-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_utils.py
120 lines (82 loc) · 3.54 KB
/
image_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import cv2
import numpy as np
import os
import sys
from glob import glob
import matplotlib.pyplot as plt
class ImageUtils:
def __init__(self, ):
pass
def find_subimage_contours(self, image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
canny = cv2.Canny(blurred, 120, 255, 1)
kernel = np.ones((5, 5), np.uint8)
dilate = cv2.dilate(canny, kernel, iterations=1)
return cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
def find_subimages(self, image, minimum_size, verbose = 0):
images = []
# Find contours
cnts = self.find_subimage_contours(image)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
# Iterate thorugh contours and filter for ROI
for i, c in enumerate(cnts):
x, y, w, h = cv2.boundingRect(c)
# # Skip if too small.
if w < minimum_size or h < minimum_size:
continue
if verbose > 0:
print(f"Found image -- W: {w} H: {h}")
images.append(image[y : y + h, x : x + w])
return images
def save_subimages(self, filename, image_path, output_path, minimum_size, verbose = 0):
image = cv2.imread(image_path, minimum_size)
images = self.find_subimages(image, minimum_size, verbose)
for i, image in enumerate(images):
write_path = f"{output_path}/{filename}_{i}.png"
print(f"Saving: {write_path}")
cv2.imwrite(write_path, image)
def convert_image_to_bw(self, image, threshold):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(image, 255, threshold, 0)
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
thresh, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
return image
def midpoint(img):
maxf = maximum_filter(img, (3, 3))
minf = minimum_filter(img, (3, 3))
return (maxf + minf) / 2
def contraharmonic_mean(img, size, Q):
num = np.power(img, Q + 1)
denom = np.power(img, Q)
kernel = np.full(size, 1.0)
return cv2.filter2D(num, -1, kernel) / cv2.filter2D(denom, -1, kernel)
def get_image_files_recursively(self, root_dir, exclude_files = []):
file_types = ("*.jpg", "*.jpeg", "*.png")
files = []
for file_type in file_types:
for dir, _, _ in os.walk(root_dir):
print(dir)
files.extend(glob(os.path.join(dir, file_type)))
files = [file for file in files if file not in exclude_files]
return files
def invert_mostly_black_images(self, image, threshold):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
avg_color_per_row = np.average(image, axis=0)
avg_color = np.average(image, axis=0)
avg_color = avg_color.mean()
# Invert the image if the average darkness is below
# threshold.
if avg_color < threshold:
image = ~image
return image
def remove_empty_images(self, image, threshold):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
avg_color_per_row = np.average(image, axis=0)
avg_color = np.average(image, axis=0)
avg_color = avg_color.mean()
# Invert the image if the average darkness is below
# threshold.
if avg_color < threshold:
return image
return None