-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment.py
331 lines (293 loc) · 10.6 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import torch
import shutil
import pickle
import logging
import argparse
import numpy as np
import pandas as pd
from typing import Union
from predict import predict
from dataclasses import asdict
from baseline import Seq2SeqModel
from data import InflectionDataModule
from pytorch_lightning import Trainer
from containers import Hyperparameters
from model import InterpretableTransducer
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.callbacks import ModelCheckpoint
Model = Union[InterpretableTransducer, Seq2SeqModel]
def _load_dataset(language: str, data_path: str) -> InflectionDataModule:
data_module = InflectionDataModule.from_files(
train_path=os.path.join(data_path, f"{language}.trn"),
dev_path=os.path.join(data_path, f"{language}.dev"),
test_path=os.path.join(data_path, f"{language}.covered.tst"),
)
return data_module
def _represent_hyperparameter_value(value):
if isinstance(value, float):
return np.round(value, 2).item()
else:
return value
def _make_experiment_name(
language: str,
model_type: str,
num_symbol_features: int,
num_source_features: int,
autoregressive_order: int,
hyperparameters: Hyperparameters,
trial: int,
) -> str:
experiment_name = language
experiment_name = experiment_name + "-" + f"model={model_type}"
experiment_name = experiment_name + "-" + f"trial={trial}"
experiment_name = (
experiment_name + "-" + f"num_symbol_features={num_symbol_features}"
)
experiment_name = (
experiment_name + "-" + f"num_source_features={num_source_features}"
)
experiment_name = (
experiment_name + "-" + f"autoregressive_order={autoregressive_order}"
)
hyperparameter_string = [
(param, _represent_hyperparameter_value(value))
for param, value in asdict(hyperparameters).items()
]
hyperparameter_string = [
f"{param}={value}" for param, value in hyperparameter_string
]
hyperparameter_string = "-".join(hyperparameter_string)
experiment_name = experiment_name + "-" + hyperparameter_string
return experiment_name
def _check_arguments(
num_symbol_features: int,
num_source_features: int,
autoregressive_order: int,
hyperparameters: Hyperparameters,
) -> None:
assert isinstance(num_symbol_features, int) and num_symbol_features >= 0
assert isinstance(num_source_features, int) and num_source_features >= 0
assert isinstance(autoregressive_order, int) and autoregressive_order >= 0
assert (
isinstance(hyperparameters.batch_size, int) and hyperparameters.batch_size >= 1
)
assert (
isinstance(hyperparameters.num_layers, int) and hyperparameters.num_layers >= 1
)
assert (
isinstance(hyperparameters.hidden_size, int)
and hyperparameters.hidden_size >= 1
)
assert (
isinstance(hyperparameters.dropout, float)
and 0.0 <= hyperparameters.dropout <= 1.0
)
assert (
isinstance(hyperparameters.scheduler_gamma, float)
and hyperparameters.scheduler_gamma > 0.0
)
def _make_callbacks(base_path: str, experiment_name: str):
early_stopping_callback = EarlyStopping(
monitor="val_normalised_edit_distance", patience=3, mode="min", verbose=False
)
checkpoint_callback = ModelCheckpoint(
dirpath=os.path.join(base_path, "saved_models"),
filename=experiment_name + "-{val_normalised_edit_distance}",
monitor="val_normalised_edit_distance",
save_last=True,
save_top_k=1,
mode="min",
verbose=False,
)
return early_stopping_callback, checkpoint_callback
def _make_model(
model_type: str,
dataset: InflectionDataModule,
hyperparameters: Hyperparameters,
num_symbol_features: int,
num_source_features: int,
autoregressive_order: int,
) -> Model:
if model_type == "interpretable":
return InterpretableTransducer(
source_alphabet_size=dataset.source_alphabet_size,
target_alphabet_size=dataset.target_alphabet_size,
num_layers=hyperparameters.num_layers,
hidden_size=hyperparameters.hidden_size,
dropout=hyperparameters.dropout,
scheduler_gamma=hyperparameters.scheduler_gamma,
num_source_features=num_source_features,
num_symbol_features=num_symbol_features,
autoregressive_order=autoregressive_order,
enable_seq2seq_loss=True,
)
elif model_type == "seq2seq":
return Seq2SeqModel(
source_alphabet_size=dataset.source_alphabet_size,
target_alphabet_size=dataset.target_alphabet_size,
hidden_size=hyperparameters.hidden_size,
num_layers=hyperparameters.num_layers,
dropout=hyperparameters.dropout,
)
else:
raise ValueError(f"Unknown Model Type: {model_type}")
def experiment(
base_path: str,
data_path: str,
model_type: str,
language: str,
num_symbol_features: int,
num_source_features: int,
autoregressive_order: int,
hyperparameters: Hyperparameters,
overwrite: bool = False,
get_predictions: bool = True,
verbose: bool = False,
enforce_cuda: bool = True,
trial: int = 0,
):
# Global Settings
torch.set_float32_matmul_precision("medium")
if not verbose:
logging.disable(logging.WARNING)
# Check Arguments
_check_arguments(
num_symbol_features, num_source_features, autoregressive_order, hyperparameters
)
if enforce_cuda:
accelerator = "gpu"
else:
accelerator = "gpu" if torch.cuda.is_available() else "cpu"
# Make Experiment Name and Base Path
experiment_name = _make_experiment_name(
language,
model_type,
num_symbol_features,
num_source_features,
autoregressive_order,
hyperparameters,
trial,
)
base_path = os.path.join(base_path, experiment_name)
if os.path.exists(base_path) and not overwrite:
raise FileExistsError(f"Model Path {base_path} exists.")
