-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDyMMMSurrogateModelCluster.py
383 lines (312 loc) · 15 KB
/
DyMMMSurrogateModelCluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import numpy as np
import math
import pickle
import types
import tempfile
import pandas as pd
import statistics
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras import layers
import tensorflow_probability as tfp
#import tensorflow_datasets as tfds
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from tensorflow.keras import callbacks
from sklearn.model_selection import KFold
from tensorflow.keras.layers import Input, Dense, Dropout
from tensorflow.python.keras.layers import deserialize, serialize
from tensorflow.python.keras.saving import saving_utils
from tensorflow.keras import backend as K
from tensorflow.keras.utils import get_custom_objects
import sklearn
from sklearn import svm
from sklearn.cluster import AgglomerativeClustering
from sklearn.ensemble import GradientBoostingClassifier
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import LabelEncoder
from sklearn.neighbors import kneighbors_graph
import DyMMMSettings as settings
from tensorflow import random
np.random.seed(2017)
random.set_seed(1)
def root_mean_squared_error(y_true, y_pred):
RMSE=K.sqrt(K.mean(K.square(y_pred - y_true)))
return RMSE
"""
#linux OS
def make_keras_picklable():
def __getstate__(self):
model_str = ""
with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd:
print("---------------------1111111111111111111----------------------------------------------------"+fd.name)
keras.models.save_model(self, fd.name, overwrite=True)
model_str = fd.read()
d = { 'model_str': model_str }
return d
def __setstate__(self, state):
with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd:
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
fd.write(state['model_str'])
fd.flush()
model = keras.models.load_model(fd.name)
self.__dict__ = model.__dict__
cls = keras.models.Model
cls.__getstate__ = __getstate__
cls.__setstate__ = __setstate__
"""
"""
#windows OS
def make_keras_picklable():
def __getstate__(self):
model_str = ""
with tempfile.NamedTemporaryFile(delete=True) as fd:
print("---------------------1111111111111111111----------------------------------------------------"+fd.name)
#fd.close()
keras.models.save_model(self, fd.name)
with open(fd.name,'rb') as fd:
model_str = fd.read()
d = { 'model_str': model_str }
return d
def __setstate__(self, state):
with tempfile.NamedTemporaryFile(delete=True) as fd:
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
print("--------------------22222222222222222222222222-----------------------------------------------------"+fd.name)
#fd.close()
with open(fd.name,'wb') as fd:
fd.write(state['model_str'])
fd.flush()
model = keras.models.load_model(fd.name)
self.__dict__ = model.__dict__
cls = keras.models.Model
cls.__getstate__ = __getstate__
cls.__setstate__ = __setstate__
"""
def unpack(model, training_config, weights):
get_custom_objects().update({'root_mean_squared_error': root_mean_squared_error})
restored_model = deserialize(model)
if training_config is not None:
restored_model.compile(
**saving_utils.compile_args_from_training_config(
training_config
)
)
restored_model.set_weights(weights)
return restored_model
# Hotfix function
def make_keras_picklable():
def __reduce__(self):
model_metadata = saving_utils.model_metadata(self)
training_config = model_metadata.get("training_config", None)
model = serialize(self)
weights = self.get_weights()
return (unpack, (model, training_config, weights))
cls = Model
cls.__reduce__ = __reduce__
make_keras_picklable()
class DyMMMSurrogateModelCluster:
modelList=[]
resModelList=[]
X=None
y=None
analysisDir=settings.simSettings["analysisDir"]
def set_training_values(self, X, y):
self.X=X
self.y=y
def train(self):
X_train=self.X
y_train=self.y
connectivity = kneighbors_graph(X_train, n_neighbors=25, mode='connectivity', include_self='auto', metric='cityblock', p=1)
clusterCount=int(X_train.shape[0]/(X_train.shape[1]*100))
if clusterCount < 1:
clusterCount=1
#model = AgglomerativeClustering(n_clusters=clusterCount, affinity='manhattan', linkage='complete')
model = AgglomerativeClustering(connectivity=connectivity, n_clusters=clusterCount, compute_full_tree=True)
