diff --git a/Machine Learning and Data Science/Basic/screen-time/.ipynb_checkpoints/screen-time-LR-checkpoint.ipynb b/Machine Learning and Data Science/Basic/screen-time/.ipynb_checkpoints/screen-time-LR-checkpoint.ipynb
new file mode 100644
index 000000000..be07df1ba
--- /dev/null
+++ b/Machine Learning and Data Science/Basic/screen-time/.ipynb_checkpoints/screen-time-LR-checkpoint.ipynb
@@ -0,0 +1,4825 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "283689c6",
+ "metadata": {},
+ "source": [
+ "This dataset contains the usage statistics of various apps on a phone.\n",
+ "\n",
+ "The dataset contains 5 columns:\n",
+ "\n",
+ "- Date column represents the date of the data.\n",
+ "- Usage column represents the duration of app usage in minutes.\n",
+ "- Notifications column represents the count of notifications received from the app.\n",
+ "- Times Opened column represents the count of times the app was opened.\n",
+ "- App column represents the name of the app."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "3c295738",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Importing necessary libraries\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import plotly.express as px\n",
+ "import plotly.graph_objects as gr"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "5504a9e0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Date Usage Notifications Times opened App\n",
+ "0 08/26/2022 38 70 49 Instagram\n",
+ "1 08/27/2022 39 43 48 Instagram\n",
+ "2 08/28/2022 64 231 55 Instagram\n",
+ "3 08/29/2022 14 35 23 Instagram\n",
+ "4 08/30/2022 3 19 5 Instagram\n"
+ ]
+ }
+ ],
+ "source": [
+ "data = pd.read_csv(\"Screentime-App-Details.csv\") # Loading the dataset\n",
+ "print(data.head()) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "3fe4c6a2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Date 0\n",
+ "Usage 0\n",
+ "Notifications 0\n",
+ "Times opened 0\n",
+ "App 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.isnull().sum() # Checking for any missing values\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9d3ebe9c",
+ "metadata": {},
+ "source": [
+ "The dataset doesn’t have any null values\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "9dfb9b4f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Usage \n",
+ " Notifications \n",
+ " Times opened \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 54.000000 \n",
+ " 54.000000 \n",
+ " 54.000000 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 65.037037 \n",
+ " 117.703704 \n",
+ " 61.481481 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 58.317272 \n",
+ " 97.017530 \n",
+ " 43.836635 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 1.000000 \n",
+ " 8.000000 \n",
+ " 2.000000 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 17.500000 \n",
+ " 25.750000 \n",
+ " 23.500000 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 58.500000 \n",
+ " 99.000000 \n",
+ " 62.500000 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 90.500000 \n",
+ " 188.250000 \n",
+ " 90.000000 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 244.000000 \n",
+ " 405.000000 \n",
+ " 192.000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Usage Notifications Times opened\n",
+ "count 54.000000 54.000000 54.000000\n",
+ "mean 65.037037 117.703704 61.481481\n",
+ "std 58.317272 97.017530 43.836635\n",
+ "min 1.000000 8.000000 2.000000\n",
+ "25% 17.500000 25.750000 23.500000\n",
+ "50% 58.500000 99.000000 62.500000\n",
+ "75% 90.500000 188.250000 90.000000\n",
+ "max 244.000000 405.000000 192.000000"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.describe() # Descriptive statistics of the dataset\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "db4d7ae5",
+ "metadata": {},
+ "source": [
+ "# checking the time of usage of the apps:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "8bd30a97",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/4AAASBCAYAAACNT0VXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADomklEQVR4nOz9eVhV9eL+/98IIqhIoSDbVNiZQ4JT2qHUj0oqiloOlVa+Ta2sjrOUOZQdq+NcZkpidgwxM60UNc0BUyBzCEjSJofCIQUxBxQUB1i/P/q5v2cftLJ0L/by+bgursv9Wq+1173cnuHmtdbaHoZhGAIAAAAAAJZUxuwAAAAAAADgxqH4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWJiX2QEAAAAAADeGYRi6dOmSioqKzI5y0/H09JSXl5c8PDzMjkLxBwAAAAArunDhgrKzs3X27Fmzo9y0ypcvL5vNJm9vb1NzeBiGYZiaAAAAAABwXRUXF2vv3r3y9PRUYGCgvL29S8XK883CMAxduHBBx44dU1FRkWrXrq0yZcy7054VfwAAAACwmAsXLqi4uFg1atRQ+fLlzY5zU/L19VXZsmV14MABXbhwQT4+PqZl4eF+AAAAAGBRZq4yo/T8/ZeOFAAAAAAA4Iag+AMAAAAAYGEUfwAAAADAdTN//nzdcsstTmNz585VjRo1VKZMGc2YMUPjx49X48aNb3iW0NBQzZgx44Yfp7Sj+AMAAADATaZfv37y8PDQ5MmTncaXL19+TU//v1Kx7tWrl/bs2eN4ffr0aQ0ePFijRo3S4cOH9fTTT+v555/X559//rfO4b9d6ZcNkpSWlqann376uh3HXVH8AQAAAOAm5OPjoylTpujkyZPX9X19fX0VFBTkeH3w4EFdvHhRnTt3ls1mU/ny5VWxYkVVrlz5uh73SgIDA/lWA1H8AQAAAOCm1K5dOwUHB2vSpElXnbN06VKFhYWpXLlyCg0N1RtvvOHY1qZNGx04cEAjRoyQh4eH40qB/159nz9/vho0aCBJuv322+Xh4aH9+/df8VL/9957z3Esm82mwYMHO7ZNnz5dDRo0UIUKFVSjRg0NHDhQ+fn5kqTk5GT1799feXl5jhzjx4+XVPKKhIMHD6pr166qWLGiKlWqpJ49e+ro0aOO7Zdzvf/++woNDZW/v78eeeQRnTlzxjHnk08+UYMGDeTr66vKlSurXbt2Kigo+PN/8Sag+AMAAADATcjT01MTJ07UrFmz9Msvv5TYnpGRoZ49e+qRRx7Rrl27NH78eI0bN07z58+XJC1btkzVq1fXq6++quzsbGVnZ5d4j169emnDhg2SpK+++krZ2dmqUaNGiXlxcXEaNGiQnn76ae3atUsrV67UHXfc4dhepkwZzZw5U99++60SEhK0ceNGvfDCC5Kk5s2ba8aMGapUqZIjx/PPP1/iGIZhqFu3bjpx4oRSUlKUlJSkn376Sb169XKa99NPP2n58uVatWqVVq1apZSUFMctEdnZ2Xr00Uf1xBNP6IcfflBycrJ69OghwzD+5N+6ObzMDgAAAAAAMEf37t3VuHFj/etf/9K8efOctk2fPl1t27bVuHHjJEl16tTR999/r2nTpqlfv34KCAiQp6en/Pz8FBwcfMX3v7wqLv122f3V5v373//Wc889p2HDhjnG7r77bsefhw8f7viz3W7Xa6+9pn/+85+aPXu2vL295e/vLw8Pj6u+vyRt2LBBO3fuVFZWluOXD++//77CwsKUlpbmOF5xcbHmz58vPz8/SVKfPn30+eefa8KECcrOztalS5fUo0cPhYSESJLjiobSjBV/AAAAALiJTZkyRQkJCfr++++dxn/44Qe1aNHCaaxFixbau3evioqKrtvxc3NzdeTIEbVt2/aqczZt2qT27dvrtttuk5+fnx5//HEdP378mi6x/+GHH1SjRg2nKw7q16+vW265RT/88INjLDQ01FH6Jclmsyk3N1eS1KhRI7Vt21YNGjTQww8/rHffffe6PyPhRqD4AwAAAMBNrFWrVurQoYPGjh3rNG4YRokn/N+IS9p9fX1/d/uBAwfUqVMnhYeHa+nSpcrIyNDbb78tSbp48eKfPs6VzudK42XLlnXa7uHhoeLiYkm/3R6RlJSkNWvWqH79+po1a5bq1q2rrKysP53DDBR/AAAAALjJTZ48WZ9++qm2bNniGKtfv742b97sNG/Lli2qU6eOPD09JUne3t5/e/Xfz89PoaGhV/16v/T0dF26dElvvPGG7rnnHtWpU0dHjhxxmvNnctSvX18HDx7UoUOHHGPff/+98vLydOedd/7pvB4eHmrRooVeeeUV7dixQ97e3kpMTPzT+5uB4g8AAAAAN7kGDRqod+/emjVrlmPsueee0+eff67XXntNe/bsUUJCgmJjY50enBcaGqrU1FQdPnxYv/76618+/vjx4/XGG29o5syZ2rt3r77++mtHllq1aunSpUuaNWuWfv75Z73//vuaM2eO0/6hoaHKz8/X559/rl9//VVnz54tcYx27dqpYcOG6t27t77++mt99dVXevzxx9W6dWs1a9bsT+Xcvn27Jk6cqPT0dB08eFDLli3TsWPHrukXB2ag+AMAAAAA9Nprrzldyn/XXXfpo48+0uLFixUeHq6XX35Zr776qvr16+eY8+qrr2r//v2qVauWAgMD//Kx+/btqxkzZmj27NkKCwtTly5dtHfvXklS48aNNX36dE2ZMkXh4eH64IMPSnwFYfPmzfXss8+qV69eCgwM1NSpU0scw8PDQ8uXL9ett96qVq1aqV27drr99tu1ZMmSP52zUqVKSk1NVadOnVSnTh299NJLeuONNxQdHf2Xz90VPIzS/r0DAAAAAIBrUlhYqKysLNntdvn4+Jgd56ZVWj4HVvwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwL7MDAAAAAABKn2NxC116vMB//p9Lj3czYcUfAAAAAOB2Ll26pJdeekl2u12+vr66/fbb9eqrr6q4uNjsaKUOK/4AAAAAALczZcoUzZkzRwkJCQoLC1N6err69+8vf39/DRs2zOx4pQrFHwAAAADgdrZu3aquXbuqc+fOkqTQ0FB9+OGHSk9PNzlZ6cOl/gAAAAAAt9OyZUt9/vnn2rNnjyTpm2++0ebNm9WpUyeTk5U+rPgDAAAAANzOqFGjlJeXp3r16snT01NFRUWaMGGCHn30UbOjlToUfwAAAACA21myZIkWLlyoRYsWKSwsTJmZmRo+fLiqVaumvn37mh2vVKH4AwAAAADczsiRIzV69Gg98sgjkqQGDRrowIEDmjRpEsX/f3CPPwAAAADA7Zw9e1ZlyjhXWk9PT77O7wpY8QcAAAAAuJ37779fEyZMUM2aNRUWFqYdO3Zo+vTpeuKJJ8yOVup4GIZhmB0CAAAAAHD9FBYWKisrS3a7XT4+PmbHuSHOnDmjcePGKTExUbm5uapWrZoeffRRvfzyy/L29jY7nqTS8zlQ/AEAAADAYkpL4bzZlZbPgXv8AQAAAACwMIo/AAAAAAAWRvEHAAAAAMDCKP4AAAAAAFgYxR8AAAAAAAuj+AMAAAAAYGEUfwAAAAAALIziDwAAAACAhVH8AQAAAACwMC+zAwAAAAAASp9jc+a69HiBzz59zfucOXNG48aNU2JionJzc9WkSRO99dZbuvvuu29AQvfFij8AAAAAwC099dRTSkpK0vvvv69du3YpKipK7dq10+HDh82OVqpQ/AEAAAAAbufcuXNaunSppk6dqlatWumOO+7Q+PHjZbfbFRcXZ3a8UoXiDwAAAABwO5cuXVJRUZF8fHycxn19fbV582aTUpVOFH8AAAAAgNvx8/PTvffeq9dee01HjhxRUVGRFi5cqO3btys7O9vseKUKxR8AAAAA4Jbef/99GYah2267TeXKldPMmTP12GOPydPT0+xopQrFHwAAAADglmrVqqWUlBTl5+fr0KFD+uqrr3Tx4kXZ7Xazo5UqFH8AAAAAgFurUKGCbDabTp48qXXr1qlr165mRypVvMwOAAAAAADAX7Fu3ToZhqG6detq3759GjlypOrWrav+/fubHa1UYcUfAAAAAOCW8vLyNGjQINWrV0+PP/64WrZsqfXr16ts2bJmRytVPAzDMMwOAQAAAAC4fgoLC5WVlSW73V7i6+7gOqXlc2DFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYV5mBwAAAAAAlD5H46a59HhV/znymvdJTU3VtGnTlJGRoezsbCUmJqpbt26O7YZh6JVXXtHcuXN18uRJRURE6O2331ZYWNh1TF76seIPAAAAAHBLBQUFatSokWJjY6+4ferUqZo+fbpiY2OVlpam4OBgtW/fXmfOnHFxUnOx4g8AAAAAcEvR0dGKjo6+4jbDMDRjxgy9+OKL6tGjhyQpISFBVatW1aJFi/TMM8+4MqqpWPEHAAAAAFhOVlaWcnJyFBUV5RgrV66cWrdurS1btpiYzPUo/gAAAAAAy8nJyZEkVa1a1Wm8atWqjm03C4o/AAAAAMCyPDw8nF4bhlFizOoo/gAAAAAAywkODpakEqv7ubm5Ja4CsDqKPwAAAADAcux2u4KDg5WUlOQYu3DhglJSUtS8eXMTk7keT/UHAAAAALil/Px87du3z/E6KytLmZmZCggIUM2aNTV8+HBNnDhRtWvXVu3atTVx4kSVL19ejz32mImpXY/iDwAAAABwS+np6YqMjHS8jomJkST17dtX8+fP1wsvvKBz585p4MCBOnnypCIiIrR+/Xr5+fmZFdkUHoZhGGaHAAAAAABcP4WFhcrKypLdbpePj4/ZcW5apeVz4B5/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFeZkdAAAAAABQ+mTPHuXS49kGTrnmfVJTUzVt2jRlZGQoOztbiYmJ6tatm2P7smXL9M477ygjI0PHjx/Xjh071Lhx4+sX2k2w4g8AAAAAcEsFBQVq1KiRYmNjr7q9RYsWmjx5souTlS6s+AMAAAAA3FJ0dLSio6Ovur1Pnz6SpP3797soUenEij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYTzVHwAAAADglvLz87Vv3z7H66ysLGVmZiogIEA1a9bUiRMndPDgQR05ckSStHv3bklScHCwgoODTclsBlb8AQAAAABuKT09XU2aNFGTJk0kSTExMWrSpIlefvllSdLKlSvVpEkTde7cWZL0yCOPqEmTJpozZ45pmc3gYRiGYXYIAAAAAMD1U1hYqKysLNntdvn4+Jgd56ZVWj4HVvwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABbmZXYAAAAAAEDpc3DmQy49Xs2hn1zzPqmpqZo2bZoyMjKUnZ2txMREdevWTZJ08eJFvfTSS/rss8/0888/y9/fX+3atdPkyZNVrVq165y+dGPFHwAAAADglgoKCtSoUSPFxsaW2Hb27Fl9/fXXGjdunL7++mstW7ZMe/bs0QMPPGBCUnOx4g8AAAAAcEvR0dGKjo6+4jZ/f38lJSU5jc2aNUv/+Mc/dPDgQdWsWdMVEUsFVvwBAAAAADeFvLw8eXh46JZbbjE7iktR/AEAAAAAlldYWKjRo0frscceU6VKlcyO41IUfwAAAACApV28eFGPPPKIiouLNXv2bLPjuBz3+AMAAAAALOvixYvq2bOnsrKytHHjxptutV+i+AMAAAAALOpy6d+7d682bdqkypUrmx3JFBR/AAAAAIBbys/P1759+xyvs7KylJmZqYCAAFWrVk0PPfSQvv76a61atUpFRUXKycmRJAUEBMjb29us2C5H8QcAAAAAuKX09HRFRkY6XsfExEiS+vbtq/Hjx2vlypWSpMaNGzvtt2nTJrVp08ZVMU1H8QcAAAAAlFBz6CdmR/hDbdq0kWEYV93+e9tuJjzVHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYV5mBwAAAAAAlD7fz37ApcerP3DlNe+TmpqqadOmKSMjQ9nZ2UpMTFS3bt0c28ePH6/Fixfr0KFD8vb2VtOmTTVhwgRFRERcx+SlHyv+AAAAAAC3VFBQoEaNGik2NvaK2+vUqaPY2Fjt2rVLmzdvVmhoqKKionTs2DEXJzUXK/4AAAAAALcUHR2t6Ojoq25/7LHHnF5Pnz5d8+bN086dO9W2bdsbHa/UYMUfAAAAAGB5Fy5c0Ny5c+Xv769GjRqZHcelWPEHAAAAAFjWqlWr9Mgjj+js2bOy2WxKSkpSlSpVzI7lUqz4AwAAAAAsKzIyUpmZmdqyZYs6duyonj17Kjc31+xYLkXxBwAAAABYVoUKFXTHHXfonnvu0bx58+Tl5aV58+aZHculKP4AAAAAgJuGYRg6f/682TFcinv8AQAAAABuKT8/X/v27XO8zsrKUmZmpgICAlS5cmVNmDBBDzzwgGw2m44fP67Zs2frl19+0cMPP2xiatej+AMAAAAA3FJ6eroiIyMdr2NiYiRJffv21Zw5c/Tjjz8qISFBv/76qypXrqy7775bX3zxhcLCwsyKbAoPwzAMs0MAAAAAAK6fwsJCZWVlyW63y8fHx+w4N63S8jlwjz8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMK8zA4AAAAAACh90t6536XHu/uZT695n9TUVE2bNk0ZGRnKzs5WYmKiunXr5tjer18/JSQkOO0TERGhbdu2/d24boUVfwAAAACAWyooKFCjRo0UGxt71TkdO3ZUdna24+ezzz5zYcLSgRV/AAAAAIBbio6OVnR09O/OKVeunIKDg12UqHRixR8AAAAAYFnJyckKCgpSnTp1NGDAAOXm5podyeUo/gAAAAAAS4qOjtYHH3ygjRs36o033lBaWpruu+8+nT9/3uxoLsWl/gAAAAAAS+rVq5fjz+Hh4WrWrJlCQkK0evVq9ejRw8RkrsWKPwAAAADgpmCz2RQSEqK9e/eaHcWlKP4AAAAAgJvC8ePHdejQIdlsNrOjuBSX+gMAAAAA3FJ+fr727dvneJ2VlaXMzEwFBAQoICBA48eP14MPPiibzab9+/dr7NixqlKlirp3725iatej+AMAAAAA3FJ6eroiIyMdr2NiYiRJffv2VVxcnHbt2qUFCxbo1KlTstlsioyM1JIlS+Tn52dWZFN4GIZhmB0CAAAAAHD9FBYWKisrS3a7XT4+PmbHuWmVls+Be/wBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABbmZXYAAAAAAEDpk/puZ5cer9WA1de8T2pqqqZNm6aMjAxlZ2crMTFR3bp1c2w/evSoRo0apfXr1+vUqVNq1aqVZs2apdq1a1/H5KUfK/4AAAAAALdUUFCgRo0aKTY2tsQ2wzDUrVs3/fzzz1qxYoV27NihkJAQtWvXTgUFBSakNQ8r/gAAAAAAtxQdHa3o6Ogrbtu7d6+2bdumb7/9VmFhYZKk2bNnKygoSB9++KGeeuopV0Y1FSv+AAAAAADLOX/+vCTJx8fHMebp6Slvb29t3rzZrFimoPgDAAAAACynXr16CgkJ0ZgxY3Ty5ElduHBBkydPVk5OjrKzs82O51IUfwAAAACA5ZQtW1ZLly7Vnj17FBAQoPLlyys5OVnR0dHy9PQ0O55LcY8/AAAAAMCSmjZtqszMTOXl5enChQsKDAxURESEmjVrZnY0l2LFHwAAAABgaf7+/goMDNTevXuVnp6url27mh3JpVjxBwAAAAC4pfz8fO3bt8/xOisrS5mZmQoICFDNmjX18ccfKzAwUDVr1tSuXbs0bNgwdevWTVFRUSamdj2KPwAAAADALaWnpysyMtLxOiYmRpLUt29fzZ8/X9nZ2YqJidHRo0dls9n0+OOPa9y4cWbFNY2HYRiG2SEAAAAAANdPYWGhsrKyZLfbnb7ODq5VWj4H7vEHAAAAAMDCKP4AAAAAAFgYxR8AAAAAAAuj+AMAAAAAYGEUfwAAAAAALIziDwAAAACAhVH8AQAAAACwMIo/AAAAAAAWRvEHAAAAAMDCKP4AAAAAAFiYl9kBAAAAAAClz7p5nVx6vA5PfnZN8ydNmqRly5bpxx9/lK+vr5o3b64pU6aobt26jjnjx4/X4sWLdejQIXl7e6tp06aaMGGCIiIirnf8Uo0VfwAAAACA20lJSdGgQYO0bds2JSUl6dKlS4qKilJBQYFjTp06dRQbG6tdu3Zp8+bNCg0NVVRUlI4dO2ZictfzMAzDMDsEAAAAAOD6KSwsVFZWlux2u3x8fP7Se5T2Ff//dezYMQUFBSklJUWtWrW64pzTp0/L399fGzZsUNu2bf/W8f6M6/E5XA+s+AMAAAAA3F5eXp4kKSAg4IrbL1y4oLlz58rf31+NGjVyZTTTcY8/AAAAAMCtGYahmJgYtWzZUuHh4U7bVq1apUceeURnz56VzWZTUlKSqlSpYlJSc7DiDwAAAABwa4MHD9bOnTv14YcfltgWGRmpzMxMbdmyRR07dlTPnj2Vm5trQkrzUPwBAAAAAG5ryJAhWrlypTZt2qTq1auX2F6hQgXdcccduueeezRv3jx5eXlp3rx5JiQ1D5f6AwAAAADcjmEYGjJkiBITE5WcnCy73f6n9zt//vwNTle6UPwBAAAAAG5n0KBBWrRokVasWCE/Pz/l5ORIkvz9/eXr66uCggJNmDBBDzzwgGw2m44fP67Zs2frl19+0cMPP2xyetei+AMAAAAA3E5cXJwkqU2bNk7j8fHx6tevnzw9PfXjjz8qISFBv/76qypXrqy7775bX3zxhcLCwkxIbB4PwzAMs0MAAAAAAK6f0vL98Te70vI58HA/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFeZkdAAAAAABQ+qx4L9qlx+v6xJprmj9p0iQtW7ZMP/74o3x9fdW8eXNNmTJFdevWveL8Z555RnPnztWbb76p4cOHX4fE7oMVfwAAAACA20lJSdGgQYO0bds2JSUl6dKlS4qKilJBQUGJucuXL9f27dtVrVo1E5KajxV/AAAAAIDbWbt2rdPr+Ph4BQUFKSMjQ61atXKMHz58WIMHD9a6devUuXNnV8csFVjxBwAAAAC4vby8PElSQECAY6y4uFh9+vTRyJEjFRYWZlY001H8AQAAAABuzTAMxcTEqGXLlgoPD3eMT5kyRV5eXho6dKiJ6czHpf4AAAAAALc2ePBg7dy5U5s3b3aMZWRk6K233tLXX38tDw8PE9OZjxV/AAAAAIDbGjJkiFauXKlNmzapevXqjvEvvvhCubm5qlmzpry8vOTl5aUDBw7oueeeU2hoqHmBTcCKPwAAAADA7RiGoSFDhigxMVHJycmy2+1O2/v06aN27do5jXXo0EF9+vRR//79XRnVdBR/AAAAAIDbGTRokBYtWqQVK1bIz89POTk5kiR/f3/5+vqqcuXKqly5stM+ZcuWVXBwsOrWrWtGZNNwqT8AAAAAwO3ExcUpLy9Pbdq0kc1mc/wsWbLE7GilDiv+AAAAAIASuj6xxuwIv8swjGveZ//+/dc/iBtgxR8AAAAAAAuj+AMAAAAAYGEUfwAAAAAALIziDwAAAACAhVH8AQAAAACwMIo/AAAAAAAWRvEHAAAAAMDCKP4AAAAAAFgYxR8AAAAAAAuj+AMAAAAAYGFeZgcAAAAAAJQ+S+I7uvR4vfqvvab5kyZN0rJly/Tjjz/K19dXzZs315QpU1S3bl3HnH79+ikhIcFpv4iICG3btu26ZHYXrPgDAAAAANxOSkqKBg0apG3btikpKUmXLl1SVFSUCgoKnOZ17NhR2dnZjp/PPvvMpMTmYcUfAAAAAOB21q51vkIgPj5eQUFBysjIUKtWrRzj5cqVU3BwsKvjlSqs+AMAAAAA3F5eXp4kKSAgwGk8OTlZQUFBqlOnjgYMGKDc3Fwz4pmK4g8AAAAAcGuGYSgmJkYtW7ZUeHi4Yzw6OloffPCBNm7cqDfeeENpaWm67777dP78eRPTuh6X+gMAAAAA3NrgwYO1c+dObd682Wm8V69ejj+Hh4erWbNmCgkJ0erVq9WjRw9XxzQNxR8AAAAA4LaGDBmilStXKjU1VdWrV//duTabTSEhIdq7d6+L0pUOFH8AAAAAgNsxDENDhgxRYmKikpOTZbfb/3Cf48eP69ChQ7LZbC5IWHpwjz8AAAAAwO0MGjRICxcu1KJFi+Tn56ecnBzl5OTo3LlzkqT8/Hw9//zz2rp1q/bv36/k5GTdf//9qlKlirp3725yetdixR8AAAAA4Hbi4uIkSW3atHEaj4+PV79+/eTp6aldu3ZpwYIFOnXqlGw2myIjI7VkyRL5+fmZkNg8HoZhGGaHAAAAAABcP4WFhcrKypLdbpePj4/ZcW5apeVz4FJ/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFeZkdAAAAAABQ+syfH+XS4/Xrt/6a5k+aNEnLli3Tjz/+KF9fXzVv3lxTpkxR3bp1HXPy8/M1evRoLV++XMePH1doaKiGDh2qf/7zn9c7fqnGij8AAAAAwO2kpKRo0KBB2rZtm5KSknTp0iVFRUWpoKDAMWfEiBFau3atFi5cqB9++EEjRozQkCFDtGLFChOTux4r/gAAAAAAt7N27Vqn1/Hx8QoKClJGRoZatWolSdq6dav69u2rNm3aSJKefvppvfPOO0pPT1fXrl1dHdk0rPgDAAAAANxeXl6eJCkgIMAx1rJlS61cuVKHDx+WYRjatGmT9uzZow4dOpgV0xSs+AMAAAAA3JphGIqJiVHLli0VHh7uGJ85c6YGDBig6tWry8vLS2XKlNF//vMftWzZ0sS0rkfxBwAAAAC4tcGDB2vnzp3avHmz0/jMmTO1bds2rVy5UiEhIUpNTdXAgQNls9nUrl07k9K6HsUfAAAAAOC2hgwZopUrVyo1NVXVq1d3jJ87d05jx45VYmKiOnfuLElq2LChMjMz9frrr1P8AQAAAAAozQzD0JAhQ5SYmKjk5GTZ7Xan7RcvXtTFixdVpozzo+08PT1VXFzsyqimo/gDAAAAANzOoEGDtGjRIq1YsUJ+fn7KycmRJPn7+8vX11eVKlVS69atNXLkSPn6+iokJEQpKSlasGCBpk+fbnJ616L4AwAAAADcTlxcnCQ5vqrvsvj4ePXr10+StHjxYo0ZM0a9e/fWiRMnFBISogkTJujZZ591cVpzeRiGYZgdAgAAAABw/RQWFiorK0t2u10+Pj5mx7lplZbPocwfTwEAAAAAAO6K4g8AAAAAgIVR/AEAAAAAsDCKPwAAAAAAFkbxBwAAAADAwij+AAAAAABYGMUfAAAAAAALo/gDAAAAAGBhFH8AAAAAACyM4g8AAAAAgIV5mR0AAAAAAFD6vPN+B5ce75k+665p/qRJk7Rs2TL9+OOP8vX1VfPmzTVlyhTVrVvXMefo0aMaNWqU1q9fr1OnTqlVq1aaNWuWateufb3jl2qs+AMAAAAA3E5KSooGDRqkbdu2KSkpSZcuXVJUVJQKCgokSYZhqFu3bvr555+1YsUK7dixQyEhIWrXrp1jzs2CFX8AAAAAgNtZu3at0+v4+HgFBQUpIyNDrVq10t69e7Vt2zZ9++23CgsLkyTNnj1bQUFB+vDDD/XUU0+ZEdsUrPgDAAAAANxeXl6eJCkgIECSdP78eUmSj4+PY46np6e8vb21efNm1wc0EcUfAAAAAODWDMNQTEyMWrZsqfDwcElSvXr1FBISojFjxujkyZO6cOGCJk+erJycHGVnZ5uc2LUo/gAAAAAAtzZ48GDt3LlTH374oWOsbNmyWrp0qfbs2aOAgACVL19eycnJio6Olqenp4lpXY97/AEAAAAAbmvIkCFauXKlUlNTVb16dadtTZs2VWZmpvLy8nThwgUFBgYqIiJCzZo1MymtOVjxBwAAAAC4HcMwNHjwYC1btkwbN26U3W6/6lx/f38FBgZq7969Sk9PV9euXV2Y1Hys+AMAAAAA3M6gQYO0aNEirVixQn5+fsrJyZH0W8n39fWVJH388ccKDAxUzZo1tWvXLg0bNkzdunVTVFSUmdFdjuIPAAAAAHA7cXFxkqQ2bdo4jcfHx6tfv36SpOzsbMXExOjo0aOy2Wx6/PHHNW7cOBcnNZ+HYRiG2SEAAAAAANdPYWGhsrKyZLfbnb7ODq5VWj4H7vEHAAAAAMDCKP4AAAAAAFgYxR8AAAAAAAuj+AMAAAAAYGEUfwAAAAAALIziDwAAAACAhVH8AQAAAACwMIo/AAAAAAAWRvEHAAAAAMDCKP4AAAAAAFiYl9kBAAAAAAClz4xFHVx6vOGPrbum+XFxcYqLi9P+/fslSWFhYXr55ZcVHR1dYu4zzzyjuXPn6s0339Tw4cOvQ1r3woo/AAAAAMDtVK9eXZMnT1Z6errS09N13333qWvXrvruu++c5i1fvlzbt29XtWrVTEpqPoo/AAAAAMDt3H///erUqZPq1KmjOnXqaMKECapYsaK2bdvmmHP48GENHjxYH3zwgcqWLWtiWnNxqT8AAAAAwK0VFRXp448/VkFBge69915JUnFxsfr06aORI0cqLCzM5ITmovgDAAAAANzSrl27dO+996qwsFAVK1ZUYmKi6tevL0maMmWKvLy8NHToUJNTmo/iDwAAAABwS3Xr1lVmZqZOnTqlpUuXqm/fvkpJSdG5c+f01ltv6euvv5aHh4fZMU1H8QcAAAAAuCVvb2/dcccdkqRmzZopLS1Nb731lu68807l5uaqZs2ajrlFRUV67rnnNGPGDMc3AdwsKP4AAAAAAEswDEPnz59Xnz591K5dO6dtHTp0UJ8+fdS/f3+T0pmH4g8AAAAAcDtjx45VdHS0atSooTNnzmjx4sVKTk7W2rVrVblyZVWuXNlpftmyZRUcHKy6deualNg8FH8AAAAAQAnDH1tndoTfdfToUfXp00fZ2dny9/dXw4YNtXbtWrVv397saKUOxR8AAAAA4HbmzZt3TfNvtvv6/1sZswMAAAAAAIAbh+IPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFeZkdAAAAAABQ+kxY0sGlx3ux17prmh8XF6e4uDjt379fkhQWFqaXX35Z0dHRkqR+/fopISHBaZ+IiAht27btuuR1JxR/AAAAAIDbqV69uiZPnqw77rhDkpSQkKCuXbtqx44dCgsLkyR17NhR8fHxjn28vb1NyWo2ij8AAAAAwO3cf//9Tq8nTJiguLg4bdu2zVH8y5Urp+DgYDPilSrc4w8AAAAAcGtFRUVavHixCgoKdO+99zrGk5OTFRQUpDp16mjAgAHKzc01MaV5WPEHAAAAALilXbt26