elif os.path.exists(base_path) and overwrite:
shutil.rmtree(base_path, ignore_errors=True)
os.makedirs(base_path, exist_ok=True)
else:
os.makedirs(base_path, exist_ok=True)
# Make Logger and Callbacks
logger = pl_loggers.CSVLogger(
save_dir=os.path.join(base_path, "logs"), name=experiment_name
)
early_stopping_callback, checkpoint_callback = _make_callbacks(
base_path, experiment_name
)
# Prepare Data
dataset = _load_dataset(language, data_path)
dataset.prepare_data()
dataset.setup(stage="fit")
# Make Model and Trainer
model = _make_model(
model_type=model_type,
dataset=dataset,
hyperparameters=hyperparameters,
num_symbol_features=num_symbol_features,
num_source_features=num_source_features,
autoregressive_order=autoregressive_order,
)
trainer = Trainer(
max_epochs=500,
log_every_n_steps=1,
check_val_every_n_epoch=1,
accelerator=accelerator,
devices=1,
gradient_clip_val=1.0,
enable_progress_bar=verbose,
logger=logger,
enable_model_summary=verbose,
callbacks=[early_stopping_callback, checkpoint_callback],
)
# Train Model and Load Best Checkpoint
trainer.fit(
model=model,
train_dataloaders=dataset.train_dataloader(),
val_dataloaders=dataset.val_dataloader(),
)
model.load_from_checkpoint(
checkpoint_path=os.path.join(base_path, "saved_models", "last.ckpt")
)
logs = pd.read_csv(
os.path.join(base_path, "logs", experiment_name, "version_0", "metrics.csv")
)
best_val_score = logs["val_normalised_edit_distance"].min()
best_val_score = 100 * best_val_score
# Get Predictions (optional)
if get_predictions:
predictions = predict(trainer, model, dataset)
else:
predictions = None
return {"best_val_score": best_val_score, "predictions": predictions}
if __name__ == "__main__":
parser = argparse.ArgumentParser("Inflection Experiment")
parser.add_argument("--basepath", default="./results")
parser.add_argument("--datapath", default="./data")
parser.add_argument("--language", type=str)
parser.add_argument(
"--model",
type=str,
choices=["interpretable", "seq2seq"],
default="interpretable",
)
parser.add_argument("--symbol_features", type=int, default=0)
parser.add_argument("--source_features", type=int, default=0)
parser.add_argument("--autoregressive_order", type=int, default=0)
parser.add_argument("--trial", type=int, default=1)
parser.add_argument("--batch", type=int, default=32)
parser.add_argument("--layers", type=int, choices=[1, 2, 3], default=1)
parser.add_argument("--hidden", type=int, default=256),
parser.add_argument("--dropout", type=float, default=0.0),
parser.add_argument("--gamma", type=float, default=1.0)
args = parser.parse_args()
hyper_parameters = Hyperparameters(
batch_size=args.batch,
hidden_size=args.hidden,
num_layers=args.layers,
dropout=args.dropout,
scheduler_gamma=args.gamma,
)
result = experiment(
base_path=args.basepath,
data_path=args.datapath,
model_type=args.model,
language=args.language,
num_source_features=args.source_features,
num_symbol_features=args.symbol_features,
autoregressive_order=args.autoregressive_order,
overwrite=True,
get_predictions=True,
verbose=True,
hyperparameters=hyper_parameters,
trial=args.trial,
)
print(f"\n\nBest Validation Score:\t {result['best_val_score']:.2f}\n\n")
predictions_file_name = args.language
predictions_file_name = predictions_file_name + "-" + f"model={args.model}"
predictions_file_name = predictions_file_name + "-" + f"trial={args.trial}"
predictions_file_name = (
predictions_file_name + "-" + f"num_source_features={args.source_features}"
)
predictions_file_name = (
predictions_file_name + "-" + f"num_symbol_features={args.symbol_features}"
)
predictions_file_name = (
predictions_file_name
+ "-"
+ f"autoregressive_order={args.autoregressive_order}"
)
predictions_file_name = predictions_file_name + ".pickle"
os.makedirs("./predictions", exist_ok=True)
with open(os.path.join("./predictions", predictions_file_name), "wb") as psf:
pickle.dump(result["predictions"], psf)