-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_regression.py
236 lines (188 loc) · 9.57 KB
/
train_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python3.7
import argparse
from typing import Any, Dict, List, Tuple
from pathlib import Path
from functools import partial
from operator import itemgetter
import torch
import numpy as np
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch import einsum, Tensor
from torchvision import transforms, models
from torch.utils.data import Dataset, DataLoader
from networks import resnext101
from dataloader import SliceDataset
from utils import class2one_hot, tqdm_, map_, id_, str2bool
def main(args: argparse.Namespace) -> None:
print("\n>>> Setting up")
cpu: bool = args.cpu or not torch.cuda.is_available()
device = torch.device("cpu") if cpu else torch.device("cuda")
cudnn.benchmark = True
if args.weights:
print(f">> Loading weights from {args.weights}")
net = torch.load(args.weights)
elif args.pretrained:
print(">> Starting from pre-trained network")
net = models.resnet101(pretrained=True)
print("> Recreating its last FC layer")
in_, out_ = net.fc.in_features, net.fc.out_features
print(f"> Going from shape {(in_, out_)} to {(8192, args.n_class)}")
net.fc = nn.Linear(8192, args.n_class) # Change only the last layer
else:
print(">> Using a brand new netwerk")
net = resnext101(baseWidth=args.base_width, cardinality=args.cardinality, n_class=args.n_class)
net.to(device)
lr: float = args.lr
criterion = torch.nn.MSELoss(reduction="sum")
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=args.momentum, weight_decay=args.weight_decay)
# Dataloaderz and shitz
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
png_transform = transforms.Compose([
lambda img: img.convert('L'),
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: nd / 255, # max <= 1
lambda nd: torch.tensor(nd, dtype=torch.float32),
normalize if args.pretrained else id_
])
gt_transform = transforms.Compose([
lambda img: img.convert('L'),
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: torch.tensor(nd, dtype=torch.int64),
partial(class2one_hot, C=args.n_class),
itemgetter(0)
])
gen_dataset = partial(SliceDataset,
transforms=[png_transform, gt_transform],
are_hots=[False, True],
debug=args.debug,
C=args.n_class,
in_memory=args.in_memory,
bounds_generators=[],
ignore_norm=args.pretrained)
data_loader = partial(DataLoader,
num_workers=args.batch_size + 5,
pin_memory=True)
train_filenames: List[str] = map_(lambda p: str(p.name), Path(args.data_root, args.train_subfolder, "img").glob("*"))
train_folders: List[Path] = [Path(args.data_root, args.train_subfolder, f) for f in ["img", "gt"]]
val_filenames: List[str] = map_(lambda p: str(p.name), Path(args.data_root, args.val_subfolder, "img").glob("*"))
val_folders: List[Path] = [Path(args.data_root, args.val_subfolder, f) for f in ["img", "gt"]]
train_set: Dataset = gen_dataset(train_filenames, train_folders, augment=args.augment)
val_set: Dataset = gen_dataset(val_filenames, val_folders)
train_loader: DataLoader = data_loader(train_set, batch_size=args.batch_size, shuffle=True, drop_last=False)
val_loader: DataLoader = data_loader(val_set, batch_size=args.batch_size, shuffle=False, drop_last=False)
print()
best_perf: float = -1
best_epc: int = -1
metrics: Dict[str, Tensor] = {"tra_loss": torch.zeros((args.epc, len(train_loader)),
dtype=torch.float32, device=device),
"tra_diff": torch.zeros((args.epc, len(train_set), args.n_class),
dtype=torch.float32, device=device),
"val_loss": torch.zeros((args.epc, len(val_loader)),
dtype=torch.float32, device=device),
"val_diff": torch.zeros((args.epc, len(val_set), args.n_class),
dtype=torch.float32, device=device)}
for i in range(args.epc):
sizes: Tensor
predicted_sizes: Tensor
loss: Tensor
if not args.no_training:
net, train_metrics = do_epc(i, "train", net, train_loader, device, criterion, args, optimizer)
for k in train_metrics:
metrics["tra_" + k][i] = train_metrics[k][...]
