx in zip(["vs", "vp", "rho"], [0, 1, 2]):
param = getattr(layer, attr_name)
if isinstance(param, Params):
for j, value in enumerate(param.get("values")):
model_paras[f"layer_{i}_param_{param_idx}_{j}"] = value
model_paras[f"layer_{i}_thickness"] = layer.thickness.get("values")
for key, value in zip(self.trace.posterior.data_vars, params_ave):
model_paras[key] = value
model_ave = self.update_model(list(model_paras.values()))
z, vs, vp, rho = model_ave.combine_layers(boundary_flag=True)
params_ave_dict["velocity"] = np.vstack([z, vs, vp, rho])
return params_ave_dict
# model_ave_data = {"Params": params_ave_dict, "Velocity": np.vstack([z, vs, vp, rho])}
# # obtain the thickness of layer 1 (sediment layer)
# # ===================================================================
# vs_dataarray = xr.DataArray(
# data=np.zeros((len(index_accept[0]), len(index_accept[1]), len(z))),
# coords={'chains': range(len(index_accept[0])), 'draws': range(len(index_accept[1])), 'depths': z},
# dims=['chains', 'draws', 'depths'],
# name='vs'
# )
# vp_dataarray = xr.DataArray(
# data=np.zeros((len(index_accept[0]), len(index_accept[1]), len(z))),
# coords={'chains': range(len(index_accept[0])), 'draws': range(len(index_accept[1])), 'depths': z},
# dims=['chains', 'draws', 'depths'],
# name='vp'
# )
# rho_dataarray = xr.DataArray(
# data=np.zeros((len(index_accept[0]), len(index_accept[1]), len(z))),
# coords={'chains': range(len(index_accept[0])), 'draws': range(len(index_accept[1])), 'depths': z},
# dims=['chains', 'draws', 'depths'],
# name='rho'
# )
# with tqdm(total=len(index_accept[0]), desc="Interpolating velocity profile") as pbar:
# for i in range(len(index_accept[0])):
# ichain, idraw = index_accept[0][i], index_accept[1][i]
# params = [self.trace.posterior[var].values.squeeze()[ichain, idraw] for var in self.trace.posterior.data_vars]
# for key, value in zip(self.trace.posterior.data_vars, params):
# model_paras[key] = value
# model_new = self.update_model(list(model_paras.values()))
# zz, vs, vp, rho = model_new.combine_layers(boundary_flag=True)
# vs_new = np.interp(z, zz, vs)
# vp_new = np.interp(z, zz, vp)
# rho_new = np.interp(z, zz, rho)
# vs_dataarray.loc[ichain, idraw, :] = vs_new
# vp_dataarray.loc[ichain, idraw, :] = vp_new
# rho_dataarray.loc[ichain, idraw, :] = rho_new
# pbar.update()
# ds = xr.Dataset(
# {
# 'vs': vs_dataarray,
# 'vp': vp_dataarray,
# 'rho': rho_dataarray
# }
# )
# return model_ave_data, ds
# Determine the misfit-averaged thickness of layer 1 (sediment layer)
# ===================================================================
# target_name = [var_name for var_name in list(self.trace.posterior.data_vars) if "thickness" in var_name]
# if len(target_name) < 0:
# raise ValueError("Failed to estimate sediment thickness")
# target_name = target_name[0]
# thickness_accept = self.trace.posterior[target_name].values.squeeze()[index_accept]
# joint_misfit_accept = joint_misfit.values[index_accept]
# f = lambda x: np.where(x <= 1, 1 / x, np.exp(1 - x))
# weight = f(joint_misfit_accept)
# weight /= weight.sum()
# thickness_ave = np.average(thickness_accept, weights=weight)
# ===================================================================
# model_paras = {}
# for i, layer in enumerate(self.model.layers):
# for attr_name, param_idx in zip(["vs", "vp", "rho"], [0, 1, 2]):
# param = getattr(layer, attr_name)
# if isinstance(param, Params):
# for j, value in enumerate(param.get("values")):
# model_paras[f"layer_{i}_param_{param_idx}_{j}"] = value
# model_paras[f"layer_{i}_thickness"] = layer.thickness.get("values")
# model_paras[target_name] = thickness_ave
# model_refer = self.update_model(list(model_paras.values()))
# z_refer, _, _, _ = model_refer.combine_layers(boundary_flag=True)
# return thickness_ave, z_refer
def _estimate_indirect(self):
"""
Avearge the converted velocity profile of the enhanced samples
"""
samples_accept_dict = self._evaluate()
index_accept = (samples_accept_dict["chain_index_accept"], samples_accept_dict["draw_index_accept"])