d5771VhYaEqVqyoxMRE1a9fX5IUHR2thx9+WCEhIcrKytK4ceN03333KSMjQ+XKlTM5uWtR/AEAAAAAbqlu3brKzMzUqVOntHTpUvXt21cpKSmqX7++evXq5ZgXHh6uZs2aKSQkRKtXr1aPHj1MTO16FH8AAAAAgFvy9vZ2PNyvWbNmSktL01tvvaV33nmnxFybzaaQkBDt3bvX1TFNxz3+AAAAAABLMAxD58+fv+K248eP69ChQ7LZbC5OZT5W/AEAAAAAbmfs2LGKjo5WjRo1dObMGS1evFjJyclau3at8vPzNX78eD344IOy2Wzav3+/xo4dqypVqqh79+5mR3c5ij8AAAAAoIQXe60zO8LvOnr0qPr06aPs7Gz5+/urYcOGWrt2rdq3b69z585p165dWrBggU6dOiWbzabIyEgtWbJEfn5+Zkd3OQ/DMAyzQwAAAAAArp/CwkJlZWXJbrfLx8fH7Dg3rdLyOXCPPwAAAAAAFkbxBwAAAADAwij+AAAAAABYGMUfAAAAAAALo/gDAAAAAGBhFH8AAAAAACyM4g8AAAAAgIVR/AEAAAAAsDCKPwAAAAAAFkbxBwAAAADAwrzMDgAAAAAAKH1GfdLRpceb8tDaa5ofFxenuLg47d+/X5IUFhaml19+WdHR0ZKk/Px8jR49WsuXL9fx48cVGhqqoUOH6p///Of1jl7qUfwBAAAAAG6nevXqmjx5su644w5JUkJCgrp27aodO3YoLCxMI0aM0KZNm7Rw4UKFhoZq/fr1GjhwoKpVq6auXbuanN61uNQfAAAAAOB27r//fnXq1El16tRRnTp1NGHCBFWsWFHbtm2TJG3dulV9+/ZVmzZtFBoaqqefflqNGjVSenq6ycldj+IPAAAAAHBrRUVFWrx4sQoKCnTvvfdKklq2bKmVK1fq8OHDMgxDmzZt0p49e9ShQweT07oel/oDAAAAANzSrl27dO+996qwsFAVK1ZUYmKi6tevL0maOXOmBgwYoOrVq8vLy0tlypTRf/7zH7Vs2dLk1K5H8QcAAAAAuKW6desqMzNTp06d0tKlS9W3b1+lpKSofv36mjlzprZt26aVK1cqJCREqampGjhwoGw2m9q1a2d2dJei+AMAAAAA3JK3t7fj4X7NmjVTWlqa3nrrLc2YMUNjx45VYmKiOnfuLElq2LChMjMz9frrr990xZ97/AEAAAAAlmAYhs6fP6+LFy/q4sWLKlPGufJ6enqquLjYpHTmYcUfAAAAAOB2xo4dq+joaNWoUUNnzpzR4sWLlZycrLVr16pSpUpq3bq1Ro4cKV9fX4WEhCglJUULFizQ9OnTzY7uchR/AAAAAEAJUx5aa3aE33X06FH16dNH2dnZ8vf3V8OGDbV27Vq1b99ekrR48WKNGTNGvXv31okTJxQSEqIJEybo2WefNTm563kYhmGYHQIAAAAAcP0UFhYqKytLdrtdPj4+Zse5aZWWz4F7/AEAAAAAsDCKPwAAAAAAFkbxBwAAAADAwij+AAAAAABYGMUfAAAAAAALo/gDAAAAAGBhFH8AAAAAACyM4g8AAAAAgIVR/AEAAAAAsDCKPwAAAAAAFuZldgAAAAAAQOnTP7GjS48X333t39p/0qRJGjt2rIYNG6YZM2ZIksaPH6/Fixfr0KFD8vb2VtOmTTVhwgRFRERch8TugxV/AAAAAIBbS0tL09y5c9WwYUOn8Tp16ig2Nla7du3S5s2bFRoaqqioKB07dsykpOag+AMAAAAA3FZ+fr569+6td999V7feeqvTtscee0zt2rXT7bffrrCwME2fPl2nT5/Wzp07TUprDoo/AAAAAMBtDRo0SJ07d1a7du1+d96FCxc0d+5c+fv7q1GjRi5KVzpwjz8AAAAAwC0tXrxYX3/9tdLS0q46Z9WqVXrkkUd09uxZ2Ww2JSUlqUqVKi5MaT5W/AEAAAAAbufQoUMaNmyYFi5cKB8fn6vOi4yMVGZmprZs2aKOHTuqZ8+eys3NdWFS81H8AQAAAABuJyMjQ7m5uWratKm8vLzk5eWllJQUzZw5U15eXioqKpIkVahQQXfccYfuuecezZs3T15eXpo3b57J6V2LS/0BAAAAAG6nbdu22rVrl9NY//79Va9ePY0aNUqenp5X3M8wDJ0/f94VEUsNij8AAAAAwO34+fkpPDzcaaxChQqqXLmywsPDVVBQoAkTJuiBBx6QzWbT8ePHNXv2bP3yyy96+OGHTUptDoo/AAAAAKCE+O5rzY7wt3h6eurHH39UQkKCfv31V1WuXFl33323vvjiC4WFhZkdz6Uo/gAAAAAAS0hOTnb82cfHR8uWLTMvTCnCw/0AAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABbmZXYAAAAAAEDpE72it0uPt6brB39r/0mTJmns2LEaNmyYZsyYIUnq16+fEhISnOZFRERo27Ztf+tY7obiDwAAAABwa2lpaZo7d64aNmxYYlvHjh0VHx/veO3t7e3KaKUCl/oDAAAAANxWfn6+evfurXfffVe33nprie3lypVTcHCw4ycgIMCElOai+AMAAAAA3NagQYPUuXNntWvX7orbk5OTFRQUpDp16mjAgAHKzc11cULzcak/AAAAAMAtLV68WF9//bXS0tKuuD06OloPP/ywQkJClJWVpXHjxum+++5TRkaGypUr5+K05qH4AwAAAADczqFDhzRs2DCtX79ePj4+V5zTq1cvx5/Dw8PVrFkzhYSEaPXq1erRo4eropqO4g8AAAAAcDsZGRnKzc1V06ZNHWNFRUVKTU1VbGyszp8/L09PT6d9bDabQkJCtHfvXlfHNRXFHwAAAADgdtq2batdu3Y5jfXv31/16tXTqFGjSpR+STp+/LgOHTokm83mqpilAsUfAAAAAOB2/Pz8FB4e7jRWoUIFVa5cWeHh4crPz9f48eP14IMPymazaf/+/Ro7dqyqVKmi7t27m5TaHBR/AAAAAEAJa7p+YHaEv8XT01O7du3SggULdOrUKdlsNkVGRmrJkiXy8/MzO55LUfwBAAAAAJaQnJzs+LOvr6/WrVtnXphSpIzZAQAAAAAAwI1D8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABbmZXYAAAAAAEDp02n5cy493mfd3nDp8W4mrPgDAAAAANzepEmT5OHhoeHDhzvG8vPzNXjwYFWvXl2+vr668847FRcXZ15Ik7DiDwAAAABwa2lpaZo7d64aNmzoND5ixAht2rRJCxcuVGhoqNavX6+BAweqWrVq6tq1q0lpXY8VfwAAAACA28rPz1fv3r317rvv6tZbb3XatnXrVvXt21dt2rRRaGionn76aTVq1Ejp6ekmpTUHxR8AAAAA4LYGDRqkzp07q127diW2tWzZUitXrtThw4dlGIY2bdqkPXv2qEOHDiYkNQ+X+gMAAAAA3NLixYv19ddfKy0t7YrbZ86cqQEDBqh69ery8vJSmTJl9J///EctW7Z0cVJzUfwBAAAAAG7n0KFDGjZsmNavXy8fH58rzpk5c6a2bdumlStXKiQkRKmpqRo4cKBsNtsVrxCwKoo/AAAAAMDtZGRkKDc3V02bNnWMFRUVKTU1VbGxscrLy9PYsWOVmJiozp07S5IaNmyozMxMvf766xR/AAAAAABKs7Zt22rXrl1OY/3791e9evU0atQoFRUV6eLFiypTxvnRdp6eniouLnZlVNNR/AEAAAAAbsfPz0/h4eFOYxUqVFDlypUd461bt9bIkSPl6+urkJAQpaSkaMGCBZo+fboZkU1D8QcAAAAAlPBZtzfMjvC3LV68WGPGjFHv3r114sQJhYSEaMKECXr22WfNjuZSHoZhGGaHAAAAAABcP4WFhcrKypLdbr/qg+9w45WWz6HMH08BAAAAAADuiuIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAszMvsAAAAAACA0qdT4isuPd5n3f91zfscPnxYo0aN0po1a3Tu3DnVqVNH8+bNU9OmTSVJ+fn5Gj16tJYvX67jx48rNDRUQ4cO1T//+c/rHb9Uo/gDAAAAANzOyZMn1aJFC0VGRmrNmjUKCgrSTz/9pFtuucUxZ8SIEdq0aZMWLlyo0NBQrV+/XgMHDlS1atXUtWtX88K7GMUfAAAAAOB2pkyZoho1aig+Pt4xFhoa6jRn69at6tu3r9q0aSNJevrpp/XOO+8oPT39pir+3OMPAAAAAHA7K1euVLNmzfTwww8rKChITZo00bvvvus0p2XLllq5cqUOHz4swzC0adMm7dmzRx06dDAptTko/gAAAAAAt/Pzzz8rLi5OtWvX1rp16/Tss89q6NChWrBggWPOzJkzVb9+fVWvXl3e3t7q2LGjZs+erZYtW5qY3PW41B8AAAAA4HaKi4vVrFkzTZw4UZLUpEkTfffdd4qLi9Pjjz8u6bfiv23bNq1cuVIhISFKTU3VwIEDZbPZ1K5dOzPjuxTFHwAAAADgdmw2m+rXr+80duedd2rp0qWSpHPnzmns2LFKTExU586dJUkNGzZUZmamXn/99Zuq+HOpPwAAAADA7bRo0UK7d+92GtuzZ49CQkIkSRcvXtTFixdVpoxz7fX09FRxcbHLcpYGrPgDAAAAANzOiBEj1Lx5c02cOFE9e/bUV199pblz52ru3LmSpEqVKql169YaOXKkfH19FRISopSUFC1YsEDTp083Ob1rUfwBAAAAAG7n7rvvVmJiosaMGaNXX31VdrtdM2bMUO/evR1zFi9erDFjxqh37946ceKEQkJCNGHCBD377LMmJnc9D8MwDLNDAAAAAACun8LCQmVlZclut8vHx8fsODet0vI5cI8/AAAAAAAWRvEHAAAAAMDCKP4AAAAAAFgYxR8AAAAAAAuj+AMAAAAAYGEUfwAAAAAALIziDwAAAACAhVH8AQAAAACwMIo/AAAAAAAWRvEHAAAAAMDCvMwOAAAAAAAofTonTnPp8VZ3H3lN80NDQ3XgwIES4wMHDtTbb78twzD0yiuvaO7cuTp58qQiIiL09ttvKyws7HpFdhus+AMAAAAA3E5aWpqys7MdP0lJSZKkhx9+WJI0depUTZ8+XbGxsUpLS1NwcLDat2+vM2fOmBnbFBR/AAAAAIDbCQwMVHBwsONn1apVqlWrllq3bi3DMDRjxgy9+OKL6tGjh8LDw5WQkKCzZ89q0aJFZkd3OYo/AAAAAMCtXbhwQQsXLtQTTzwhDw8PZWVlKScnR1FRUY455cqVU+vWrbVlyxYTk5qD4g8AAAAAcGvLly/XqVOn1K9fP0lSTk6OJKlq1apO86pWrerYdjOh+AMAAAAA3Nq8efMUHR2tatWqOY17eHg4vTYMo8TYzYDiDwAAAABwWwcOHNCGDRv01FNPOcaCg4MlqcTqfm5ubomrAG4GFH8AAAAAgNuKj49XUFCQOnfu7Biz2+0KDg52POlf+u05ACkpKWrevLkZMU3lZXYAAAAAAAD+iuLiYsXHx6tv377y8vr/6q2Hh4eGDx+uiRMnqnbt2qpdu7YmTpyo8uXL67HHHjMxsTko/gAAAAAAt7RhwwYdPHhQTzzxRIltL7zwgs6dO6eBAwfq5MmTioiI0Pr16+Xn52dCUnN5GIZhmB0CAAAAAHD9FBYWKisrS3a7XT4+PmbHuWmVls+Be/wBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABbmZXYAAAAAAEDp03nZLJceb3WPIdc0PzQ0VAcOHCgxPnDgQL399ttatmyZ3nnnHWVkZOj48ePasWOHGjdufJ3SuhdW/AEAAAAAbictLU3Z2dmOn6SkJEnSww8/LEkqKChQixYtNHnyZDNjlgqs+AMAAAAA3E5gYKDT68mTJ6tWrVpq3bq1JKlPnz6SpP3797s6WqnDij8AAAAAwK1duHBBCxcu1BNPPCEPDw+z45Q6FH8AAAAAgFtbvny5Tp06pX79+pkdpVSi+AMAAAAA3Nq8efMUHR2tatWqmR2lVOIefwAAAACA2zpw4IA2bNigZcuWmR2l1GLFHwAAAADgtuLj4xUUFKTOnTubHaXUYsUfAAAAAOCWiouLFR8fr759+8rLy7nenjhxQgcPHtSRI0ckSbt375YkBQcHKzg42OVZzcSKPwAAAADALW3YsEEHDx7UE088UWLbypUr1aRJE8eVAI888oiaNGmiOXPmuDqm6TwMwzDMDgEAAAAAuH4KCwuVlZUlu90uHx8fs+PctErL58CKPwAAAAAAFkbxBwAAAADAwij+AAAAAABYGMUfAAAAAAALo/gDAAAAAGBhFH8AAAAAACyM4g8AAAAAgIVR/AEAAAAAsDCKPwAAAAAAFkbxBwAAAADAwrzMDgAAAAAAKH06L53r0uOtfvDpa5p/6dIljR8/Xh988IFycnJks9nUr18/vfTSSypT5rc1bsMw9Morr2ju3Lk6efKkIiIi9PbbbyssLOxGnEKpxYo/AAAAAMDtTJkyRXPmzFFsbKx++OEHTZ06VdOmTdOsWbMcc6ZOnarp06crNjZWaWlpCg4OVvv27XXmzBkTk7sexR8AAAAA4Ha2bt2qrl27qnPnzgoNDdVDDz2kqKgopaenS/pttX/GjBl68cUX1aNHD4WHhyshIUFnz57VokWLTE7vWhR/AAAAAIDbadmypT7//HPt2bNHkvTNN99o8+bN6tSpkyQpKytLOTk5ioqKcuxTrlw5tW7dWlu2bDEls1m4xx8AAAAA4HZGjRqlvLw81atXT56enioqKtKECRP06KOPSpJycnIkSVWrVnXar2rVqjpw4IDL85qJ4g8AAAAAcDtLlizRwoULtWjRIoWFhSkzM1PDhw9XtWrV1LdvX8c8Dw8Pp/0MwygxZnUUfwAAAACA2xk5cqRGjx6tRx55RJLUoEEDHThwQJMmTVLfvn0VHBwsSY4n/l+Wm5tb4ioAq+MefwAAAACA2zl79qzja/su8/T0VHFxsSTJbrcrODhYSUlJju0XLlxQSkqKmjdv7tKsZmPFHwAAAADgdu6//35NmDBBNWvWVFhYmHbs2KHp06friSeekPTbJf7Dhw/XxIkTVbt2bdWuXVsTJ05U+fLl9dhjj5mc3rUo/gAAAAAAtzNr1iyNGzdOAwcOVG5urqpVq6ZnnnlGL7/8smPOCy+8oHPnzmngwIE6efKkIiIitH79evn5+ZmY3PU8DMMwzA4BAAAAALh+CgsLlZWVJbvdLh8fH7Pj3LRKy+fAPf4AAAAAAFgYxR8AAAAAAAuj+AMAAAAAYGEUfwAAAAAALIziDwAAAACAhVH8AQAAAACwMIo/AAAAAAAWRvEHAAAAAMDCKP4AAAAAAFgYxR8AAAAAAAvzMjsAAAAAAKD06bJ0vkuPt+rBfte8z5kzZzRu3DglJiYqNzdXTZo00VtvvaW7775bknT06FGNGjVK69ev16lTp9SqVSvNmjVLtWvXvs7pSzdW/AEAAAAAbumpp55SUlKS3n//fe3atUtRUVFq166dDh8+LMMw1K1bN/38889asWKFduzYoZCQELVr104FBQVmR3cpij8AAAAAwO2cO3dOS5cu1dSpU9WqVSvdcccdGj9+vOx2u+Li4rR3715t27ZNcXFxuvvuu1W3bl3Nnj1b+fn5+vDDD82O71IUfwAAAACA27l06ZKKiork4+PjNO7r66vNmzfr/PnzkuS03dPTU97e3tq8ebNLs5qN4g8AAAAAcDt+fn6699579dprr+nIkSMqKirSwoULtX37dmVnZ6tevXoKCQnRmDFjdPLkSV24cEGTJ09WTk6OsrOzzY7vUhR/AAAAAIBbev/992UYhm677TaVK1dOM2fO1GOPPSZPT0+VLVtWS5cu1Z49exQQEKDy5csrOTlZ0dHR8vT0NDu6S1H8AQAAAABuqVatWkpJSVF+fr4OHTqkr776ShcvXpTdbpckNW3aVJmZmTp16pSys7O1du1aHT9+3LH9ZkHxBwAAAAC4tQoVKshms+nkyZNat26dunbt6rTd399fgYGB2rt3r9LT00tstzovswMAAAAAAPBXrFu3ToZhqG7dutq3b59GjhypunXrqn///pKkjz/+WIGBgapZs6Z27dqlYcOGqVu3boqKijI5uWtR/AEAAAAAbikvL09jxozRL7/8ooCAAD344IOaMGGCypYtK0nKzs5WTEyMjh49KpvNpscff1zjxo0zObXreRiGYZgdAgAAAABw/RQWFiorK0t2u73E193BdUrL58A9/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC/MyOwAAAAAAoPTp8skHLj3eqod6X/M+qampmjZtmjIyMpSdna3ExER169bNsX3ZsmV65513lJGRoePHj2vHjh1q3Lix03vMnTtXixYt0tdff60zZ87o5MmTuuWWW/7eyZQyrPgDAAAAANxSQUGBGjVqpNjY2Ktub9GihSZPnnzV9zh79qw6duyosWPH3qiYpmPFHwAAAADglqKjoxUdHX3V7X369JEk7d+//6pzhg8fLklKTk6+jslKF1b8AQAAAACwMIo/AAAAAAAWRvEHAAAAAMDCKP4AAAAAAFgYxR8AAAAAAAvjqf4AAAAAALeUn5+vffv2OV5nZWUpMzNTAQEBqlmzpk6cOKGDBw/qyJEjkqTdu3dLkoKDgxUcHCxJysnJUU5OjuN9du3aJT8/P9WsWVMBAQEuPqMbgxV/AAAAAIBbSk9PV5MmTdSkSRNJUkxMjJo0aaKXX35ZkrRy5Uo1adJEnTt3liQ98sgjatKkiebMmeN4jzlz5qhJkyYaMGCAJKlVq1Zq0qSJVq5c6eKzuXE8DMMwzA4BAAAAALh+CgsLlZWVJbvdLh8fH7Pj3LRKy+fAij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMK8zA4AAAAAACh9unzykUuPt+qhnte8T2pqqqZNm6aMjAxlZ2crMTFR3bp1u+LcZ555RnPnztWbb76p4cOHl9huGIY6deqktWvX/u77uCNW/AEAAAAAbqmgoECNGjVSbGzs785bvny5tm/frmrVql11zowZM+Th4XG9I5YKrPgDAAAAANxSdHS0oqOjf3fO4cOHNXjwYK1bt06dO3e+4pxvvvlG06dPV1pammw2242IaipW/AEAAAAAllRcXKw+ffpo5MiRCgsLu+Kcs2fP6tFHH1VsbKyCg4NdnNA1KP4AcBMbP368PDw89Ouvv15xe3h4uNq0aePaUDfIoUOHNHjwYNWqVUs+Pj669dZb1aZNG33wwQcyDMPseA6XP5M/+mnTpo32798vDw8PzZ8/3+zYf5uHh4fGjx/veP39999r/Pjx2r9/f4m5bdq0UXh4+F8+VmhoqDw8PPTss8+W2JacnCwPDw998skn1/y+v5e5X79+Cg0NdRo7ceKEHnnkEQUFBcnDw8NxL+n//l1cbxMnTtTy5ctLjF8+9+Tk5Bt2bABwtSlTpsjLy0tDhw696pwRI0aoefPm6tq1qwuTuRaX+gMALO/LL79Uly5dVLFiRY0cOVINGzZUXl6ePvroI/3f//2fPv30Uy1atEhlypj/+/CnnnpKHTt2dLzOzs5Wjx49NGTIED322GOO8UqVKslms2nr1q2qVauWGVGvq61bt6p69eqO199//71eeeUVtWnTpkRhvl7mzZunESNGqG7dutfl/X4v87hx4zRs2DCnsddee02JiYl67733VKtWLQUEBEgq+XdxvU2cOFEPPfRQiYdW3XXXXdq6davq169/w44NAK6UkZGht956S19//fVV791fuXKlNm7cqB07drg4nWtR/AEAlnbq1Cn16NFD/v7+2r59u6pWrerY1rVrVzVs2FCjR49W48aNNXr0aJflKioq0qVLl1SuXDmn8erVqzuVvsurxzVr1tQ999xT4n2uNOaOXH0e9957r77//nuNHTtWS5cuveHHu9IvZ7799lvVqlVLvXv3dho36zOtVKmSZf49AYAkffHFF8rNzVXNmjUdY0VFRXruuec0Y8YM7d+/Xxs3btRPP/2kW265xWnfBx98UP/v//0/y1wFZf7SBgDAbRQXF+vf//636tatK19fX91yyy1q2LCh3nrrLcecffv2qX///qpdu7bKly+v2267Tffff7927dpV4v2+++47RUVFqXz58goMDNSgQYO0evXqK15uvGHDBrVt21aVKlVS+fLl1aJFC33++ed/mPk///mPcnNzNXnyZKfSf9kLL7ygevXqadq0abp48aKOHTsmb29vjRs3rsTcH3/8UR4eHpo5c6ZjLCcnR88884yqV68ub29v2e12vfLKK7p06ZJjzuVL8qdOnap///vfstvtKleunDZt2vSH+X/PlS71v3yrwM6dO/Xwww/L399fAQEBiomJ0aVLl7R792517NhRfn5+Cg0N1dSpU0u87+nTp/X888/LbrfL29tbt912m4YPH66CgoLfzfP222+rTJkyys3NdYy98cYb8vDw0KBBgxxjxcXFuvXWW/Xcc885xv778vb58+fr4YcfliRFRkY6bm/431sa0tLS9P/+3/9T+fLldfvtt2vy5MkqLi7+U393AQEBGj16tJYtW6Zt27b94fzNmzerbdu28vPzU/ny5dW8eXOtXr3asf2PMv/3pf6XP7cNGzbohx9+cMy9/G/+Spf6Hz58WE8//bRq1Kghb29vVatWTQ899JCOHj0qSSosLNRzzz2nxo0bOz7ze++9VytWrHB6Hw8PDxUUFCghIcHpthHp6pf6r1y5Uvfee6/Kly8vPz8/tW/fXlu3bnWac/nf3XfffadHH31U/v7+qlq1qp544gnl5eU5zf34448VEREhf39/x2f3xBNP/OFnAADXqk+fPtq5c6cyMzMdP9WqVdPIkSO1bt06SdLo0aNLzJGkN998U/Hx8Samv74o/gCAP23q1KkaP368Hn30Ua1evVpLlizRk08+qVOnTjnmHDlyRJUrV9bkyZO1du1avf322/Ly8lJERIR2797tmJedna3WrVtr9+7diouL04IFC3TmzBkNHjy4xHEXLlyoqKgoVapUSQkJCfroo48UEBCgDh06/GH5T0pKkqenp+6///4rbvfw8NADDzygEydOKCMjQ4GBgerSpYsSEhJKlMj4+Hh5e3s7VmhzcnL0j3/8Q+vWrdPLL7+sNWvW6Mknn9SkSZM0YMCAEseaOXOmNm7cqNdff11r1qxRvXr1fjf739GzZ081atRIS5cu1YABA/Tmm29qxIgR6tatmzp37qzExETdd999GjVqlJYtW+bY7+zZs2rdurUSEhI0dOhQrVmzRqNGjdL8+fP1wAMP/O7zENq1ayfDMJw+kw0bNsjX11dJSUmOsfT0dJ06dUrt2rW74vt07txZEydOlPTbLxO2bt2qrVu3Oj2JOScnR71799b//d//aeXKlYqOjtaYMWO0cOHCP/13NGzYMN1222164YUXfndeSkqK7rvvPuXl5WnevHn68MMP5efnp/vvv19Lliz505kvu3yLRpMmTXT77bc75t51111XPP7hw4d19913KzExUTExMVqzZo1mzJghf39/nTx5UpJ0/vx5nThxQs8//7yWL1+uDz/8UC1btlSPHj20YMECx3tt3bpVvr6+6tSpk+O4s2fPvuq5L1q0SF27dlWlSpX04Ycfat68eTp58qTatGmjzZs3l5j/4IMPqk6dOlq6dKlGjx6tRYsWacSIEU7H79Wrl26//XYtXrxYq1ev1ssvv+z0izIAuBb5+flOhT0rK0uZmZk6ePCgKleurPDwcKefsmXLKjg42HGbV3BwcIk50m9X2tntdrNO67rjUn8AwJ/25ZdfqkGDBk6rkR06dHCa06pVK7Vq1crxuqioSJ07d1ZYWJjeeecdTZ8+XdJvv0k/ceKEUlNTHfcUR0dHq2PHjk4PRzt79qyGDRumLl26KDEx0THeqVMn3XXXXRo7dqy2b99+1cwHDx5UYGCgKlSocNU5l/+H/eDBg7rnnnvUv39/JSYm6vPPP1f79u0d57Fw4ULdf//9qly5sqTfVjlPnjyp7777znEZYdu2beXr66vnn39eI0eOdLpf2sfHR+vWrVPZsmWvmuV6efrppxUTEyPpt0K+fv16xcbGatmyZerevbuk3x6St2rVKn3wwQfq0aOHpN9+ObFz505t375dzZo1c5zTbbfdpoceekhr16696tcm1a1bV9WrV9eGDRv06KOP6sKFC/riiy80dOhQTZkyRQcPHlTNmjW1YcMGlS1b1unfyX8LDAxU7dq1JUn169e/4uXnx48f12effaZ//OMfjnNMTk7WokWL9Pjjj/+pvyNfX1+NHz9eAwYM0KpVq9SlS5crzhs9erRuvfVWJScnq2LFipKkLl26qHHjxnr++efVs2fPP5X5snLlyumee+5RpUqVdOHChT+8vP7ll1/Wr7/+qm+++UZ33nmnY7xnz56OP/v7+zutTBUVFalt27Y6efKkZsyY4fg7ueeee1SmTBkFBgb+4XGLi4s1cuRINWjQQGvWrHE8A6NTp06qVauWRo0apS+//NJpnyeffFIjR46U9Ntnsm/fPr333nuaN2+ePDw8tGXLFhmGoTlz5sjf39+xX79+/X43CwBcTXp6uiIjIx2vL/9vX9++fS3x8NvrheIPAPjT/vGPf2j16tUaOHCgunbtqnvvvVeVKlVymnPp0iVNnTpVCxcu1L59+3Tx4kXHth9++MHx55SUFIWHh5d4kNijjz7quPxOkrZs2aITJ06ob9++JVYFO3bsqKlTp6qgoOB3i/0fubyKffnBP9HR0QoODlZ8fLyj+K9bt05HjhxxuiR51apVioyMVLVq1ZyyRUdH6/nnn1dKSorT+T3wwAMuKf2SSpTYO++8U998841Taffy8tIdd9yhAwcOOMZWrVql8PBwNW7c2OmcOnTo4LgM/Pe+L7lt27basGGDpN8+u7NnzyomJkbz5s1TUlKSnnzySW3YsEH33nvv3/rMgoODHaX/soYNGzpWfP6s/v37680339To0aPVqVOnEtsLCgq0fft2/fOf/3SUfkny9PRUnz59NGrUKO3evfuGXr2xZs0aRUZGOpX+K/n44481Y8YMffPNN063Zfj4+Pyl4+7evVtHjhzR8OHDnR58WbFiRT344IN65513dPbsWZUvX96x7YEHHnB6j4YNG6qwsFC5ubmqWrWq7r77bkm//dLiySefVIsWLXTbbbf9pXwAbrxVD/X840kma9OmzTV9O8+Vvnnlf5Wmb/u5XrjUHwBuYl5ev/3+t6io6IrbL1265FRUx4wZo9dff13btm1TdHS0KleurLZt2yo9Pd0xJyYmRuPGjVO3bt306aefavv27UpLS1OjRo107tw5x7zjx49f8Z77/x27fA/zQw89pLJlyzr9TJkyRYZh6MSJE1c9x5o1a+rYsWO/e3/65f8TUKNGDcffS58+fZSYmOi4jWH+/Pmy2WxOVzgcPXpUn376aYlcl78n+H+/JtFms101w/V2+Qnxl3l7e6t8+fIlSqC3t7cKCwsdr48ePaqdO3eWOCc/Pz8ZhnHVr368rF27djp48KD27t2rDRs2qEmTJgoKCtJ9992nDRs26Ny5c9qyZctVL/P/sy5fdfHfypUr5/Rv7M/w9PTUxIkT9d133ykhIaHE9pMnT8owjCt+dtWqVZP027/lG+nYsWN/+JT/ZcuWqWfPnrrtttu0cOFCbd26VWlpaXriiSecPt9rcfm8rnbuxcXFjlsNLvvfz+Xywysvfy6tWrXS8uXLdenSJT3++OOqXr26wsPD9eGHH/6ljACAP4cVfwC4iV0u2YcPHy5RuA3DUHZ2tuNyb+m3QhwTE6OYmBidOnVKGzZs0NixY9WhQwcdOnRI5cuX18KFC/X444877ne+7Ndff3V6Ym7lypUdpf6/5eTkOL2uUqWKJGnWrFlXvTT5Sr9AuKx9+/Zav369Pv30Uz3yyCMlthuGoZUrVyogIEBNmzZ1jPfv31/Tpk3T4sWL1atXL61cuVLDhw+Xp6enU7aGDRtqwoQJVzz25WJ42dW+Sqg0qVKlinx9ffXee+9ddfvvadu2raTf7u1PSkpyXDHRtm1bvfTSS0pNTdX58+f/dvG/nrp27aoWLVroX//6l+bOneu07dZbb1WZMmWUnZ1dYr8jR45I+uO/k78rMDBQv/zyy+/OWbhwoex2u5YsWeL07+z8+fN/+biXS/zVzr1MmTK69dZbr/l9u3btqq5du+r8+fPatm2bJk2apMcee0yhoaG69957/3JeAMDVseIPADex++67Tx4eHo4HlP23tWvX6vTp01ctaLfccoseeughDRo0SCdOnHCsmnt4eJT4irrVq1fr8OHDTmOtW7fWt99+q++//95pfPHixU6vW7RooVtuuUXff/+9mjVrdsUfb2/vq57jU089paCgII0ZM8bpafOXTZ06VT/++KNeeOEFp6sb7rzzTkVERCg+Pl6LFi3S+fPn1b9/f6d9u3Tp4vhKtivl+t/i7w66dOmin376SZUrV77iOf3v99P/L5vNpvr162vp0qXKyMhwFP/27dvr2LFjmj59uipVquS45Ptq/nel+EabMmWKDh065PSNDZJUoUIFRUREaNmyZU5ZiouLtXDhQlWvXl116tS5oZmjo6O1adMmp4dj/i8PDw95e3s7lf6cnJwST/W/nPPPZKxbt65uu+02LVq0yOmy14KCAi1dutTxpP+/qly5cmrdurWmTJkiSZb/Dm0AMBMr/gBwE6tVq5YGDx6sadOm6dSpU+rUqZN8fX2VlpamyZMnq1mzZnrssccc8++//36Fh4erWbNmCgwM1IEDBzRjxgyFhIQ4HmzWpUsXzZ8/X/Xq1VPDhg2VkZGhadOmlbhUefjw4XrvvfcUHR2tV199VVWrVtWiRYv0448/SpLjnuKKFStq1qxZ6tu3r06cOKGHHnpIQUFBOnbsmL755hsdO3ZMcXFxVz3HW265RcuWLVOXLl3UtGlTjRw5Uo0aNdLp06e1ZMkSffDBB+rVq5fjgWT/7YknntAzzzyjI0eOqHnz5o4nAF/26quvKikpSc2bN9fQoUNVt25dFRYWav/+/frss880Z86cP7xEu7QZPny4li5dqlatWmnEiBFq2LChiouLdfDgQa1fv17PPfecIiIifvc92rZtq1mzZsnX11ctWrSQ9NsDFO12u9avX68HHnjAcZvJ1Vx+qvLcuXPl5+cnHx8f2e32K17ifz20aNFCXbt2vWJRnjRpktq3b6/IyEg9//zz8vb21uzZs/Xtt9/qww8/dJTtG5X51Vdf1Zo1a9SqVSuNHTtWDRo00KlTp7R27VrFxMSoXr166tKli5YtW6aBAwfqoYce0qFDh/Taa6/JZrNp7969Tu/XoEEDJScn69NPP5XNZpOfn1+Jf9vSb/8ZnDp1qnr37q0uXbromWee0fnz5x3/fTF58uRrPpeXX35Zv/zyi9q2bavq1avr1KlTeuutt1S2bFm1bt36L/8dAQD+gAEAuKkVFxcbcXFxRrNmzYzy5csb3t7eRu3atY1Ro0YZZ86ccZr7xhtvGM2bNzeqVKlieHt7GzVr1jSefPJJY//+/Y45J0+eNJ588kkjKCjIKF++vNGyZUvjiy++MFq3bm20bt3a6f2+/fZbo127doaPj48REBBgPPnkk0ZCQoIhyfjmm2+c5qakpBidO3c2AgICjLJlyxq33Xab0blzZ+Pjjz/+U+d58OBBY9CgQcbtt99ueHt7G/7+/karVq2MhQsXGsXFxVfcJy8vz/D19TUkGe++++4V5xw7dswYOnSoYbfbjbJlyxoBAQFG06ZNjRdffNHIz883DMMwsrKyDEnGtGnT/lTW//Z7+17eFh8f7xj717/+ZUgyjh075jS3b9++RoUKFUq8R+vWrY2wsDCnsfz8fOOll14y6tat6/i7atCggTFixAgjJyfnDzOvWLHCkGS0b9/eaXzAgAGGJGPmzJkl9pFk/Otf/3IamzFjhmG32w1PT0+n87xS5svnGBIS8of5QkJCjM6dO5cY//777x3H+t9/V1988YVx3333GRUqVDB8fX2Ne+65x/j0009LvMfVMl8p29XO40p/F4cOHTKeeOIJIzg42ChbtqxRrVo1o2fPnsbRo0cdcyZPnmyEhoYa5cqVM+68807j3Xffdfx7+G+ZmZlGixYtjPLlyxuSHP+53LRpkyHJ2LRpk9P85cuXGxEREYaPj49RoUIFo23btsaXX37pNOdq/+7i4+MNSUZWVpZhGIaxatUqIzo62rjtttsMb29vIygoyOjUqZPxxRdflPh7APD3nDt3zvj++++Nc+fOmR3lplZaPgcPw7DgIwsBAG7r6aef1ocffqjjx4//7iX8AADg6goLC5WVlSW73f6Xv90Df19p+Ry41B8AYJpXX31V1apV0+233678/HytWrVK//nPf/TSSy9R+gEAAK4Tij8AwDRly5bVtGnT9Msvv+jSpUuqXbu2pk+frmHDhpkdDQAAwDK41B8AAAAALKa0XGJ+systnwNf5wcAAAAAgIVxqT8AAAAAoIT7P1nu0uN9+lC3a94nNTVV06ZNU0ZGhrKzs5WYmKhu3f6/9+nXr58SEhKc9omIiNC2bdscr5955hlt2LBBR44cUcWKFdW8eXNNmTJF9erV+6unUuqw4g8AAAAAcEsFBQVq1KiRYmNjrzqnY8eOys7Odvx89tlnTtubNm2q+Ph4/fDDD1q3bp0Mw1BUVJSKiopudHyXYcVfUnFxsY4cOSI/Pz95eHiYHQcAAAAA/pYLFy6ouLhYRUVFblNg/0rOqKgoRUVFOV5fPufLDMOQt7e3AgMDr3qsJ5980vHnGjVq6JVXXtFdd92ln376SbVq1brmTP97nOLiYuXn5+vChQtO2wzD0JkzZ1StWjWVKXNj1+Qp/pKOHDmiGjVqmB0DAAAAAK6LkJAQzZkzR+fOnTM7yp+2Y8eOv/0eP//8s9P7HD9+XCkpKQoMDJSfn5+aNGmigQMHKiAg4Ir7nzt3TnFxcapWrZqOHz+u06dP/+1Mv/76qzp37qwDBw5ccfuhQ4dUvXr1v32c38NT/SXl5eXplltu0aFDh1SpUiWz4wAAAADA33LhwgUdPXpUoaGhf/lp8t0SP73OqX7f8u73/639vby8tHTpUnXt2tUx9tFHH6lChQoKCQlRVlaWxo8fr0uXLumrr75SuXLlHPPi4uI0evRoFRQUqF69elqxYsXfXu2Xfnuq//79+1W1alV5e3s7bTt9+rRq1KihU6dOyd/f/28f6/ew4i85Lu+vVKkSxR8AAACA2yssLNSxY8fk6ekpT