y_cluster_predict=model.fit_predict(X_train)
print(model.n_clusters_)
clusters_X=[ [] for _ in range(clusterCount) ]
clusters_y=[ [] for _ in range(clusterCount) ]
modelsInSurrogate=[ [] for _ in range(clusterCount) ]
modelsInSurrogateType=[ [] for _ in range(clusterCount) ]
resModelList=[ [] for _ in range(clusterCount) ]
for index,row in enumerate(X_train):
clusters_X[y_cluster_predict[index]].append(X_train[index])
clusters_y[y_cluster_predict[index]].append(y_train[index])
print("-------------------------------------------Number of points in each cluster-----------------------------------")
for index in range(clusterCount):
print(len(clusters_X[index]))
for index in range(clusterCount):
X = np.asarray(clusters_X[index], dtype=np.float32)
y = np.asarray(clusters_y[index], dtype=np.float32)
print(len(clusters_X[index]))
if(X.shape[0]<0):
#modelsInSurrogate[index]=None
modelsInSurrogate[index] = RandomForestRegressor(max_depth=2, random_state=0).fit(X,y.ravel())
modelsInSurrogateType[index]=0
elif(X.shape[0]<1720000):
modelsInSurrogate[index]=self.generateSurrogateModels(X, y)
modelsInSurrogateType[index]=1
elif(X.shape[0]<172000):
modelsInSurrogate[index]=self.generateSurrogateModels(X, y)
modelsInSurrogateType[index]=2
else:
modelsInSurrogate[index] = KPLS(theta0=[1e-2], poly='quadratic', corr='abs_exp', n_comp=paramCount)
modelsInSurrogate[index].set_training_values(X, y)
modelsInSurrogate[index].train()
modelsInSurrogateType[index]=3
y_res=self.getResiduals(modelsInSurrogate[index], X, y)
resModelList[index]=self.generateSurrogateModels(X, y_res)
encoder = LabelEncoder()
encoder.fit(y_cluster_predict)
y_cluster_predict = encoder.transform(y_cluster_predict)
X1_train, X1_test, y1_train, y1_test = train_test_split(X_train, y_cluster_predict, test_size=0.33, random_state=42)
param_dist = {'objective':'multi:softprob', 'n_estimators':100, 'num_class':clusterCount, 'max_depth':17, 'use_label_encoder':False}
cluster_assigner = xgb.XGBClassifier(**param_dist)
cluster_assigner.fit(X1_train, y1_train,
eval_set=[(X1_train, y1_train), (X1_test, y1_test)],
eval_metric='mlogloss',
verbose=True)
evals_result = cluster_assigner.evals_result()
self.modelsInSurrogate=modelsInSurrogate
self.modelsInSurrogateType=modelsInSurrogateType
self.cluster_assigner=cluster_assigner
self.clusters_X=clusters_X
self.clusters_y=clusters_y
self.modelsInSurrogate=modelsInSurrogate
self.modelsInSurrogateType=modelsInSurrogateType
self.resModelList=resModelList
def generateSurrogateModels(self, X, y):
kf = KFold(n_splits=max(int(X.shape[0]/200),2))
surrogateModels=[]
for train_index, test_index in kf.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
surrogateModels.append(self.createModel(X_train, y_train, X_test, y_test))
print("-----------generateSurrogateModels------------")
for model in surrogateModels:
print(model)
return surrogateModels
def createModel(self, X_train, y_train, X_test, y_test):
#model=self.createModel_1(X_train, y_train, X_test, y_test)
#model=self.createModel_2(X_train, y_train, X_test, y_test)
model= svm.NuSVR(gamma='auto')
model.fit(X_train, y_train.ravel())
return(model)
def createModel_1(self, X_train, y_train, X_test, y_test):
learning_rate = 1e-5
num_epochs = 10000
mse_loss = keras.losses.MeanSquaredError()
# inputs = keras.Input(shape=X_train.shape[1], name="digits")
# x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
# x = layers.Dense(64, activation="relu", name="dense_2")(x)
# outputs = layers.Dense(1, name="predictions")(x)
dropout_rate = 0.1
inputs = Input(shape=X_train.shape[1])
x = Dense(64, activation='relu')(inputs)
x = Dropout(dropout_rate)(x, training=True)
x = Dense(64, activation='relu')(x)
x = Dropout(dropout_rate)(x, training=True)
outputs = Dense(1)(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=keras.optimizers.RMSprop(learning_rate=learning_rate),
loss=mse_loss,
metrics=[keras.metrics.RootMeanSquaredError()],
)
earlystopping = callbacks.EarlyStopping(monitor ="val_loss",
mode ="min", patience = 5,
restore_best_weights = True)
print("Start training the model...")
model.fit(X_train, y_train , batch_size=32, epochs=num_epochs, validation_data=(X_test, y_test), callbacks =[earlystopping])
print("Model training finished.")