with torch.no_grad():
net, val_metrics = do_epc(i, "val", net, val_loader, device, criterion, args)
for k in val_metrics:
metrics["val_" + k][i] = val_metrics[k][...]
epc_perf: float = float(metrics["val_diff"][i, ..., args.idc].mean())
if epc_perf < best_perf or i == 0:
best_perf = epc_perf
best_epc = i
print(f"> Best results at epoch {best_epc}: diff: {best_perf:12.2f}")
print(f"> Saving network weights to {args.save_dest}")
Path(args.save_dest).parent.mkdir(parents=True, exist_ok=True)
torch.save(net, args.save_dest)
if i in [args.epc // 2, 3 * args.epc // 4]:
for param_group in optimizer.param_groups:
lr *= 0.5
param_group['lr'] = lr
print(f'> New learning Rate: {lr}')
def do_epc(epc: int, mode: str, net: Any, loader: DataLoader, device, criterion, args,
optimizer: Any = None) -> Tuple[Any, Dict[str, Tensor]]:
assert mode in ["train", "val"]
desc: str
if mode == "train":
net.train()
desc = f">> Training ({epc})"
elif mode == "val":
net.eval()
desc = f">> Validation ({epc})"
total_iteration: int = len(loader) # U
total_images: int = len(loader.dataset) # D
metrics = {"loss": torch.zeros((total_iteration), dtype=torch.float32, device=device),
"diff": torch.zeros((total_images, args.n_class), dtype=torch.float32, device=device)}
tq_iter = tqdm_(total=total_iteration, desc=desc)
done_img: int = 0
for j, data in enumerate(loader):
data[1:] = [e.to(device) for e in data[1:]] # Move all tensors to device
# filenames, images, targets = data[:3]
filenames, images, targets = data
assert len(filenames) == len(images) == len(targets)
B: int = len(images)
sizes = einsum("bcwh->bc", targets).type(torch.float32)
if optimizer:
optimizer.zero_grad()
if args.pretrained:
b, c, w, h = images.shape
assert c == 1
viewed = images.view((b, w, h))
new_img = torch.stack([viewed, viewed, viewed], dim=1)
assert new_img.shape == (b, 3, w, h), new_img.shape
images = new_img
predicted_sizes = net(images)
assert sizes.shape == predicted_sizes.shape
loss = criterion(predicted_sizes[:, args.idc], sizes[:, args.idc])
if optimizer:
loss.backward()
optimizer.step()
metrics["loss"][j] = loss.detach().item()
metrics["diff"][done_img:done_img + B, ...] = torch.abs(predicted_sizes.detach() - sizes.detach())[...]
stat_dict: Dict = {"loss": metrics["loss"][:j].mean(),
"diff": metrics["diff"][:done_img + B, args.idc].mean()}
nice_dict: Dict = {k: f"{v:12.2f}" for (k, v) in stat_dict.items()}
done_img += B
tq_iter.set_postfix(nice_dict)
tq_iter.update(1)
tq_iter.close()
print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items()))
return net, metrics
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument("--n_class", type=int, required=True)
parser.add_argument("--save_dest", type=str, required=True)
parser.add_argument("--data_root", type=str, required=True)
parser.add_argument("--epc", type=int, required=True)
parser.add_argument("--train_subfolder", type=str, required=True)
parser.add_argument("--val_subfolder", type=str, required=True)
parser.add_argument("--idc", type=int, nargs='+')
parser.add_argument('--cardinality', type=int, default=32, help='ResNet cardinality (group).')
parser.add_argument('--base-width', type=int, default=4, help='ResNet base width.')
parser.add_argument('--lr', '--learning-rate', default=0.0000005, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--augment', type=str2bool, default=False)
parser.add_argument('--weights', type=str, default='')
parser.add_argument("--debug", action="store_true")
parser.add_argument("--pretrained", action="store_true")
parser.add_argument("--no_training", action="store_true", help="Trick to rerun evaluation a trained network.")
parser.add_argument("--cpu", action='store_true')
parser.add_argument("--in_memory", action='store_true')
args = parser.parse_args()
print("\n", args)
return args
if __name__ == "__main__":
main(get_args())