Skip to content

Commit

Permalink
Update using_raw_waveform.md
Browse files Browse the repository at this point in the history
Fixed link and formatting of code.
  • Loading branch information
katherinelato authored Mar 14, 2024
1 parent e4b66ee commit 3e56cd4
Showing 1 changed file with 90 additions and 81 deletions.
171 changes: 90 additions & 81 deletions LArSoftWiki/using_raw_waveform.md
Original file line number Diff line number Diff line change
@@ -1,58 +1,58 @@
Using the 1DCNN raw waveform algorithm
For general information, see [Waveform region-of-interest finding for supernova event triggering]{https://larsoft.org/waveform-region/) on larsoft.org.
For general information, see [Waveform region-of-interest finding for supernova event triggering](https://larsoft.org/waveform-region/) on larsoft.org.

To see how you can use the 1DCNN ROI finder in your LarSoft module, let us start by looking at what needs to be in the fhicl configuration file. First of all, you will need a section specifying parameters related to the model. In the example below, we have three sections, one for each view – U, V, & Z, since there are separate models for each view:
```
tool_WaveformRecogU:
{
NNetModelFile: "models/ROI_finder/saved_model_60kU_ROI"
NNetOutputPattern: [
"cnn_output",
"dense_3",
"wavrec_out"
]
UseSavedModelBundle: true
WaveformSize: 6000
ScanWindowSize: 200
StrideLength: 150
CnnMean: 0.003920474537037037417
CnnScale: 4.839853236628326449
CnnPredCut: 0.999
tool_type: "WaveformRecogTf"
NNetModelFile: "models/ROI_finder/saved_model_60kU_ROI"
NNetOutputPattern: [
"cnn_output",
"dense_3",
"wavrec_out"
]
UseSavedModelBundle: true
WaveformSize: 6000
ScanWindowSize: 200
StrideLength: 150
CnnMean: 0.003920474537037037417
CnnScale: 4.839853236628326449
CnnPredCut: 0.999
tool_type: "WaveformRecogTf"
}
tool_WaveformRecogV:
{
NNetModelFile: "models/ROI_finder/saved_model_60kV_ROI"
NNetOutputPattern: [
"cnn_output",
"dense_3",
"wavrec_out"
]
UseSavedModelBundle: true
WaveformSize: 6000
ScanWindowSize: 200
StrideLength: 150
CnnMean: 0.008304051471056719466
CnnScale: 4.831063572580124976
CnnPredCut: 0.999
tool_type: "WaveformRecogTf"
NNetModelFile: "models/ROI_finder/saved_model_60kV_ROI"
NNetOutputPattern: [
"cnn_output",
"dense_3",
"wavrec_out"
]
UseSavedModelBundle: true
WaveformSize: 6000
ScanWindowSize: 200
StrideLength: 150
CnnMean: 0.008304051471056719466
CnnScale: 4.831063572580124976
CnnPredCut: 0.999
tool_type: "WaveformRecogTf"
}
tool_WaveformRecogZ:
{
NNetModelFile: "models/ROI_finder/saved_model_60kZ_ROI"
NNetOutputPattern: [
"cnn_output",
"dense_3",
"wavrec_out"
]
UseSavedModelBundle: true
WaveformSize: 6000
ScanWindowSize: 200
StrideLength: 150
CnnMean: 0.3008088657407407274
CnnScale: 4.201201416668982169
CnnPredCut: 0.999
tool_type: "WaveformRecogTf"
NNetModelFile: "models/ROI_finder/saved_model_60kZ_ROI"
NNetOutputPattern: [
"cnn_output",
"dense_3",
"wavrec_out"
]
UseSavedModelBundle: true
WaveformSize: 6000
ScanWindowSize: 200
StrideLength: 150
CnnMean: 0.3008088657407407274
CnnScale: 4.201201416668982169
CnnPredCut: 0.999
tool_type: "WaveformRecogTf"
}
```
Here is a brief description of each parameter above:
Expand All @@ -72,73 +72,82 @@ This next section shows you how to pass the model specific parameters above to y
```
standard_roifinder:
{
module_type: "NameOfYourROIFinderModule"
DigitModuleLabel: "tpcrawdecoder:daq"
WaveformRecogs: [
@local::tool_WaveformRecogU,
@local::tool_WaveformRecogV,
@local::tool_WaveformRecogZ
]
.
.
.
module_type: "NameOfYourROIFinderModule"
DigitModuleLabel: "tpcrawdecoder:daq"
WaveformRecogs: [
@local::tool_WaveformRecogU,
@local::tool_WaveformRecogV,
@local::tool_WaveformRecogZ
]
.
.
.
}
physics:
{
analyzers:
{
roifinder: @local::standard_roifinder
}
ana: [ roifinder ]
end_paths: [ ana ]
analyzers:
{
roifinder: @local::standard_roifinder
}
ana: [ roifinder ]
end_paths: [ ana ]
}
```