joint_misfit_accept = samples_accept_dict["joint_misfit_accept"]
f = lambda x: np.where(x <= 1, 1 / x, np.exp(1 - x))
weight = f(joint_misfit_accept)
weight /= weight.sum()
# Determine the misfit-averaged thickness of layer 1 (sediment layer)
# ===================================================================
target_name = [var_name for var_name in list(self.trace.posterior.data_vars) if "thickness" in var_name]
if len(target_name) < 0:
raise ValueError("Failed to estimate sediment thickness")
target_name = target_name[0]
thickness_accept = self.trace.posterior[target_name].values.squeeze()[index_accept]
thickness_ave = np.average(thickness_accept, weights=weight)
# ===================================================================
model_paras = {}
for i, layer in enumerate(self.model.layers):
for attr_name, param_idx in zip(["vs", "vp", "rho"], [0, 1, 2]):
param = getattr(layer, attr_name)
if isinstance(param, Params):
for j, value in enumerate(param.get("values")):
model_paras[f"layer_{i}_param_{param_idx}_{j}"] = value
model_paras[f"layer_{i}_thickness"] = layer.thickness.get("values")
model_paras[target_name] = thickness_ave
model_refer = self.update_model(list(model_paras.values()))
z_refer, _, _, _ = model_refer.combine_layers(boundary_flag=True)
vs_dataarray = xr.DataArray(
data=np.zeros((len(index_accept[0]), len(index_accept[1]), len(z_refer))),
coords={'chains': range(len(index_accept[0])), 'draws': range(len(index_accept[1])), 'depths': z_refer},
dims=['chains', 'draws', 'depths'],
name='vs'
)
vp_dataarray = xr.DataArray(
data=np.zeros((len(index_accept[0]), len(index_accept[1]), len(z_refer))),
coords={'chains': range(len(index_accept[0])), 'draws': range(len(index_accept[1])), 'depths': z_refer},
dims=['chains', 'draws', 'depths'],
name='vp'
)
rho_dataarray = xr.DataArray(
data=np.zeros((len(index_accept[0]), len(index_accept[1]), len(z_refer))),
coords={'chains': range(len(index_accept[0])), 'draws': range(len(index_accept[1])), 'depths': z_refer},
dims=['chains', 'draws', 'depths'],
name='rho'
)
with tqdm(total=len(index_accept[0]), desc="Interpolating velocity profile") as pbar:
for i in range(len(index_accept[0])):
ichain, idraw = index_accept[0][i], index_accept[1][i]
params = [self.trace.posterior[var].values.squeeze()[ichain, idraw] for var in self.trace.posterior.data_vars]
for key, value in zip(self.trace.posterior.data_vars, params):
model_paras[key] = value
model_new = self.update_model(list(model_paras.values()))
zz, vs, vp, rho = model_new.combine_layers(boundary_flag=True)
vs_new = np.interp(z_refer, zz, vs)
vp_new = np.interp(z_refer, zz, vp)
rho_new = np.interp(z_refer, zz, rho)
vs_dataarray.loc[ichain, idraw, :] = vs_new
vp_dataarray.loc[ichain, idraw, :] = vp_new
rho_dataarray.loc[ichain, idraw, :] = rho_new
pbar.update()
dataarrays = [vs_dataarray, vp_dataarray, rho_dataarray]
keys = ["vs", "vp", "rho"]
stats_dict = {}
for dataarray, key in zip(dataarrays, keys):
max_values = dataarray.max(dim=["chains", "draws"])
min_values = dataarray.min(dim=["chains", "draws"])
median_values = dataarray.median(dim=["chains", "draws"])
quantile_25 = dataarray.quantile(0.25, dim=["chains", "draws"])
quantile_75 = dataarray.quantile(0.75, dim=["chains", "draws"])
mean_pure_values = dataarray.mean(dim=["chains", "draws"])
std_values = dataarray.std(dim=["chains", "draws"])
mean_misfit_everaged_values = np.average(dataarray, axis=(0, 1), weights=weight)
mean_misfit_everaged_dataarray = xr.DataArray(mean_misfit_everaged_values,
dims=["depths"],
coords={"depths": dataarray.coords["depths"]})
stats_ds = xr.Dataset(
{
"max": max_values,
"min": min_values,
"median": median_values,
"quantile_25": quantile_25,
"quantile_75": quantile_75,
"mean_pure": mean_pure_values,
"std": std_values,
"mean_misfit_averaged": mean_misfit_everaged_dataarray
}
)
stats_dataarray = stats_ds.to_array(dim="stats")
stats_dataarray.name = key
stats_dict[key] = stats_dataarray
return stats_dict
class SimpleModel:
"""
The object for extracting key model properties from the trace,
in order to plot prior and posterior distributions.