_, rmse = model.evaluate(X_test, y_test, verbose=1)
print(f"Test RMSE: {round(rmse, 3)}")
logFile = self.analysisDir+"/RMSE.log"
f = open(logFile, "a")
f.write("=======MODEL RMSE==========\n")
f.write(str(rmse))
f.close()
return model
def createModel_2(self, X_train, y_train, X_test, y_test):
learning_rate = 1e-5
num_epochs = 10000
#initializer = tf.keras.initializers.Orthogonal()
initializer= tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None)
#bias_initializer=tf.keras.initializers.RandomNormal(stddev=0.001)
bias_initializer=tf.keras.initializers.RandomNormal(mean=0.5, stddev=0.01, seed=None)
# define model
model = Sequential()
model.add(Dense(16, input_dim=17, activation='relu', kernel_initializer=initializer, use_bias=True, bias_initializer=bias_initializer))
#model.add(Dense(64, activation='relu', kernel_initializer=initializer))
model.add(Dense(32, activation='relu', kernel_initializer=initializer))
model.add(Dense(32, activation='relu', kernel_initializer=initializer))
model.add(Dense(64, activation='relu', kernel_initializer=initializer))
model.add(Dense(32, activation='relu', kernel_initializer=initializer))
model.add(Dense(32, activation='relu', kernel_initializer=initializer))
#model.add(Dense(16, activation='relu', kernel_initializer=initializer ))
model.add(Dense(8, activation='relu', kernel_initializer=initializer))
model.add(Dense(1))
optimizer=tf.keras.optimizers.RMSprop(
learning_rate=0.0001, rho=0.9, momentum=0.0, epsilon=1e-07, centered=False,
name='RMSprop'
)
model.compile(loss=root_mean_squared_error, optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError()])
earlystopping = callbacks.EarlyStopping(monitor ="val_loss",
mode ="min", patience = 50,
restore_best_weights = True)
print("Start training the model...")
model.fit(X_train, y_train , batch_size=32, epochs=num_epochs, validation_data=(X_test, y_test), callbacks =[earlystopping])
print("Model training finished.")
_, rmse = model.evaluate(X_test, y_test, verbose=1)
print(f"Test RMSE: {round(rmse, 3)}")
logFile = self.analysisDir+"/RMSE.log"
f = open(logFile, "a")
f.write("=======MODEL RMSE==========\n")
f.write(str(rmse))
f.close()
print(model)
return model
def getResiduals(self, surrogateModels, X_test, y_test):
print("Generating residuals...")
y_pred=np.zeros(shape=(y_test.shape[0],len(surrogateModels)))
y_res=np.zeros(shape=(y_test.shape[0],len(surrogateModels)))
i = 0
for model in surrogateModels:
print(model)
y_pred[:,i]=model.predict(X_test).reshape(X_test.shape[0])
print(y_pred[:,i].shape)
print(y_test.shape)
y_res[:,i]=(y_pred[:,i]-y_test.reshape(y_test.shape[0]))**2
i+=1
print(y_res)
print(y_res.mean(axis=1))
return y_res.mean(axis=1)
def predict_values(self, X):
y_pred = np.zeros(X.shape[0])
predicted_cluster=self.cluster_assigner.predict(X)
for index, row in enumerate(X):
clusterIndex=predicted_cluster[index]-1
y_pred[index]=self.predictFromModel(self.modelsInSurrogate[clusterIndex],X[index])
return y_pred
def predict_variances(self, X):
y_pred_var = np.zeros(X.shape[0])
predicted_cluster=self.cluster_assigner.predict(X)-1
for index, row in enumerate(X):
clusterIndex=predicted_cluster[index]
y_pred_var[index]=self.predictFromModel(self.resModelList[clusterIndex],X[index])
return y_pred_var
def predictFromModel(self, models, X):
y_pred=np.zeros(len(models))
i = 0
for model in models:
y_pred[i]=model.predict(X.reshape(1, -1))
i+=1
return(y_pred.mean())