In this example, the RawDigits are taken from the LArSoft product labeled “tpcrawdecoder:daq”.

In your LArSoft ROI finder module, you will need the following include:

`#include "larrecodnn/ImagePatternAlgs/ToolInterfaces/IwaveformRecog.h"`

and a declaration like:

`std::vector<std::unique_ptr<wavrec_tool::IWaveformRecog>> fWaveformRecogToolVec;`

then in your constructor, you can do:
```
fDigitModuleLabel = p.get<std::string>("DigitModuleLabel", "");
.
.
.
.
.
.
// ... load fcl params for Signal/Noise waveform recognition tool
auto const tool_psets = p.get<std::vector<fhicl::ParameterSet>>("WaveformRecogs");
if(tool_psets.size()!=geom->Nviews())throw cet::exception("NameOfYourROIFinderModule")
<< "Number of WaveformRecog tool fcl configs not equal to Nviews: " << tool_psets.size();
<< "Number of WaveformRecog tool fcl configs not equal to Nviews: " << tool_psets.size();
fWaveformSize = tool_psets[0].get<unsigned int>("WaveformSize");
fWaveformRecogToolVec.reserve(geom->Nviews());
for (auto const& pset : tool_psets) {
fWaveformRecogToolVec.push_back(art::make_tool<wavrec_tool::IWaveformRecog>(pset));
fWaveformRecogToolVec.push_back(art::make_tool<wavrec_tool::IWaveformRecog>(pset));
}
```

In the analysis section of your module, you can then do:
```
// ... Get the raw digits.
art::Handle<std::vector<raw::RawDigit>> rawListHandle;
std::vector<art::Ptr<raw::RawDigit>> rawlist;
if (e.getByLabel(fDigitModuleLabel, rawListHandle)) art::fill_ptr_vector(rawlist, rawListHandle);
.
.
.
.
.
.
for (unsigned int iraw = 0; iraw < rawlist.size()); ++iraw) {
const auto& digitVec = rawlist[iraw];
unsigned int view = geo->View(rawlist[iraw]->Channel());
std::vector<short> rawadc(fWaveformSize);
std::vector<float> inputsignal(fWaveformSize);
raw::Uncompress(digitVec->ADCs(), rawadc, digitVec->GetPedestal(), digitVec->Compression());
for (size_t itck = 0; itck < rawadc.size(); ++itck) {
inputsignal[itck] = rawadc[itck] - digitVec->GetPedestal();
}
// ... use waveform recognition CNN to perform inference on each window
std::vector<bool> inroi(fWaveformSize, false);
inroi = fWaveformRecogToolVec[view]→findROI(inputsignal);
.
.
.
const auto& digitVec = rawlist[iraw];
unsigned int view = geo->View(rawlist[iraw]->Channel());
std::vector<short> rawadc(fWaveformSize);
std::vector<float> inputsignal(fWaveformSize);
raw::Uncompress(digitVec->ADCs(), rawadc, digitVec->GetPedestal(), digitVec->Compression());
for (size_t itck = 0; itck < rawadc.size(); ++itck) {
inputsignal[itck] = rawadc[itck] - digitVec->GetPedestal();
}
// ... use waveform recognition CNN to perform inference on each window
std::vector<bool> inroi(fWaveformSize, false);
inroi = fWaveformRecogToolVec[view]→findROI(inputsignal);
.
.
.
}
```
In the example above, we loop over all the raw digits in rawlist and feed each vector, after converting it to float, into the ROI finder using the findROI method. This method returns a boolean vector with the same size as the input vector where the ROIs are identified by the elements that are set to true.

0 comments on commit 3e56cd4

Please sign in to comment.