"""
def __init__(self, trace, model):
self.trace = trace
self.model = model
def update_model(self, inpara):
new_model = self.model.clone()
param_index = 0
for i, layer in enumerate(new_model.layers):
new_params = {}
for attr_name in ["vs", "vp", "rho"]:
param = getattr(layer, attr_name)
if isinstance(param, Params) and param.inversion:
length = len(param.values)
new_params[attr_name] = inpara[param_index:param_index + length]
param_index += length
new_params["thickness"] = inpara[param_index]
param_index += 1
layer.update(**new_params)
new_model.adjust_last_layer_thickness()
return new_model
def _extract(self):
chains = self.trace.posterior['chain'].values
draws = self.trace.posterior['draw'].values
model_paras = {}
for i, layer in enumerate(self.model.layers):
for attr_name, param_idx in zip(["vs", "vp", "rho"], [0, 1, 2]):
param = getattr(layer, attr_name)
if isinstance(param, Params):
for j, value in enumerate(param.get("values")):
model_paras[f"layer_{i}_param_{param_idx}_{j}"] = value
model_paras[f"layer_{i}_thickness"] = layer.thickness.get("values")
# sediment
sediment_thickness_dataarray = xr.DataArray(
data = np.zeros((len(chains), len(draws), 1)),
coords={"chain": chains, "draw": draws, "sediment_thickness": [0]},
dims=["chain", "draw", "sediment_thickness"],
name="sediment_thickness"
)
sediment_average_vs_dataarray = xr.DataArray(
data = np.zeros((len(chains), len(draws), 1)),
coords={"chain": chains, "draw": draws, "sediment_average_vs": [0]},
dims=["chain", "draw", "sediment_average_vs"],
name="sediment_average_vs"
)
sediment_vp2vs_dataarray = xr.DataArray(
data = np.zeros((len(chains), len(draws), 1)),
coords={"chain": chains, "draw": draws, "sediment_vp2vs": [0]},
dims=["chain", "draw", "sediment_vp2vs"],
name="sediment_vp2vs"
)
# crust
vs_at_top_crust_dataarray = xr.DataArray(
data = np.zeros((len(chains), len(draws), 1)),
coords={"chain": chains, "draw": draws, "vs_at_top_crust": [0]},
dims=["chain", "draw", "vs_at_top_crust"],
name="vs_at_top_crust"
)
crust_average_vs_dataarray = xr.DataArray(
data = np.zeros((len(chains), len(draws), 1)),
coords={"chain": chains, "draw": draws, "crust_average_vs": [0]},
dims=["chain", "draw", "crust_average_vs"],
name="crust_average_vs"
)
# model samples
z_new = np.arange(0, self.model.total_thickness + 1.0, 1.0)
vs_samples_dataarray = xr.DataArray(
data = np.zeros((len(chains), len(draws), len(z_new))),
coords={"chain": chains, "draw": draws, "depth": z_new},
dims=["chain", "draw", "depth"],
name="vs_samples"
)
vp_samples_dataarray = xr.DataArray(
data = np.zeros((len(chains), len(draws), len(z_new))),
coords={"chain": chains, "draw": draws, "depth": z_new},
dims=["chain", "draw", "depth"],
name="vp_samples"
)
with tqdm(total=len(chains) * len(draws), desc="Extracting model samples") as pbar:
for ichain in chains:
for idraw in draws:
sample = self.trace.posterior.sel(chain=ichain, draw=idraw)
for var in sample.data_vars:
model_paras[var] = sample[var].values.item()
new_model = self.update_model(list(model_paras.values()))
# sediment
sediment_layer = new_model.layers[0]
sediment_thickness = sediment_layer.thickness.values
_, vs, vp, _ = sediment_layer.create_model()
vp2vs = np.average(vp) / np.average(vs)
sediment_average_vs = np.average(vs)
z, vs, vp, _ = new_model.combine_layers(boundary_flag=True)
vs_new = np.interp(z_new, z, vs)
vp_new = np.interp(z_new, z, vp)
# crust
crust_layer = new_model.layers[1]
_, vs, vp, _ = crust_layer.create_model()
vs_at_top_crust = vs[0]
crust_average_vs = np.average(vs)
sediment_thickness_dataarray.loc[ichain, idraw, :] = sediment_thickness
sediment_average_vs_dataarray.loc[ichain, idraw, :] = sediment_average_vs
sediment_vp2vs_dataarray.loc[ichain, idraw, :] = vp2vs
vs_at_top_crust_dataarray.loc[ichain, idraw, :] = vs_at_top_crust
crust_average_vs_dataarray.loc[ichain, idraw, :] = crust_average_vs
vs_samples_dataarray.loc[ichain, idraw, :] = vs_new
vp_samples_dataarray.loc[ichain, idraw, :] = vp_new
pbar.update()
model_data = xr.Dataset(
{
"sediment_thickness": sediment_thickness_dataarray,
"sediment_average_vs": sediment_average_vs_dataarray,
"sediment_vp2vs": sediment_vp2vs_dataarray,
"vs_at_top_crust": vs_at_top_crust_dataarray,
"crust_average_vs": crust_average_vs_dataarray,
"vs_samples": vs_samples_dataarray,
"vp_samples": vp_samples_dataarray
}
)
return model_data
if __name__ == "__main__":
config_file = "/Volumes/Tect32TB/Mengjie/Alaska.Data/COMPL_INV/II/DATA/XO.LA21/config.yml"
trace_file = "/Volumes/Tect32TB/Mengjie/Alaska.Data/COMPL_INV/II/DATA/XO.LA21/trace_prior.nc"
posterior_stats_file = "/Volumes/Tect32TB/Mengjie/Alaska.Data/COMPL_INV/II/DATA/XO.LA21/posterior_raw.nc"
model = Model.from_yaml(config_file)
trace = az.from_netcdf(trace_file)
posterior_stats = xr.load_dataset(posterior_stats_file)
posterior = Posterior(trace, model, posterior_stats)
total_thickness, var_names = posterior._estimate_direct()