-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
211 lines (172 loc) · 7.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import torch.nn.functional as F
import torchvision
from torchvision import transforms
import cmodels.mnist_net
from dotenv import load_dotenv
import os
import smtplib
def get_sub_dataset_name(dataset_name, path):
splits = path.split("/")
if dataset_name == "Office31":
return splits[-2]
elif dataset_name == "ImageClef":
return splits[-1]
return splits[-2]
def get_config_var():
load_dotenv()
vars = {}
vars["SACRED_URL"] = os.getenv("SACRED_URL")
vars["SACRED_DB"] = os.getenv("SACRED_DB")
vars["VISDOM_PORT"] = os.getenv("VISDOM_PORT")
vars["SAVE_DIR"] = os.getenv("SAVE_DIR")
vars["GMAIL_USER"] = os.getenv("GMAIL_USER")
vars["GMAIL_PASSWORD"] = os.getenv("GMAIL_PASSWORD")
vars["TO_EMAIL"] = os.getenv("TO_EMAIL")
if not os.path.exists(vars["SAVE_DIR"]):
os.makedirs(vars["SAVE_DIR"])
return vars
all_envs = get_config_var()
all_save_dir = all_envs["SAVE_DIR"]
def send_email(_run, result):
if "GMAIL_PASSWORD" in all_envs:
server = smtplib.SMTP_SSL('smtp.gmail.com', 465)
server.ehlo()
server.login(all_envs["GMAIL_USER"], all_envs["GMAIL_PASSWORD"])
SUBJECT = "[EXP] Experiment {}:{} has finished with: {} Accuracy".format(_run._id, _run.experiment_info['name'], result)
TEXT = "Your experiment has finished.\nCheers,\n"
message = """From: %s\nTo: %s\nSubject: %s\n\n%s""" % (all_envs["GMAIL_USER"], all_envs["TO_EMAIL"], SUBJECT, TEXT)
server.sendmail(all_envs["GMAIL_USER"], all_envs["TO_EMAIL"] , message)
server.close()
class LoggerForSacred():
def __init__(self, visdom_logger, ex_logger=None, always_print=True):
self.visdom_logger = visdom_logger
self.ex_logger = ex_logger
self.always_print = always_print
def log_scalar(self, metrics_name, value, step):
if self.visdom_logger is not None:
self.visdom_logger.scalar(metrics_name, step, [value])
if self.ex_logger is not None:
self.ex_logger.log_scalar(metrics_name, value, step)
if self.always_print:
print("{}:{}/{}".format(metrics_name, value, step))
class StdOutLog():
def __init__(self):
self.logger = print
def log_scalar(self, metrics_name, value, step):
self.logger("Metrics:{}|Step:{}|Value:{}".format(metrics_name, step, value))
def adjust_learning_rate(optimizer, new_lr):
"""Sets the learning rate to the initial LR decayed by 0.5 every 20 epochs"""
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
def eval(model, device, test_loader, is_debug=False):
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
if torch.cuda.device_count() > 1:
output = model.module.nforward(data)
else:
output = model.nforward(data)
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
if is_debug:
break
acc = 100. * correct / len(test_loader.dataset)
del output
return acc
def eval_dan(model, device, test_loader, is_debug=False):
model.eval()
correct = 0
test_loss = 0.
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output,_,_ = model(data, torch.FloatTensor([0]).to(device))
test_loss += F.nll_loss(F.log_softmax(output, dim=1), target,
size_average=False).item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
if is_debug:
break
acc = 100. * correct / len(test_loader.dataset)
del output
return 100. * correct.item() / (len(test_loader) * test_loader.batch_size)
def any_train_one_epoch(model, optimizer, device, train_loader, is_break=False):
total_loss = 0.
# One epoch step gradient for target
optimizer.zero_grad()
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
if torch.cuda.device_count() > 1:
output = model.module.nforward(data)
else:
output = model.nforward(data)
output = F.log_softmax(output)
loss = F.cross_entropy(output, target).mean()
total_loss += float(loss.item())
loss.backward()
# torch.nn.utils.clip_grad_value_(model.parameters(), 10)
optimizer.step()
if is_break:
break
del loss
del output
# torch.cuda.empty_cache()
return total_loss / len(train_loader)
def any_train(model, train_func, device, trainloader, testloader, optimizer, epochs, **kwargs):
logger = kwargs["logger"]
if "logger_id" not in kwargs:
logger_id = ""
else:
logger_id = kwargs["logger_id"]
if "save_name" not in kwargs:
save_name = ""
else:
save_name = kwargs["save_name"]
scheduler = None
if "scheduler" in kwargs:
scheduler = kwargs["scheduler"]
best_acc = 0
for epoch in range(1, epochs + 1):
if scheduler is not None:
scheduler.step()
total_loss = train_func(model, optimizer, device, trainloader)
acc = eval(model, device, testloader)
if logger is not None:
logger.log_scalar("baseline_{}_training_loss".format(logger_id), total_loss, epoch)
logger.log_scalar("baseline_{}_before_target_val_acc".format(logger_id), acc, epoch)
if acc > best_acc:
best_acc = acc
torch.save(model, "./{}/best_{}_{}.p".format(all_save_dir, logger_id, save_name))
return best_acc
def main():
train_func = any_train_one_epoch
batch_size = 64
test_batch_size = 64
lr = 0.01
momentum = 0.9
epochs = 10
device = torch.device("cuda")
transform_train = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
transform_test = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=1)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size, shuffle=True, num_workers=1)
model = cmodels.mnist_net.LeNet5().to(device)
optimizer = torch.optim.SGD(model.parameters(), momentum=momentum, lr=lr)
any_train(model, train_func, device, trainloader, testloader, optimizer, epochs, logger=StdOutLog(), logger_id="mnist")
if __name__ == "__main__":
main()