-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
122 lines (106 loc) · 5.02 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import logging
import os
import time
# from collections import defaultdict
import os.path as osp
import torch
from tensorboardX import SummaryWriter
# from configs.arg_parse import default_parse_args
from dataset.PoseTrackDataset import PoseTrackDataset
# from model.PoseTransformerVid import TransPoseHVid
from model.OTPose import OTPose
from script.Common import CommonFunction
from script.base import Base
from utils.setup import create_folder, get_latest_checkpoint, get_all_checkpoints
class Eval(Base):
def __init__(self, phase='validate', **kwargs):
super().__init__(phase)
cfg = self.cfg
args = self.args
self.phase = phase
self.PE_Name = args.PE_Name
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join((map(str, cfg.GPUS)))
self.checkpoints_save_folder = self.output_path_dict["checkpoints_save_folder"]
self.tb_save_folder = self.output_path_dict["tb_save_folder"]
dataset = PoseTrackDataset(cfg=cfg, phase=phase)
if phase == 'validate':
batch_size = cfg.VAL.BATCH_SIZE_PER_GPU * len(cfg.GPUS)
elif phase == 'test':
batch_size = cfg.TEST.BATCH_SIZE_PER_GPU * len(cfg.GPUS)
else:
raise BaseException
eval_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=False,
num_workers=cfg.WORKERS,
pin_memory=cfg.PIN_MEMORY
)
self.dataloader = eval_loader
self.model = OTPose(cfg, phase=phase)
self.model.eval()
self.dataset = self.dataloader.dataset
self.GPUS = cfg.GPUS
self.output = cfg.OUTPUT_DIR
log_save_folder = self.output_path_dict.get("log_save_folder", "./log")
create_folder(log_save_folder)
log_file = osp.join(log_save_folder, "{}-{}.log".format('train', time.strftime("%Y_%m_%d_%H")))
self.log_file = log_file
self.eval_from_checkpoint_id = kwargs.get("eval_from_checkpoint_id", -1)
self.evaluate_model_state_files = []
self.list_evaluate_model_files(cfg, phase)
self.core_function = CommonFunction(cfg)
self.tb_writer_dict = {"writer": SummaryWriter(self.tb_save_folder),
"global_steps": 0}
def list_evaluate_model_files(self, cfg, phase):
subCfgNode = cfg.VAL if phase == 'validate' else cfg.TEST
print(self.checkpoints_save_folder)
if subCfgNode.MODEL_FILE:
if subCfgNode.MODEL_FILE[0] == '.':
model_state_file = osp.abspath(osp.join(self.checkpoints_save_folder, subCfgNode.MODEL_FILE))
else:
model_state_file = osp.join(self.cfg.ROOT_DIR, subCfgNode.MODEL_FILE)
# model_state_file = osp.abspath(osp.join(cfg.ROOT_DIR, subCfgNode.MODEL_FILE))
self.evaluate_model_state_files.append(model_state_file)
else:
if self.eval_from_checkpoint_id == -1:
model_state_file = get_latest_checkpoint(self.checkpoints_save_folder)
self.evaluate_model_state_files.append(model_state_file)
else:
candidate_model_files = get_all_checkpoints(self.checkpoints_save_folder)
for model_file in candidate_model_files:
model_file_epoch_num = int(osp.basename(model_file).split("_")[1])
if model_file_epoch_num >= self.eval_from_checkpoint_id:
self.evaluate_model_state_files.append(model_file)
def eval(self):
logger = logging.getLogger(__name__)
if len(self.evaluate_model_state_files) == 0:
logger.error("=> No model state file available for evaluation")
else:
for model_checkpoint_file in self.evaluate_model_state_files:
model, epoch = self.model_load(model_checkpoint_file)
mAP = self.core_function.eval(model=model, dataloader=self.dataloader, tb_writer_dict=self.tb_writer_dict, epoch=epoch,
phase=self.phase)
logger.info(mAP)
return mAP, model
def model_load(self, checkpoints_file):
logger = logging.getLogger(__name__)
logger.info("=> loading checkpoints from {}".format(checkpoints_file))
checkpoint_dict = torch.load(checkpoints_file)
epoch = checkpoint_dict.get("begin_epoch", "0")
model = self.model.cuda()
if "state_dict" in checkpoint_dict:
model_state_dict = {k.replace('module.', ''): v for k, v in checkpoint_dict['state_dict'].items()}
else:
model_state_dict = checkpoint_dict
if self.PE_Name == 'MSRA':
model_state_dict = {k.replace('rough_pose_estimation_net.', ''): v for k, v in model_state_dict.items()}
model.load_state_dict(model_state_dict)
if len(self.GPUS) > 1:
model = torch.nn.DataParallel(model)
else:
model = model.cuda()
return model, epoch
if __name__ == '__main__':
val = Eval(phase='validate')
val.eval()