09Ps+P8KdcjZ5kyZZze59FHH3X8uVGjRoqIiFBISIjWrl2rHj16OLb16dNHHTp0UHZ2tl5//XU9+uij+vLLL//2V/B5enqqTJkyqlix4lXfyxW3m1P8AQAAAAA3BZvNppCQEO3du9dp3N/fX/7+/qpdu7buuece3XrrrUpMTHT6xYE746n+AAAAAICbwvHjx3Xo0CHZbLbfnWcYhs6fP++iVDceK/4AAAAAALeUn5+vffv2OV5nZWUpMzNTAQEBCggI0Pjx4/Xggw/KZrNp//79Gjt2rKpUqaLu3btL+u1hgEuWLFFUVJQCAwN1+PBhTZkyRb6+vurUqZNZp3XdUfwBAAAAAG4pPT1dkZGRjtcxMTGSpL59+youLk67du3SggULdOrUKdlsNkVGRmrJkiXy8/OTJPn4+OiLL77QjBkzdPLkSVWtWlWtWrXSli1bFBQUZMo53QimPtV/0qRJWrZsmX788Uf5+vqqefPmmjJliurWreuY069fPyUkJDjtFxERoW3btjlenz9/Xs8//7w+/PBDnTt3Tm3bttXs2bP/9FcinD59Wv7+/srLy+PhfgAAAADcXmFhobKysmS32//2A+rw1/3e5+DKHmrqPf4pKSkaNGiQtm3bpqSkJF26dElRUVEqKChwmtexY0dlZ2c7fj777DOn7cOHD1diYqIWL16szZs3Kz8/X126dFFRUZErTwcAAAAAgFLH1Ev9165d6/Q6Pj5eQUFBysjIUKtWrRzj5cqVU3Bw8BXfIy8vT/PmzdP777+vdu3aSZIWLlyoGjVqaMOGDerQocONOwEAAAAAAEq5UvVU/7y8PElSQECA03hycrKCgoJUp04dDRgwQLm5uY5tGRkZunjxoqKiohxj1apVU3h4uLZs2XLF45w/f16nT592+gEAAAAAwIpKTfE3DEMxMTFq2bKlwsPDHePR0dH64IMPtHHjRr3xxhtKS0vTfffd5/hqhZycHHl7e+vWW291er+qVasqJyfniseaNGmS43sa/f39VaNGjRt3YgAAAAAAmKjUPNV/8ODB2rlzpzZv3uw03qtXL8efw8PD1axZM4WEhGj16tXq0aPHVd/PMAx5eHhccduYMWMcT3uUfnuoAuUfAAAAAGBFpWLFf8iQIVq5cqU2bdr0h0/it9lsCgkJ0d69eyVJwcHBunDhgk6ePOk0Lzc3V1WrVr3ie5QrV06VKlVy+gEAAAAAwIpMLf6GYWjw4MFatmyZNm7cKLvd/of7HD9+XIcOHZLNZpMkNW3aVGXLllVSUpJjTnZ2tr799ls1b978hmUHAAAAAMAdmHqp/6BBg7Ro0SKtWLFCfn5+jnvy/f395evrq/z8fI0fP14PPvigbDab9u/fr7Fjx6pKlSrq3r27Y+6TTz6p5557TpUrV1ZAQICef/55NWjQwPGUfwAAAAAAblamFv+4uDhJUps2bZzG4+Pj1a9fP3l6emrXrl1asGCBTp06JZvNpsjISC1ZskR+fn6O+W+++aa8vLzUs2dPnTt3Tm3bttX8+fPl6enpytMBAAAAAKDU8TAMwzA7hNlOnz4tf39/5eXlcb8/AAAAALdXWFiorKws2e12+fj4mB3npvV7n4Mre2ipeao/AAAAAKD06PrJGpceb8VD0de8T2pqqqZNm6aMjAxlZ2crMTFR3bp1c2zv16+fEhISnPaJiIjQtm3bJEn79++/6rPmPvroIz388MPXnKk0KhVP9QcAAAAA4FoVFBSoUaNGio2Nveqcjh07Kjs72/Hz2WefObbVqFHDaVt2drZeeeUVVahQQdHR1/6LiNKKFX8AAAAAgFuKjo7+w4Jerlw5BQcHX3Gbp6dniW2JiYnq1auXKlaseN1ymo0VfwAAAACAZSUnJysoKEh16tTRgAEDlJube9W5GRkZyszM1JNPPunChDcexR8AAAAALCI31rX35Zd20dHR+uCDD7Rx40a98cYbSktL03333afz589fcf68efN05513qnnz5i5OemNxqT8AAAAAwJJ69erl+HN4eLiaNWumkJAQrV69Wj169HCae+7cOS1atEjjxo1zdcwbjhV/AAAAAMBNwWazKSQkRHv37i2x7ZNPPtHZs2f1+OOPm5DsxqL4AwAAAABuCsePH9ehQ4dks9lKbJs3b54eeOABBQYGmpDsxuJSfwAAAACAW8rPz9e+ffscr7OyspSZmamAgAAFBARo/PjxevDBB2Wz2bR//36NHTtWVapUUffu3Z3eZ9++fUpNTXX6qj8rofgDAAAAANxSenq6IiMjHa9jYmIkSX379lVcXJx27dqlBQsW6NSpU7LZbIqMjNSSJUvk5+fn9D7vvfeebrvtNkVFRbk0v6t4GIZhmB3CbKdPn5a/v7/y8vJUqVIls+MAAAAAwF+SG7tGQYOjVVhYqKysLNntdvn4+Jgd66b1e5+DK3so9/gDAAAAAGBhFH8AAAAAACyM4g8AAAAAgIVR/AEAAAAAsDCKPwAAAAAAFkbxBwAAAADAwij+AAAAAABYGMUfAAAAAAALo/gDAAAAAGBhFH8AAAAAACzMy+wAAAAAAIDSp9snn7v0eMsfanvN+6SmpmratGnKyMhQdna2EhMT1a1bN6c5P/zwg0aNGqWUlBQVFxcrLCxMH330kWrWrOmYs3XrVr344ovavn27ypYtq8aNG2vNmjXy9fX9u6dVKrDiDwAAAABwSwUFBWrUqJFiY2OvuP2nn35Sy5YtVa9ePSUnJ+ubb77RuHHj5OPj45izdetWdezYUVFRUfrqq6+UlpamwYMHq0wZ69RlVvwBAAAAAG4pOjpa0dHRV93+4osvqlOnTpo6dapj7Pbbb3eaM2LECA0dOlSjR492jNWuXfv6hzWRdX6FAQAAAADA/19xcbFWr16tOnXqqEOHDgoKClJERISWL1/umJObm6vt27crKChIzZs3V9WqVdW6dWtt3rzZvOA3AMUfAAAAAGA5ubm5ys/P1+TJk9WxY0etX79e3bt3V48ePZSSkiJJ+vnnnyVJ48eP14ABA7R27Vrdddddatu2rfbu3Wtm/OuKS/0BAAAAAJZTXFwsSeratatGjBghSWrcuLG2bNmiOXPmqHXr1o45zzzzjPr37y9JatKkiT7//HO99957mjRpkjnhrzNW/AEAAAAAllOlShV5eXmpfv36TuN33nmnDh48KEmy2WyS9LtzrIDiDwAAAACwHG9vb919993avXu30/iePXsUEhIiSQoNDVW1atV+d44VcKk/AAAAAMAt5efna9++fY7XWVlZyszMVEBAgGrWrKmRI0eqV69eatWqlSIjI7V27Vp9+umnSk5OliR5eHho5MiR+te//qVGjRqpcePGSkhI0I8//qhPPvnEpLO6/ij+AAAAAAC3lJ6ersjISMfrmJgYSVLfvn01f/58de/eXXPmzNGkSZM0dOhQ1a1bV0uXLlXLli0d+wwfPlyFhYUaMWKETpw4oUaNGikpKUm1atVy+fncKB6GYRhmhzDb6dOn5e/vr7y8PFWqVMnsOAAAAADwl+TGrlHQ4GgVFhYqKytLdrtdPj4+Zse6af3e5+DKHso9/gAAAAAAWBjFHwAAAAAAC6P4AwAAAABgYRR/AAAAAAAsjOIPAAAAAICFUfwBAAAAALAwij8AAAAAABZG8QcAAAAAwMIo/gAAAAAAWBjFHwAAAAAAC/MyOwAAAAAAoPTpsfRLlx5v2YMtrnmf1NRUTZs2TRkZGcrOzlZiYqK6devmNOeHH37QqFGjlJKSouLiYoWFhemjjz5SzZo1JUk//fSTnn/+eW3evFnnz59Xx44dNWvWLFWtWvV6nFapwIo/AAAAAMAtFRQUqFGjRoqNjb3i9p9++kktW7ZUvXr1lJycrG+++Ubjxo2Tj4+PY/+oqCh5eHho48aN+vLLL3XhwgXdf//9Ki4uduWp3FCs+AMAAAAA3FJ0dLSio6Ovuv3FF19Up06dNHXqVMfY7bff7vjzl19+qf3792vHjh2qVKmSJCk+Pl4BAQHauHGj2rVrd+PCuxAr/gAAAAAAyykuLtbq1atVp04ddejQQUFBQYqIiNDy5csdc86fPy8PDw+VK1fOMebj46MyZcpo8+bNJqS+MSj+AAAAAADLyc3NVX5+viZPnqyOHTtq/fr16t69u3r06KGUlBRJ0j333KMKFSpo1KhROnv2rAoKCjRy5EgVFxcrOzvb5DO4fij+AAAAAADLuXyPfteuXTVixAg1btxYo0ePVpcuXTRnzhxJUmBgoD7++GN9+umnqlixovz9/ZWXl6e77rpLnp6eZsa/rrjHHwAAAABgOVWqVJGXl5fq16/vNH7nnXc6XcYfFRWln376Sb/++qu8vLx0yy23KDg4WHa73dWRbxiKPwAAAADAcry9vXX33Xdr9+7dTuN79uxRSEhIiflVqlSRJG3cuFG5ubl64IEHXJLTFSj+AAAAAAC3lJ+fr3379jleZ2VlKTMzUwEBAapZs6ZGjhypXr16qVWrVoqMjNTatWv16aefKjk52bFPfHy87rzzTgUGBmrr1q0aNmyYRowYobp165pwRjcGxR8AAAAA4JbS09MVGRnpeB0TEyNJ6tu3r+bPn6/u3btrzpw5mjRpkoYOHaq6detq6dKlatmypWOf3bt3a8yYMTpx4oRCQ0P14osvasSIES4/lxvJwzAMw+wQZjt9+rTjIQ6Xv7sRAAAAANxNbuwaBQ2OVmFhobKysmS32+Xj42N2rJvW730OruyhPNUfAAAAAAALo/gDAAAAAGBhFH8AAAAAACyM4g8AAAAAgIVR/AEAAAAAsDCKPwAAAAAAFkbxBwAAAADAwij+AAAAAABYGMUfAAAAAAALo/gDAAAAAGBhXmYHAAAAAACUPg8t/dqlx/vkwbuueZ/U1FRNmzZNGRkZys7OVmJiorp16+bY7uHhccX9pk6dqpEjR0qSnnnmGW3YsEFHjhxRxYoV1bx5c02ZMkX16tX7S+dRGrHiDwAAAABwSwUFBWrUqJFiY2OvuD07O9vp57333pOHh4cefPBBx5ymTZsqPj5eP/zwg9atWyfDMBQVFaWioiJXncYNx4o/AAAAAMAtRUdHKzo6+qrbg4ODnV6vWLFCkZGRuv322x1jTz/9tOPPoaGh+ve//61GjRpp//79qlWr1vUPbQKKPwAAAADA8o4eParVq1crISHhqnMKCgoUHx8vu92uGjVquDDdjcWl/gAAAAAAy0tISJCfn5969OhRYtvs2bNVsWJFVaxYUWvXrlVSUpK8vb1NSHljUPwBAAAAAJb33nvvqXfv3vLx8SmxrXfv3tqxY4dSUlJUu3Zt9ezZU4WFhSakvDG41B8AAAAAYGlffPGFdu/erSVLllxxu7+/v/z9/VW7dm3dc889uvXWW5WYmKhHH33UxUlvDFb8AQAAAACWNm/ePDVt2lSNGjX6U/MNw9D58+dvcCrXYcUfAAAAAOCW8vPztW/fPsfrrKwsZWZmKiAgQDVr1pQknT59Wh9//LHeeOONEvv//PPPWrJkiaKiohQYGKjDhw9rypQp8vX1VadOnVx2HjcaxR8AAAAA4JbS09MVGRnpeB0TEyNJ6tu3r+bPny9JWrx4sQzDuOJl+z4+Pvriiy80Y8YMnTx5UlWrVlWrVq20ZcsWBQUFueQcXMHDMAzD7BBmO336tPz9/ZWXl6dKlSqZHQcAAAAA/pLc2DUKGhytwsJCZWVlyW63X/FhdnCN3/scXNlDuccfAAAAAAALo/gDAAAAAGBhFH8AAAAAACyM4g8AAAAAgIVR/AEAAAAAsDBTi/+kSZN09913y8/PT0FBQerWrZt2797tNMcwDI0fP17VqlWTr6+v2rRpo++++85pzvnz5zVkyBBVqVJFFSpU0AMPPKBffvnFlacCAAAAAECpZGrxT0lJ0aBBg7Rt2zYlJSXp0qVLioqKUkFBgWPO1KlTNX36dMXGxiotLU3BwcFq3769zpw545gzfPhwJSYmavHixdq8ebPy8/PVpUsXFRUVmXFaAAAAAACUGl5mHnzt2rVOr+Pj4xUUFKSMjAy1atVKhmFoxowZevHFF9WjRw9JUkJCgqpWrapFixbpmWeeUV5enubNm6f3339f7dq1kyQtXLhQNWrU0IYNG9ShQweXnxcAAAAAAKVFqbrHPy8vT5IUEBAgScrKylJOTo6ioqIcc8qVK6fWrVtry5YtkqSMjAxdvHjRaU61atUUHh7umPO/zp8/r9OnTzv9AAAAAABgRaWm+BuGoZiYGLVs2VLh4eGSpJycHElS1apVneZWrVrVsS0nJ0fe3t669dZbrzrnf02aNEn+/v6Onxo1alzv0wEAAAAAoFQw9VL//zZ48GDt3LlTmzdvLrHNw8PD6bVhGCXG/tfvzRkzZoxiYmIcr0+fPk35BwAAAID/0nPpHpce76MH61zzPqmpqZo2bZoyMjKUnZ2txMREdevWzbH9ap1w6tSpGjlypOP11q1b9eKLL2r79u0qW7asGjdurDVr1sjX1/eaM5VGpWLFf8iQIVq5cqU2bdqk6tWrO8aDg4MlqcTKfW5uruMqgODgYF24cEEnT5686pz/Va5cOVWqVMnpBwAAAADgXgoKCtSoUSPFxsZecXt2drbTz3vvvScPDw89+OCDjjlbt25Vx44dFRUVpa+++kppaWkaPHiwypQpFXX5ujB1xd8wDA0ZMkSJiYlKTk6W3W532m632xUcHKykpCQ1adJEknThwgWlpKRoypQpkqSmTZuqbNmySkpKUs+ePSX99uF+++23mjp1qmtPCAAAAADgMtHR0YqOjr7q9suLyZetWLFCkZGRuv322x1jI0aM0NChQzV69GjHWO3ata9/WBOZ+iuMQYMGaeHChVq0aJH8/PyUk5OjnJwcnTt3TtJvl2UMHz5cEydOVGJior799lv169dP5cuX12OPPSZJ8vf315NPPqnnnntOn3/+uXbs2KH/+7//U4MGDRxP+QcAAAAA3NyOHj2q1atX68knn3SM5ebmavv27QoKClLz5s1VtWpVtW7d+oq3oLszU1f84+LiJElt2rRxGo+Pj1e/fv0kSS+88ILOnTungQMH6uTJk4qIiND69evl5+fnmP/mm2/+/9q77/CoysRv498hIRBaJJQUCEVEOgFxxY1IEYhEVFhUUBHBikqRJgqsa1gFRBQRkKI/DFgoqxBgLZEoEEAEJcACKkUFQUjI0hISQkue9w/ezDKEIjDlyXh/rovrcs45M3OfmeRxnjkzJwoMDFTXrl2Vm5urtm3baubMmQoICPDWrgAAAAAALDZr1iyVLVvW+afiJenXX3+VJMXHx+v1119XkyZN9P7776tt27basmWL3xz59/lH/S/F4XAoPj5e8fHxF9ymZMmSmjRpkiZNmuTGOgAAAACAv3jvvffUvXt3lSxZ0rksPz9fktS7d2898sgjkqSmTZvq66+/1nvvvacxY8b4pNXdrDmrPwAAAAAAnrBy5Upt27ZN8+bNc1keEREhSapfv77L8nr16mn37t1e6/M0/zlNIQAAAAAA5zFjxgw1a9ZM0dHRLstr1KihyMhIbdu2zWX59u3bVb16dW8mehRH/AEAAAAARVJ2drZ+/vln5+WdO3dq48aNCg0NVbVq1SRJWVlZ+vjjj/XGG28Uur7D4dBzzz2nl156SdHR0WrSpIlmzZqlrVu36pNPPvHafngaE38AAAAAQCH/uud6Xydc0rp169SmTRvn5UGDBkmSevbsqZkzZ0qS5s6dK2OMHnjggfPexoABA3T8+HENHDhQhw4dUnR0tJKTk1WrVi2P93uLw/yRM+z5uaysLIWEhCgzM1PlypXzdQ4AAAAAXJGMyV+oct84HT9+XDt37lTNmjVdTmYH77rY8+DNeSjf8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8F+joAAAAAAGCf/ol7vHp/E/8WddnXWbFihcaNG6fU1FSlpaUpMTFRnTt3dq7Pzs7WCy+8oIULF+rgwYOqUaOG+vfvr6efftq5zYkTJzRkyBDNmTNHubm5atu2raZMmaKqVau6Y7eswBF/AAAAAECRlJOTo+joaE2ePPm86wcOHKikpCR9+OGH+umnnzRw4ED169dPixYtcm4zYMAAJSYmau7cuVq1apWys7N15513Ki8vz1u74XEc8QcAAAAAFElxcXGKi4u74Ppvv/1WPXv2VOvWrSVJTz75pKZPn65169apU6dOyszM1IwZM/TBBx+oXbt2kqQPP/xQUVFR+uqrr3T77bd7Yzc8jiP+AAAAAAC/1KJFCy1evFh79+6VMUbLli3T9u3bnRP61NRUnTp1SrGxsc7rREZGqmHDhlq9erWvst2OI/4AAAAAAL80ceJEPfHEE6pataoCAwNVrFgx/d///Z9atGghSUpPT1dQUJDKly/vcr2wsDClp6f7ItkjmPgDAAAAAPzSxIkTtWbNGi1evFjVq1fXihUr9MwzzygiIsL50f7zMcbI4XB4sdSzmPgDAAAAAPxObm6uhg8frsTERHXs2FGS1LhxY23cuFGvv/662rVrp/DwcJ08eVKHDx92OeqfkZGhmJgYX6W7Hd/xBwAAAAD4nVOnTunUqVMqVsx12hsQEKD8/HxJUrNmzVS8eHElJyc716elpWnLli1+NfHniD8AAAAAoEjKzs7Wzz//7Ly8c+dObdy4UaGhoapWrZpatWql5557TsHBwapevbpSUlL0/vvva/z48ZKkkJAQPfbYYxo8eLAqVKig0NBQDRkyRI0aNbroVwGKGib+AAAAAIBCJv4tytcJl7Ru3Tq1adPGeXnQoEGSpJ49e2rmzJmaO3euhg0bpu7du+vQoUOqXr26Ro0apaeeesp5nTfffFOBgYHq2rWrcnNz1bZtW82cOVMBAQFe3x9PYeIPAAAAACiSWrduLWPMBdeHh4crISHhordRsmRJTZo0SZMmTXJ3njX4jj8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH4s0NcBAAAAAAD7jE1M8+r9Pf+3iMu+zooVKzRu3DilpqYqLS1NiYmJ6ty5s3N9dna2XnjhBS1cuFAHDx5UjRo11L9/fz399NPObd555x3Nnj1b69ev19GjR3X48GFdc801btgje3DEHwAAAABQJOXk5Cg6OlqTJ08+7/qBAwcqKSlJH374oX766ScNHDhQ/fr106JFi5zbHDt2TB06dNDw4cO9le11HPEHAAAAABRJcXFxiouLu+D6b7/9Vj179lTr1q0lSU8++aSmT5+udevWqVOnTpKkAQMGSJKWL1/u4Vrf4Yg/AAAAAMAvtWjRQosXL9bevXtljNGyZcu0fft23X777b5O8yqO+AMAAAAA/NLEiRP1xBNPqGrVqgoMDFSxYsX0f//3f2rRooWv07yKiT8AAAAAwC9NnDhRa9as0eLFi1W9enWtWLFCzzzzjCIiItSuXTtf53kNE38AAAAAgN/Jzc3V8OHDlZiYqI4dO0qSGjdurI0bN+r111//U038+Y4/AAAAAMDvnDp1SqdOnVKxYq7T3oCAAOXn5/uoyjc44g8AAAAAKJKys7P1888/Oy/v3LlTGzduVGhoqKpVq6ZWrVrpueeeU3BwsKpXr66UlBS9//77Gj9+vPM66enpSk9Pd97O5s2bVbZsWVWrVk2hoaFe3ydPYOIPAAAAACjk+b9F+DrhktatW6c2bdo4Lw8aNEiS1LNnT82cOVNz587VsGHD1L17dx06dEjVq1fXqFGj9NRTTzmvM23aNI0cOdJ5uWXLlpKkhIQE9erVyzs74mEOY4zxdYSvZWVlKSQkRJmZmSpXrpyvcwAAAADgimRM/kKV+8bp+PHj2rlzp2rWrKmSJUv6OutP62LPgzfnoXzHHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAP8bEHwAAAAAAPxbo6wAAAAAAgH3+b0GGV+/v8S6VL/s6K1as0Lhx45Samqq0tDQlJiaqc+fOzvXZ2dl64YUXtHDhQh08eFA1atRQ//799fTTTzu36d27t7766ivt27dPZcqUUUxMjMaOHau6deu6Y7eswBF/AAAAAECRlJOTo+joaE2ePPm86wcOHKikpCR9+OGH+umnnzRw4ED169dPixYtcm7TrFkzJSQk6KefftKXX34pY4xiY2OVl5fnrd3wOI74AwAAAACKpLi4OMXFxV1w/bfffquePXuqdevWkqQnn3xS06dP17p169SpUyfnsgI1atTQK6+8oujoaO3atUu1atXyaL+3cMQfAAAAAOCXWrRoocWLF2vv3r0yxmjZsmXavn27br/99vNun5OTo4SEBNWsWVNRUVFervUcJv4AAAAAAL80ceJE1a9fX1WrVlVQUJA6dOigKVOmqEWLFi7bTZkyRWXKlFGZMmWUlJSk5ORkBQUF+aja/Zj4AwAAAAD80sSJE7VmzRotXrxYqampeuONN/TMM8/oq6++ctmue/fu2rBhg1JSUlS7dm117dpVx48f91G1+/EdfwAAAACA38nNzdXw4cOVmJiojh07SpIaN26sjRs36vXXX1e7du2c24aEhCgkJES1a9fWzTffrPLlyysxMVEPPPCAr/LdiiP+AAAAAAC/c+rUKZ06dUrFirlOewMCApSfn3/R6xpjdOLECU/meRVH/AEAAAAARVJ2drZ+/vln5+WdO3dq48aNCg0NVbVq1dSqVSs999xzCg4OVvXq1ZWSkqL3339f48ePlyT9+uuvmjdvnmJjY1WpUiXt3btXY8eOVXBwsO644w5f7ZbbMfEHAMBP/TBtvxo8FebrDABAEfV4l8q+TrikdevWqU2bNs7LgwYNkiT17NlTM2fO1Ny5czVs2DB1795dhw4dUvXq1TVq1Cg99dRTkqSSJUtq5cqVmjBhgg4fPqywsDC1bNlSq1evVuXK9u//H8XEHwAAAABQJLVu3VrGmAuuDw8PV0JCwgXXR0ZG6vPPP/dEmlX4jj8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH4s0NcBAAAAAAD7fDL/gFfv7957Kl72dVasWKFx48YpNTVVaWlpSkxMVOfOnZ3r9+/fr+eff15LlizRkSNH1LJlS02aNEm1a9d2bnPixAkNGTJEc+bMUW5urtq2baspU6aoatWq7tgtK/j0iP+KFSt01113KTIyUg6HQwsXLnRZ36tXLzkcDpd/N998s8s2J06cUL9+/VSxYkWVLl1ad999t37//Xcv7gUAAAAAwBdycnIUHR2tyZMnF1pnjFHnzp3166+/atGiRdqwYYOqV6+udu3aKScnx7ndgAEDlJiYqLlz52rVqlXKzs7WnXfeqby8PG/uikf59Ih/wZP0yCOP6J577jnvNh06dFBCQoLzclBQkMv6AQMG6N///rfmzp2rChUqaPDgwbrzzjuVmpqqgIAAj/YDAAAAAHwnLi5OcXFx5123Y8cOrVmzRlu2bFGDBg0kSVOmTFHlypU1Z84cPf7448rMzNSMGTP0wQcfqF27dpKkDz/8UFFRUfrqq690++23e21fPMmnE/+LPUkFSpQoofDw8POu+7M8SQAAAACAy3PixAlJUsmSJZ3LAgICFBQUpFWrVunxxx9XamqqTp06pdjYWOc2kZGRatiwoVavXu03c0rrT+63fPlyVa5cWddff72eeOIJZWRkONdd6kkCAAAAAPw51a1bV9WrV9ewYcN0+PBhnTx5Uq+++qrS09OVlpYmSUpPT1dQUJDKly/vct2wsDClp6f7ItsjrJ74x8XF6aOPPtLSpUv1xhtv6Pvvv9dtt93mfOfmSp+kEydOKCsry+UfAAAAAMB/FC9eXPPnz9f27dsVGhqqUqVKafny5YqLi7vk18KNMXI4HF4q9Tyrz+rfrVs35383bNhQN954o6pXr67PPvtMXbp0ueD1LvUkjRkzRiNHjnRrKwAAAADALs2aNdPGjRuVmZmpkydPqlKlSmrevLluvPFGSVJ4eLhOnjypw4cPuxxQzsjIUExMjK+y3c7qI/7nioiIUPXq1bVjxw5Jrk/S2TIyMhQWFnbB2xk2bJgyMzOd//bs2ePRbgAAAACA74SEhKhSpUrasWOH1q1bp06dOkk688ZA8eLFlZyc7Nw2LS1NW7Zs8auJv9VH/M918OBB7dmzRxEREZJcn6SuXbtK+t+T9Nprr13wdkqUKKESJUp4pRkAAAAA4BnZ2dn6+eefnZd37typjRs3KjQ0VNWqVdPHH3+sSpUqqVq1atq8ebOeffZZde7c2XmeuJCQED322GMaPHiwKlSooNDQUA0ZMkSNGjVynkDeH/h04n+xJyk0NFTx8fG65557FBERoV27dmn48OGqWLGi/va3v0n68zxJAAAAAOBt995T0dcJl7Ru3Tq1adPGeXnQoEGSpJ49e2rmzJlKS0vToEGDtH//fkVEROjhhx/Wiy++6HIbb775pgIDA9W1a1fl5uaqbdu2mjlzpl/9eXifTvwv9iRNnTpVmzdv1vvvv68jR44oIiJCbdq00bx581S2bFnndf4MTxIAAAAAoLDWrVvLGHPB9f3791f//v0vehslS5bUpEmTNGnSJHfnWcOnE/9LPUlffvnlJW/jz/AkAQAAAABwpYrUyf0AAAAAAMDlYeIPAAAAAIAfY+IPAAAAAIAfY+IPAAAAAIAfY+IPAAAAAIAfY+IPAAAAAIAfY+IPAAAAAIAfY+IPAAAAAIAfC/R1AAAAAADAPl/MO+DV+4vrVtGr9/dnwhF/AAAAAECRtGLFCt11112KjIyUw+HQwoULXdbv379fvXr1UmRkpEqVKqUOHTpox44dzvWHDh1Sv379VKdOHZUqVUrVqlVT//79lZmZ6eU98Swm/gAAAACAIiknJ0fR0dGaPHlyoXXGGHXu3Fm//vqrFi1apA0bNqh69epq166dcnJyJEn79u3Tvn379Prrr2vz5s2aOXOmkpKS9Nhjj3l7VzyKj/oDAAAAAIqkuLg4xcXFnXfdjh07tGbNGm3ZskUNGjSQJE2ZMkWVK1fWnDlz9Pjjj6thw4aaP3++8zq1atXSqFGj9NBDD+n06dMKDPSPKTNH/AEAAAAAfufEiROSpJIlSzqXBQQEKCgoSKtWrbrg9TIzM1WuXDm/mfRLTPwBAAAAAH6obt26ql69uoYNG6bDhw/r5MmTevXVV5Wenq60tLTzXufgwYN6+eWX1bt3by/XehYTfwAAAACA3ylevLjmz5+v7du3KzQ0VKVKldLy5csVFxengICAQttnZWWpY8eOql+/vl566SUfFHvOFU/8f/nlF/3973/XAw88oIyMDElSUlKSfvjhB7fFAQAAAABwpZo1a6aNGzfqyJEjSktLU1JSkg4ePKiaNWu6bHf06FF16NBBZcqUUWJioooXL+6jYs+4ool/SkqKGjVqpLVr12rBggXKzs6WJG3atMnv3hkBAAAAABRtISEhqlSpknbs2KF169apU6dOznVZWVmKjY1VUFCQFi9e7HJOAH9xRRP/F154Qa+88oqSk5MVFBTkXN6mTRt9++23bosDAAAAAOBCsrOztXHjRm3cuFGStHPnTm3cuFG7d++WJH388cdavny580/6tW/fXp07d1ZsbKykM0f6Y2NjlZOToxkzZigrK0vp6elKT09XXl6er3bL7a7oNIWbN2/W7NmzCy2vVKmSDh48eNVRAAAAAADfiutW0dcJl7Ru3Tq1adPGeXnQoEGSpJ49e2rmzJlKS0vToEGDtH//fkVEROjhhx/Wiy++6Nw+NTVVa9eulSRdd911Lre9c+dO1ahRw/M74QVXNPG/5pprlJaWVuh7ERs2bFCVKlXcEgYAAAAAwMW0bt1axpgLru/fv7/69+9/xdf3F1f0Uf8HH3xQzz//vNLT0+VwOJSfn69vvvlGQ4YM0cMPP+zuRgAAAAAAcIWuaOI/atQoVatWTVWqVFF2drbq16+vli1bKiYmRn//+9/d3QgAAAAAAK7QFX3Uv3jx4vroo4/0z3/+Uxs2bFB+fr6aNm2q2rVru7sPAAAAAABchSua+BeoVauWatWq5a4WAAAAAADgZlc08S84U+K5HA6HSpYsqeuuu06dOnVSaGjoVcUBAAAAAICrc0UT/w0bNmj9+vXKy8tTnTp1ZIzRjh07FBAQoLp162rKlCkaPHiwVq1apfr167u7GQAAAAAA/EFXdHK/Tp06qV27dtq3b59SU1O1fv167d27V+3bt9cDDzygvXv3qmXLlho4cKC7ewEAAAAAwGW4oon/uHHj9PLLL6tcuXLOZeXKlVN8fLxee+01lSpVSv/4xz+UmprqtlAAAAAAAHD5rmjin5mZqYyMjELL//vf/yorK0uSdM011+jkyZNXVwcAAAAAAK7KFX3Hv1OnTnr00Uf1xhtv6C9/+YscDoe+++47DRkyRJ07d5Ykfffdd7r++uvd2QoAAAAA8JKUD//r1ftr9VCly9p+zJgxWrBggbZu3arg4GDFxMRo7NixqlOnjnMbY4xGjhypd955R4cPH1bz5s319ttvq0GDBs5tWrdurZSUFJfb7tatm+bOnXt1O2SRKzriP336dLVt21b333+/qlevrmrVqun+++9X27ZtNW3aNElS3bp19X//939ujQUAAAAAQJJSUlLUp08frVmzRsnJyTp9+rRiY2OVk5Pj3Oa1117T+PHjNXnyZH3//fcKDw9X+/btdfToUZfbeuKJJ5SWlub8N336dG/vjkdd0RH/MmXK6N1339Wbb76pX3/9VcYY1apVS2XKlHFu06RJE3c1AgAAAADgIikpyeVyQkKCKleurNTUVLVs2VLGGE2YMEEjRoxQly5dJEmzZs1SWFiYZs+erd69ezuvW6pUKYWHh3u135uu6Ih/gTJlyqhx48aKjo52mfQDAAAAAOBNmZmZkqTQ0FBJ0s6dO5Wenq7Y2FjnNiVKlFCrVq20evVql+t+9NFHqlixoho0aKAhQ4YU+kRAUXdFR/wl6fvvv9fHH3+s3bt3FzqJ34IFC646DAAAAACAP8IYo0GDBqlFixZq2LChJCk9PV2SFBYW5rJtWFiYfvvtN+fl7t27q2bNmgoPD9eWLVs0bNgw/ec//1FycrL3dsDDrmjiP3fuXD388MOKjY1VcnKyYmNjtWPHDqWnp+tvf/ubuxsBAAAAALigvn37atOmTVq1alWhdQ6Hw+WyMcZl2RNPPOH874YNG6p27dq68cYbtX79et1www2ei/aiK/qo/+jRo/Xmm2/q008/VVBQkN566y399NNP6tq1q6pVq+buRgAAAAAAzqtfv35avHixli1bpqpVqzqXF3xnv+DIf4GMjIxCnwI42w033KDixYtrx44dngn2gSua+P/yyy/q2LGjpDPfkcjJyZHD4dDAgQP1zjvvuDUQAAAAAIBzGWPUt29fLViwQEuXLlXNmjVd1hd8fP/sj+yfPHlSKSkpiomJueDt/vDDDzp16pQiIiI81u5tVzTxDw0NdZ7soEqVKtqyZYsk6ciRIzp27Jj76gAAuAxpr+3xdQIAAPCSPn366MMPP9Ts2bNVtmxZpaenKz09Xbm5uZLOfMR/wIABGj16tBITE7Vlyxb16tVLpUqV0oMPPijpzEHtf/7zn1q3bp127dqlzz//XPfdd5+aNm2qW265xZe751ZX9B3/W2+9VcnJyWrUqJG6du2qZ599VkuXLlVycrLatm3r7kYAAAAAAFxMnTpVktS6dWuX5QkJCerVq5ckaejQocrNzdUzzzyjw4cPq3nz5lqyZInKli0rSQoKCtLXX3+tt956S9nZ2YqKilLHjh310ksvKSAgwJu741FXNPGfPHmyjh8/LkkaNmyYihcvrlWrVqlLly568cUX3RoIAAAAAPC+Vg9V8nXCRRljLrmNw+FQfHy84uPjz7s+KipKKSkpbi6zzxVN/Av+LqIkFStWTEOHDtXQoUPdFgUAAAAAANzjir7jv379em3evNl5edGiRercubOGDx+ukydPui0OAAAAAABcnSua+Pfu3Vvbt2+XJP3666/q1q2bSpUqpY8//pgj/wAAAAAAWOSKJv7bt29XkyZNJEkff/yxWrVqpdmzZ2vmzJmaP3++O/sAAAAAAMBVuKKJvzFG+fn5kqSvvvpKd9xxh6QzJ0Y4cOCA++oAAAAAAMBVuaKJ/4033qhXXnlFH3zwgVJSUtSxY0dJ0s6dOxUWFubWQAAAAAAAcOWuaOL/5ptvKjU1VX379tWIESN03XXXSZI++eQTxcTEuDUQAAAAAABcuSv6c37R0dHasmVLoeXjxo1TQEDAVUcBAAAAAAD3uKwj/sWKFVNAQEChf+XLl9fNN9+szz//XMWLF/dUKwAAAAAAuEyXdcQ/MTHxvMuPHDmi7777Tg899JBmzZql++67zy1xAAAAAADg6lzWxL9Tp04XXNezZ0/Vr19fr7/+OhN/AAAAACjivk/I8Or9/eWRype1/ZgxY7RgwQJt3bpVwcHBiomJ0dixY1WnTh3nNsYYjRw5Uu+8844OHz6s5s2b6+2331aDBg2c2/zyyy8aMmSIVq1apRMnTqhDhw6aNGmSX524/opO7nchsbGx2r59uztvEgAAAACAQlJSUtSnTx+tWbNGycnJOn36tGJjY5WTk+Pc5rXXXtP48eM1efJkff/99woPD1f79u119OhRSVJOTo5iY2PlcDi0dOlSffPNNzp58qTuuusu55+w9wdXdHK/C8nNzVXJkiXdeZMAAAAAABSSlJTkcjkhIUGVK1dWamqqWrZsKWOMJkyYoBEjRqhLly6SpFmzZiksLEyzZ89W79699c0332jXrl3asGGDypUr57yd0NBQLV26VO3atfP6fnmCW4/4v/vuu2ratKk7bxIAAAAAgEvKzMyUJIWGhkqSdu7cqfT0dMXGxjq3KVGihFq1aqXVq1dLkk6cOCGHw6ESJUo4tylZsqSKFSumVatWebHesy7riP+gQYPOuzwzM1Pr1q3TL7/8opUrV7olDAAAAACAP8IYo0GDBqlFixZq2LChJCk9PV2SCn1XPywsTL/99psk6eabb1bp0qX1/PPPa/To0TLG6Pnnn1d+fr7S0tK8uxMedFkT/w0bNpx3ebly5dShQwc988wzql69ulvCAAAAAAD4I/r27atNmzad9yi9w+FwuWyMcS6rVKmSPv74Yz399NOaOHGiihUrpgceeEA33HCDAgICvNLuDZc18V+2bJmnOgAAAAAAuGz9+vXT4sWLtWLFClWtWtW5PDw8XNKZI/8RERHO5RkZGS6fAoiNjdUvv/yiAwcOKDAwUNdcc43Cw8NVs2ZN7+2Eh7n1O/4AAAAAAHiDMUZ9+/bVggULtHTp0kIT9Zo1ayo8PFzJycnOZSdPnlRKSopiYmIK3V7FihV1zTXXaOnSpcrIyNDdd9/t8X3wFree1R8AAAAAAG/o06ePZs+erUWLFqls2bLO7/SHhIQoODhYDodDAwYM0OjRo1W7dm3Vrl1bo0ePVqlSpfTggw86bychIUH16tVTpUqV9O233+rZZ5/VwIEDVadOHV/tmtsx8QcAAIBH3Tl/pj69p5evMwD4malTp0qSWrdu7bI8ISFBvXr1kiQNHTpUubm5euaZZ3T48GE1b95cS5YsUdmyZZ3bb9u2TcOGDdOhQ4dUo0YNjRgxQgMHDvTWbngFE38AAAAAQCF/eaSyrxMuyhhzyW0cDofi4+MVHx9/wW1effVVvfrqq24ssw/f8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QcAAAAAwI8x8QegLvO/8XUCAAAAAA9h4g8AAAAAgB8L9HUAAAAAAMA+P0zb79X7a/BU2GVtP2bMGC1YsEBbt25VcHCwYmJiNHbsWNWpU8e5zYIFCzR9+nSlpqbq4MGD2rBhg5o0aeJcf+jQIb300ktasmSJ9uzZo4oVK6pz5856+eWXFRIS4q5d8zmO+AMAAAAAipyUlBT16dNHa9asUXJysk6fPq3Y2Fjl5OQ4t8nJydEtt9yiV1999by3sW/fPu3bt0+vv/66Nm/erJkzZyopKUmPPfaYt3bDKzjiDwAAAAAocpKSklwuJyQkqHLlykpNTVXLli0lST169JAk7dq167y30bBhQ82fP995uVatWho1apQeeughnT59WoGB/jFl5og/AAAAAKDIy8zMlCSFhoZe9e2UK1fObyb9EhN/AAAAAEARZ4zRoEGD1KJFCzVs2PCKb+fgwYN6+eWX1bt3bzfW+Z7/vIUBAAAAAPhT6tu3rzZt2qRVq1Zd8W1kZWWpY8eOql+/vl566SU31vkeE38AAAAAQJHVr18/LV68WCtWrFDVqlWv6DaOHj2qDh06qEyZMkpMTFTx4sXdXOlbfNQfAADAQzp/8rWvEwDAbxlj1LdvXy1YsEBLly5VzZo1r+h2srKyFBsbq6CgIC1evFglS5Z0c6nvccQfAAAAAFDk9OnTR7Nnz9aiRYtUtmxZpaenS5JCQkIUHBwsSTp06JB2796tffv2SZK2bdsmSQoPD1d4eLiOHj2q2NhYHTt2TB9++KGysrKUlZUlSapUqZICAgJ8sGfu59Mj/itWrNBdd92lyMhIORwOLVy40GW9MUbx8fGKjIxUcHCwWrdurR9++MFlmxMnTqhfv36qWLGiSpcurbvvvlu///67F/cCAAAAAOBtU6dOVWZmplq3bq2IiAjnv3nz5jm3Wbx4sZo2baqOHTtKku6//341bdpU06ZNkySlpqZq7dq12rx5s6677jqX29mzZ49P9ssTfHrEPycnR9HR0XrkkUd0zz33FFr/2muvafz48Zo5c6auv/56vfLKK2rfvr22bdumsmXLSpIGDBigf//735o7d64qVKigwYMH684771RqaqrfvDsDAAAAAN7W4KkwXydclDHmktv06tVLvXr1uuD61q1b/6HbKep8OvGPi4tTXFzcedcZYzRhwgSNGDFCXbp0kSTNmjVLYWFhmj17tnr37q3MzEzNmDFDH3zwgdq1aydJ+vDDDxUVFaWvvvpKt99+u9f2BQAAAAAAG1l7cr+dO3cqPT1dsbGxzmUlSpRQq1attHr1aklnPpZx6tQpl20iIyPVsGFD5zbnc+LECed3N87+DgcAAAAAAP7G2ol/wYkZwsJcP14SFhbmXJeenq6goCCVL1/+gtucz5gxYxQSEuL8FxUV5eZ6AAAAAADsYO3Ev4DD4XC5bIwptOxcl9pm2LBhyszMdP7zp5M2AAAAAABwNmsn/uHh4ZJU6Mh9RkaG81MA4eHhOnnypA4fPnzBbc6nRIkSKleunMs/AAAAAAD8kbUT/5o1ayo8PFzJycnOZSdPnlRKSopiYmIkSc2aNVPx4sVdtklLS9OWLVuc2wAAAAAA8Gfm07P6Z2dn6+eff3Ze3rlzpzZu3KjQ0FBVq1ZNAwYM0OjRo1W7dm3Vrl1bo0ePVqlSpfTggw9KkkJCQvTYY49p8ODBqlChgkJDQzVkyBA1atTIeZZ/AAAAAAD+zHw68V+3bp3atGnjvDxo0CBJUs+ePTVz5kwNHTpUubm5euaZZ3T48GE1b95cS5YsUdmyZZ3XefPNNxUYGKiuXbsqNzdXbdu21cyZMxUQEOD1/QEAAAAAwDY+nfi3bt1axpgLrnc4HIqPj1d8fPwFtylZsqQmTZqkSZMmeaAQAAAAAICizdrv+AMAAAAAgKvn0yP+AAAAAAA77ZqQfumN3KjGgPDL2n7MmDFasGCBtm7dquDgYMXExGjs2LGqU6eOc5sFCxZo+vTpSk1N1cGDB7VhwwY1adLEuX7Xrl2qWbPmeW//X//6l+67774r2hfbcMQfAAAAAFDkpKSkqE+fPlqzZo2Sk5N1+vRpxcbGKicnx7lNTk6ObrnlFr366qvnvY2oqCilpaW5/Bs5cqRKly6tuLg4b+2Kx3HEHwAAAABQ5CQlJblcTkhIUOXKlZWamqqWLVtKknr06CHpzJH98wkICFB4uOsnDRITE9WtWzeVKVPG/dE+whF/AAAAAECRl5mZKUkKDQ294ttITU3Vxo0b9dhjj7krywpM/AEAAAAARZoxRoMGDVKLFi3UsGHDK76dGTNmqF69eoqJiXFjne/xUX8AAAAAQJHWt29fbdq0SatWrbri28jNzdXs2bP14osvurHMDkz8AQAAAABFVr9+/bR48WKtWLFCVatWveLb+eSTT3Ts2DE9/PDDbqyzAxN/AAAAAECRY4xRv379lJiYqOXLl1/wz/L9UTNmzNDdd9+tSpUquanQHkz8AQBwk5QP/6tWD/nfiwUAAGzUp08fzZ49W4sWLVLZsmWVnp4uSQoJCVFwcLAk6dChQ9q9e7f27dsnSdq2bZskKTw83OVs/j///LNWrFihzz//3Mt74R2c3A8AAAAAUORMnTpVmZmZat26tSIiIpz/5s2b59xm8eLFatq0qTp27ChJuv/++9W0aVNNmzbN5bbee+89ValSRbGxsV7dB2/hiD8AAAAAoJAaA8IvvZEPGWMuuU2vXr3Uq1evS243evRojR492g1VduKIPwAAAAAAfoyJPwAAAAAAHnTg/Q0+vX8m/gAAAAAA+DEm/gAAAAAA+DEm/gAAAAAA+DEm/gAAAAAA+DEm/gAAAAAA+DEm/gAAAAAA+DEm/gAAAAAA+DEm/gAAAAAA+LFAXwcAAAAAAOyT9toer95fxNCoy9p+zJgxWrBggbZu3arg4GDFxMRo7NixqlOnjnObBQsWaPr06UpNTdXBgwe1YcMGNWnSxOV20tPT9dxzzyk5OVlHjx5VnTp1NHz4cN17773u2C0rcMQfAAAAAFDkpKSkqE+fPlqzZo2Sk5N1+vRpxcbGKicnx7lNTk6ObrnlFr366qsXvJ0ePXpo27ZtWrx4sTZv3qwuXbqoW7du2rBhgzd2wys44g8AAAAAKHKSkpJcLickJKhy5cpKTU1Vy5YtJZ2Z1EvSrl27Lng73377raZOnaqbbrpJkvT3v/9db775ptavX6+mTZt6Jt7LOOLvRd8nZPg6AQAAAAD8UmZmpiQpNDT0sq7XokULzZs3T4cOHVJ+fr7mzp2rEydOqHXr1h6o9A2O+AMAAAAAijRjjAYNGqQWLVqoYcOGl3XdefPmqVu3bqpQoYICAwNVqlQpJSYmqlatWh6q9T4m/gAAAACAIq1v377atGmTVq1addnX/fvf/67Dhw/rq6++UsWKFbVw4ULdd999WrlypRo1auSBWu9j4g8AAAAAKLL69eunxYsXa8WKFapateplXfeXX37R5MmTtWXLFjVo0ECSFB0drZUrV+rtt9/WtGnTPJHsdUz8AQAAAABFjjFG/fr1U2JiopYvX66aNWte9m0cO3ZMklSsmOvp7wICApSfn++WThsw8QcAAAAAFDl9+vTR7NmztWjRIpUtW1bp6emSpJCQEAUHB0uSDh06pN27d2vfvn2SpG3btkmSwsPDFR4errp16+q6665T79699frrr6tChQpauHChkpOT9emnn/pmxzyAs/oDAAAAAIqcqVOnKjMzU61bt1ZERITz37x585zbLF68WE2bNlXHjh0lSffff7+aNm3q/Ah/8eLF9fnnn6tSpUq666671LhxY73//vuaNWuW7rjjDp/slydwxB8AAAAAUEjE0ChfJ1yUMeaS2/Tq1Uu9evW66Da1a9fW/Pnz3VRlJ474AwAAAADgx5j4AwAAAADgx5j4AwAAAADgx5j4AwAAAADgx5j4AwAAAADgx5j4AwAAAADgx5j4AwAAAADgx5j4AwAAAADgx5j4AwAAAADgx5j4AwAAAADgxwJ9HQAA8K3pH9yu3j2+9HUGAACwTPobW716f+GD617W9mPGjNGCBQu0detWBQcHKyYmRmPHjlWdOnWc28THx2vu3Lnas2ePgoKC1KxZM40aNUrNmzd3bvPOO+9o9uzZWr9+vY4eParDhw/rmmuucdduWYEj/gAAAACAIiclJUV9+vTRmjVrlJycrNOnTys2NlY5OTnOba6//npNnjxZmzdv1qpVq1SjRg3Fxsbqv//9r3ObY8eOqUOHDho+fLgvdsMrmPgDAIDLcsfCwb5OAK7KXZ8s9HUC/oCu87f7OgGWS0pKUq9evdSgQQNFR0crISFBu3fvVmpqqnObBx98UO3atdO1116rBg0aaPz48crKytKmTZuc2wwYMEAvvPCCbr75Zl/shlcw8QcAAAAAFHmZmZmSpNDQ0POuP3nypN555x2FhIQoOjram2k+x3f8AQAAAABFmjFGgwYNUosWLdSwYUOXdZ9++qnuv/9+HTt2TBEREUpOTlbFihV9VOobHPEHAAAAABRpffv21aZNmzRnzpxC69q0aaONGzdq9erV6tChg7p27aqMjAwfVPoOE38AAOBxuyak+zoBAOCn+vXrp8WLF2vZsmWqWrVqofWlS5fWddddp5tvvlkzZsxQYGCgZsyY4YNS3+Gj/gAAAACAIscYo379+ikxMVHLly9XzZo1//D1Tpw44eE6uzDxBwAAAAAUOX369NHs2bO1aNEilS1bVunpZz5dFhISouDgYOXk5GjUqFG6++67FRERoYMHD2rKlCn6/fffdd999zlvJz09Xenp6fr5558lSZs3b1bZsmVVrVq1C54osKjho/4AAAAAgCJn6tSpyszMVOvWrRUREeH8N2/ePElSQECAtm7dqnvuuUfXX3+97rzzTv33v//VypUr1aBBA+ftTJs2TU2bNtUTTzwhSWrZsqWaNm2qxYsX+2S/PIEj/gAAAACAQsIH1/V1wkUZYy66vmTJklqwYMElbyc+Pl7x8fFuqrITR/wBAAAAAPBjTPwBAAAAAPBjTPwBAAAAAPBjTPwBAAAAAPBjTPxhhfQ3tvo6AQAAwApfzDvg6wQAfoaJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfizQ1wEAAAAAAPvsf3ODV+8vbGDTy9p+zJgxWrBggbZu3arg4GDFxMRo7NixqlOnznm37927t9555x29+eabGjBggMu6b7/9ViNGjNDatWtVvHhxNWnSRF988YWCg4OvdHeswhF/AAAAAECRk5KSoj59+mjNmjVKTk7W6dOnFRsbq5ycnELbLly4UGvXrlVkZGShdd9++606dOig2NhYfffdd/r+++/Vt29fFSvmP9NljvgDAAAAAIqcpKQkl8sJCQmqXLmyUlNT1bJlS+fyvXv3qm/fvvryyy/VsWPHQrczcOBA9e/fXy+88IJzWe3atT0X7gP+8xYG8Ad0+uQLXycAAAAA8IDMzExJUmhoqHNZfn6+evTooeeee04NGjQodJ2MjAytXbtWlStXVkxMjMLCwtSqVSutWrXKa93ewMQfAAAAAFCkGWM0aNAgtWjRQg0bNnQuHzt2rAIDA9W/f//zXu/XX3+VJMXHx+uJJ55QUlKSbrjhBrVt21Y7duzwSrs38FF/AAAAAECR1rdvX23atMnlSH1qaqreeustrV+/Xg6H47zXy8/Pl3TmxH+PPPKIJKlp06b6+uuv9d5772nMmDGej/cCjvgDAAAAAIqsfv36afHixVq2bJmqVq3qXL5y5UplZGSoWrVqCgwMVGBgoH777TcNHjxYNWrUkCRFRERIkurXr+9ym/Xq1dPu3bu9tg+exhF/AAAAAECRY4xRv379lJiYqOXLl6tmzZou63v06KF27dq5LLv99tvVo0cP59H9GjVqKDIyUtu2bXPZbvv27YqLi/PsDngRE38AAAAAQJHTp08fzZ49W4sWLVLZsmWVnp4uSQoJCVFwcLAqVKigChUquFynePHiCg8PV506dSRJDodDzz33nF566SVFR0erSZMmmjVrlrZu3apPPvnE6/vkKUz8AQAAAABFztSpUyVJrVu3dlmekJCgXr16/eHbGTBggI4fP66BAwfq0KFDio6OVnJysmrVquXGWt9i4g8AAAAAKCRsYFNfJ1yUMeayr7Nr167zLn/hhRf0wgsvXGWRvTi5HwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfszqiX98fLwcDofLv/DwcOd6Y4zi4+MVGRmp4OBgtW7dWj/88IMPiwEAAAAAsIvVE39JatCggdLS0pz/Nm/e7Fz32muvafz48Zo8ebK+//57hYeHq3379jp69KgPiwEAAAAAsIf1E//AwECFh4c7/1WqVEnSmaP9EyZM0IgRI9SlSxc1bNhQs2bN0rFjxzR79mwfVwMAAAAAYAfrJ/47duxQZGSkatasqfvvv1+//vqrJGnnzp1KT09XbGysc9sSJUqoVatWWr169UVv88SJE8rKynL5BwAAAACAP7J64t+8eXO9//77+vLLL/Xuu+8qPT1dMTExOnjwoNLT0yVJYWFhLtcJCwtzrruQMWPGKCQkxPkvKirKY/sAAAAAFDVjE9N8nQDAjaye+MfFxemee+5Ro0aN1K5dO3322WeSpFmzZjm3cTgcLtcxxhRadq5hw4YpMzPT+W/Pnj3ujwcAAAAAwAKBvg64HKVLl1ajRo20Y8cOde7cWZKUnp6uiIgI5zYZGRmFPgVwrhIlSqhEiRKeTAUAAACAIm3/W9969f7Cnv3rZW0/ZswYLViwQFu3blVwcLBiYmI0duxY1alTx2W7n376Sc8//7xSUlKUn5+vBg0a6F//+peqVaumQ4cO6aWXXtKSJUu0Z88eVaxYUZ07d9bLL7+skJAQd+6eT1l9xP9cJ06c0E8//aSIiAjVrFlT4eHhSk5Odq4/efKkUlJSFBMT48NKAAAAAICnpaSkqE+fPlqzZo2Sk5N1+vRpxcbGKicnx7nNL7/8ohYtWqhu3bpavny5/vOf/+jFF19UyZIlJUn79u3Tvn379Prrr2vz5s2aOXOmkpKS9Nhjj/lqtzzC6iP+Q4YM0V133aVq1aopIyNDr7zyirKystSzZ085HA4NGDBAo0ePVu3atVW7dm2NHj1apUqV0oMPPujrdAAAAACAByUlJblcTkhIUOXKlZWamqqWLVtKkkaMGKE77rhDr732mnO7a6+91vnfDRs21Pz5852Xa9WqpVGjRumhhx7S6dOnFRho9ZT5D7P6iP/vv/+uBx54QHXq1FGXLl0UFBSkNWvWqHr16pKkoUOHasCAAXrmmWd04403au/evVqyZInKli3r43IAAAAAgDdlZmZKkkJDQyVJ+fn5+uyzz3T99dfr9ttvV+XKldW8eXMtXLjwkrdTrlw5v5n0S5Yf8Z87d+5F1zscDsXHxys+Pt47QQAAAAAA6xhjNGjQILVo0UINGzaUdOb8b9nZ2Xr11Vf1yiuvaOzYsUpKSlKXLl20bNkytWrVqtDtHDx4UC+//LJ69+7t7V3wKKsn/gAAAAAAXErfvn21adMmrVq1yrksPz9fktSpUycNHDhQktSkSROtXr1a06ZNKzTxz8rKUseOHVW/fn299NJL3ov3Aqs/6g8AAAAAwMX069dPixcv1rJly1S1alXn8ooVKyowMFD169d32b5evXravXu3y7KjR4+qQ4cOKlOmjBITE1W8eHGvtHsLE38AAAA36bhgkq8TAOBPwxijvn37asGCBVq6dKlq1qzpsj4oKEh/+ctftG3bNpfl27dvd543TjpzpD82NlZBQUFavHix84z//oSP+gMAAAAAipw+ffpo9uzZWrRokcqWLav09HRJUkhIiIKDgyVJzz33nLp166aWLVuqTZs2SkpK0r///W8tX75c0pkj/bGxsTp27Jg+/PBDZWVlKSsrS5JUqVIlBQQE+GTf3I2JPwAAAACgyJk6daokqXXr1i7LExIS1KtXL0nS3/72N02bNk1jxoxR//79VadOHc2fP18tWrSQJKWmpmrt2rWSpOuuu87ldnbu3KkaNWp4dB+8hYk/AAAAAKCQsGf/6uuEizLG/KHtHn30UT366KPnXde6des/fDtFGd/xBwAARdYdiSN9nQAAgPWY+AMAfG7Re3G+TgAAAPBbTPwBAAAAAPBjTPwBAAAAAPBjTPwBAAAAAPBjTPwBAAAAAPBjTPwBAAAAAPBjTPz9wCOJHXydAAAAAACwFBN/AAAAAAD8GBN/AAAs8+WMO3ydAAAA/EigrwMAAAAAAPbJmLTMq/dXuV+by9p+zJgxWrBggbZu3arg4GDFxMRo7NixqlOnjnOb/fv36/nnn9eSJUt05MgRtWzZUpMmTVLt2rWd25w4cUJDhgzRnDlzlJubq7Zt22rKlCmqWrWq2/bN1zjiDwAAAAAoclJSUtSnTx+tWbNGycnJOn36tGJjY5WTkyNJMsaoc+fO+vXXX7Vo0SJt2LBB1atXV7t27ZzbSNKAAQOUmJiouXPnatWqVcrOztadd96pvLw8X+2a23HEHwAAAABQ5CQlJblcTkhIUOXKlZWamqqWLVtqx44dWrNmjbZs2aIGDRpIkqZMmaLKlStrzpw5evzxx5WZmakZM2bogw8+ULt27SRJH374oaKiovTVV1/p9ttv9/p+eQJH/AEAAAAARV5mZqYkKTQ0VNKZj/BLUsmSJZ3bBAQEKCgoSKtWrZIkpaam6tSpU4qNjXVuExkZqYYNG2r16tXeSvc4Jv4AAAAAgCLNGKNBgwapRYsWatiwoSSpbt26ql69uoYNG6bDhw/r5MmTevXVV5Wenq60tDRJUnp6uoKCglS+fHmX2wsLC1N6errX98NTmPgDAAAAAIq0vn37atOmTZozZ45zWfHixTV//nxt375doaGhKlWqlJYvX664uDgFBARc9PaMMXI4HJ7O9hom/gAAAACAIqtfv35avHixli1bVuhM/M2aNdPGjRt15MgRpaWlKSkpSQcPHlTNmjUlSeHh4Tp58qQOHz7scr2MjAyFhYV5bR88jYk/AAAAAKDIMcaob9++WrBggZYuXeqczJ9PSEiIKlWqpB07dmjdunXq1KmTpDNvDBQvXlzJycnObdPS0rRlyxbFxMR4fB+8hbP6AwAAAACKnD59+mj27NlatGiRypYt6/xOfkhIiIKDgyVJH3/8sSpVqqRq1app8+bNevbZZ9W5c2fnyfxCQkL02GOPafDgwapQoYJCQ0M1ZMgQNWrUyHmWf3/AxB8AAAAAUORMnTpVktS6dWuX5QkJCerVq5ekM0fvBw0apP379ysiIkIPP/ywXnzxRZft33zzTQUGBqpr167Kzc1V27ZtNXPmzEueB6AoYeIPAAAAACikcr82vk64KGPMJbfp37+/+vfvf9FtSpYsqUmTJmnSpEnuSrMO3/EHAAAAAMCPMfEHAAAAAMCPMfEHAAAAAMCPMfEHAAAAAMCPMfEHAAAAAMCPMfEHAAAAAMCPMfEHAAAAAMCPMfEHAC/5fvpdvk4AAADAnxATfwAAAAAA/BgTfwAAAAAA/FigrwMAAAAAAPbJmPyFV++vct+4y9p+6tSpmjp1qnbt2iVJatCggf7xj38oLu7M7RhjNHLkSL3zzjs6fPiwmjdvrrffflsNGjRw3kbv3r311Vdfad++fSpTpoxiYmI0duxY1a1b1237ZQOO+AMAAAAAipyqVavq1Vdf1bp167Ru3Trddttt6tSpk3744QdJ0muvvabx48dr8uTJ+v777xUeHq727dvr6NGjztto1qyZEhIS9NNPP+nLL7+UMUaxsbHKy8vz1W55BEf8AQAAAABFzl13uZ44edSoUZo6darWrFmj+vXra8KECRoxYoS6dOkiSZo1a5bCwsI0e/Zs9e7dW5L05JNPOq9fo0YNvfLKK4qOjtauXbtUq1Yt7+2Mh3HEHwAAAABQpOXl5Wnu3LnKycnRX//6V+3cuVPp6emKjY11blOiRAm1atVKq1evPu9t5OTkKCEhQTVr1lRUVJS30r2CiT8AAAAAoEjavHmzypQpoxIlSuipp55SYmKi6tevr/T0dElSWFiYy/ZhYWHOdQWmTJmiMmXKqEyZMkpKSlJycrKCgoK8tg/ewMQfgE/dOX+mrxMAAABQRNWpU0cbN27UmjVr9PTTT6tnz5768ccfnesdDofL9saYQsu6d++uDRs2KCUlRbVr11bXrl11/Phxr/R7C9/xBwAAAAAUSUFBQbruuuskSTfeeKO+//57vfXWW3r++eclSenp6YqIiHBun5GRUehTACEhIQoJCVHt2rV18803q3z58kpMTNQDDzzgvR3xMI74AwAAAAD8gjFGJ06cUM2aNRUeHq7k5GTnupMnTyolJUUxMTF/6Db8CUf8AQAAAABFzvDhwxUXF6eoqCgdPXpUc+fO1fLly5WUlCSHw6EBAwZo9OjRql27tmrXrq3Ro0erVKlSevDBByVJv/76q+bNm6fY2FhVqlRJe/fu1dixYxUcHKw77rjDx3vnXkz8AQAAAABFzv79+9WjRw+lpaUpJCREjRs3VlJSktq3by9JGjp0qHJzc/XMM8/o8OHDat68uZYsWaKyZctKkkqWLKmVK1dqwoQJOnz4sMLCwtSyZUutXr1alStX9uWuuR0TfwAAAABAIZX7xvk64aJmzJhx0fUOh0Px8fGKj48/7/rIyEh9/vnnHiizD9/xBwAAAADAjzHxB/zUvIQOvk4AAAAAYAEm/gAAAAAA+DEm/gAAAAAA+DEm/gAAAPBbcYu6+zoBAHyOiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH6MiT8AAAAAAH4s0NcBAAAAAAD7ZLy9wKv3V7lPl6u6/pgxYzR8+HA9++yzmjBhgiTJGKORI0fqnXfe0eHDh9W8eXO9/fbbatCggfN6rVu3VkpKisttdevWTXPnzr2qHptwxB8AAAAAUKR9//33euedd9S4cWOX5a+99prGjx+vyZMn6/vvv1d4eLjat2+vo0ePumz3xBNPKC0tzflv+vTp3sz3OCb+AAAAAIAiKzs7W927d9e7776r8uXLO5cbYzRhwgSNGDFCXbp0UcOGDTVr1iwdO3ZMs2fPdrmNUqVKKTw83PkvJCTE27vhUUz8AQAAAABFVp8+fdSxY0e1a9fOZfnOnTuVnp6u2NhY57ISJUqoVatWWr16tcu2H330kSpWrKgGDRpoyJAhhT4RUNTxHX8AAAAAQJE0d+5crV+/Xt9//32hdenp6ZKksLAwl+VhYWH67bffnJe7d++umjVrKjw8XFu2bNGwYcP0n//8R8nJyZ6N9yIm/gAAAACAImfPnj169tlntWTJEpUsWfKC2zkcDpfLxhiXZU888YTzvxs2bKjatWvrxhtv1Pr163XDDTe4P9wH+Kg/AAAAAKDISU1NVUZGhpo1a6bAwEAFBgYqJSVFEydOVGBgoPNIf8GR/wIZGRmFPgVwthtuuEHFixfXjh07PNrvTUz8AQAAAABFTtu2bbV582Zt3LjR+e/GG29U9+7dtXHjRl177bUKDw93+cj+yZMnlZKSopiYmAve7g8//KBTp04pIiLCG7vhFXzUHwAAAABQ5JQtW1YNGzZ0WVa6dGlVqFDBuXzAgAEaPXq0ateurdq1a2v06NEqVaqUHnzwQUnSL7/8oo8++kh33HGHKlasqB9//FGDBw9W06ZNdcstt3h9nzyFiT8AAAAAwC8NHTpUubm5euaZZ3T48GE1b95cS5YsUdmyZSVJQUFB+vrrr/XWW28pOztbUVFR6tixo1566SUFBAT4uN59mPgDAAAAAAqp3KeLrxMu2/Lly10uOxwOxcfHKz4+/rzbR0VFKSUlxfNhPsZ3/AEAAAAA8GNM/AEAAAAA8GNM/AEAAAAA8GNM/AEAkqTnP+ng6wQAAAB4ABN/AAAAAPBTxhhfJ/ypOR9/Hz8NTPwBAAAAwM8UL15cknTs2DEfl1zcyYzffZ3gUQWPf8Ap33bw5/wAAAAAwM8EBATommuuUUZGhiSpVKlScjgcPq4q7OSp08o/ftzXGW5njNGxY8eUkZGha665RsXyjvi0h4k/AAAAAPih8PBwSXJO/iUp72i2AsqW8VVSIXlHDysgK9fXGR5zzTXXKDw8XBna5dMOJv4AAAAA4IccDociIiJUuXJlnTp15rPmh+YsVugDd/u47H8yZs9X5QeH+DrDI4oXL66AgABfZ0hi4g+4zYp3O6rlE5/5OgMAAABwERAQ4JyAFj9+UiVLlvRx0f8UP37Uqh5/5Tcn95syZYpq1qypkiVLqlmzZlq5cqWvkwAAAAAARcTuiff6OsFj/GLiP2/ePA0YMEAjRozQhg0bdOuttyouLk67d+/2dRoAAAAAAD7lFxP/8ePH67HHHtPjjz+uevXqacKECYqKitLUqVN9nQYAAIA/gf1Tx/k6AQAuqMh/x//kyZNKTU3VCy+84LI8NjZWq1evPu91Tpw4oRMnTjgvZ2ZmSpKysrI8FyopO/eosrLc//2Vk8dOe7zd044ez1YpL+zDqWPHPPZY5eSesup5OJb7x38uTh3L8Vn7qWO5Vj1unpRt2c9Igdz//7NywodjyeX8vF7M0eNHVdqHj3FO7lFlZZVww+2452flzP93gq/6ds516tiJy+47evyosrJKeaDluFW/V+eOab4cX23iy7H+9LHCv0+eeD1wNPe4gt10m8eOHVVWVpBbbutKHT92VFlZpX3acOpYNr8/V+Bo7jGVvMjjdjQ3VyUselyP5p7w6f+7z3b0uOdeqx09nlNojCi4L2OMR+7zbA7jjXvxoH379qlKlSr65ptvFBMT41w+evRozZo1S9u2bSt0nfj4eI0cOdKbmQAAAAAAFLJnzx5VrVrVo/dR5I/4F3A4HC6XjTGFlhUYNmyYBg0a5Lycn5+vQ4cOqUKFChe8zqVkZWUpKipKe/bsUbly5a7oNtzFlhY67G2xpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOtzVYozR0aNHFRkZ6ea6wor8xL9ixYoKCAhQenq6y/KMjAyFhYWd9zolSpRQiRKuH8W85ppr3NJTrlw5n/8QFrClhY7CbGmxpUOyp8WWDsmeFls6JHta6CjMlhZbOiR7WmzpkOxpsaVDsqeFjsJsabGlQ7KnxZYO6epbQkJC3FhzYUX+5H5BQUFq1qyZkpOTXZYnJye7fPQfAAAAAIA/oyJ/xF+SBg0apB49eujGG2/UX//6V73zzjvavXu3nnrqKV+nAQAAAADgU34x8e/WrZsOHjyof/7zn0pLS1PDhg31+eefq3r16l5rKFGihF566aVCXyHwBVta6LC3xZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwreWPKPJn9QcAAAAAABdW5L/jDwAAAAAALoyJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfoyJPwAAAAAAfizQ1wG4tF9++UVZWVmqVKmSqlatSoclHTa12NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tXisw8BqL774omnWrJkJDg42MTExZuzYsXRY0GFTiy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4snO5j4W2zkyJEmPDzcfPHFF2blypWmb9++pmXLlub333+nw4cdNrXY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSYVMLHfa22NJhU4stHTa1eLqDib+lVqxYYaKjo81nn33mXLZ3715TtmxZM3v2bDp81GFTiy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4s3Oji5n6Wys7PVvHlzNWrUSJKUn5+vyMhINWvWTCdOnHAuo8O7HTa12NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tXijg5P7WcQYI4fDIUm68cYbVaVKFUVFRUmSihU78x5NqVKlnE9+sWLFdPz4cZUsWZIOD3bY1GJLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NTi7Q6O+Fvk2LFjOnnypHJzc1WpUiU1btzYZb0xRocOHdKhQ4ckSYcOHVKbNm00Y8YMOjzYYVOLLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTi7c7mPhbYvz48XrwwQd10003aeDAgdq1a5ekM094AYfDoVKlSik0NFTHjx9XTEyMypYtq8cee4wOD3XY1GJLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NTiiw4m/hYYNmyYxo4dqw4dOqhVq1b69ddf9corr+jEiRPOj38UCA8P1/79+3XzzTerWrVqWrJkiST3fPeEDntbbOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWnzWcdmnA4RbzZ0711x33XXm22+/dS578803Te3atc3hw4ddts3LyzNt2rQxDofD3H333S7L6XBvh00ttnTY1GJLh00ttnTY1EKHvS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLb7s4Ii/D506dUp79uxR27Zt1bBhQ+Xl5UmSevTooVOnTmnv3r3Obc3/P/nDX/7yFz3zzDNatGiRpDPv9hSc/IEO93TY1GJLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NTi844rersAVy0/P98YY8yXX35p1q1b57J83759pkKFCmbDhg3O5QXv7Bw4cKDQMjrc12FTiy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4sNHUz8feTcJ67gh8EYYw4dOmQiIyNNamqq83KXLl3M3r17z7s9He7rsKnFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxYaOwKv6vAIu2+TJk/Xdd98pKytLt912m3r27KmQkBA5HA7nRzrKli2r4OBglSpVSkeOHNEtt9yi8PBwRUZGOm/n3BM/0HF1HTa12NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSIXFWf68aPny4Ro4cqTJlyig0NFRDhw7VQw89pK+//lrSmSc0Pz9fmZmZkqRdu3apXbt2ioqK0tKlSyW550ySdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1GJLh9NVf2YAf8i2bdtM7dq1zZIlS5zLfvjhBxMdHW3at29vkpOTncvT09NNaGiocTgc5o477nAud8f3S+iwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlo6zMfH3kl9++cVUrVrVLF++3BhjzMmTJ40xxmzfvt00adLExMXFmf379xtjjMnOzjbNmjUz3bt3d17fXU88Hfa22NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjScTYm/l6yZ88eU6FCBTNhwgRjzJkn89SpU8aYM+8IlSpVyowePdq5/cqVK53/7c4nng57W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1ps6TgbE38vGjdunClXrpz57LPPjDFnzs544sQJY4wxL7zwgomJiTHZ2dku13HnWS3psL/Flg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZaOApzV30O++eYbZWVlKTc3V126dJEkderUSZs3b9agQYPkcDgUFxenoKAgSVJwcLBCQkJUunRpl9u52jM40mFviy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4stHRflsbcU/sSGDRtm6tata6699lpTvnx506VLF+e6tWvXmh49epjQ0FAzbdo088MPP5gff/zRNGjQwAwYMIAOD3bY1GJLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS8elMPF3s9GjR5uwsDCzZs0a8/PPP5tly5aZKlWqmFmzZjm32b59u3n55ZdNmTJlTGRkpKlVq5b529/+5lzvjo940GFviy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4stHX8EE383+uGHH8wNN9xgEhMTncsyMzPNLbfcYv75z38W2v7nn3823377rVm7dq1zmTtO5kCHvS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnT8UXzH301Wr16ta6+9VtHR0apZs6Zzebly5dSoUSPt3LlTknTy5EkFBQXJGKNatWqpVq1azm3z8/NVrFgxOtzYYVOLLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTiy0dl8N79+THNmzYoGHDhmnXrl167bXXFB0dLUkyxkiSAgIClJeXJ0kKCgpSTk6OcnJyCt3O1T7xdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1GJLx+Vi4u8GkZGRKlasmJKTk1WxYkVJZ97Byc/PlySdOnXKue3hw4dVq1YtTZw4kQ4Pd9jUYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1GJLx2Vz5/cG/owKvpexbNkyU758efP1118X2qZPnz7mscceM8ePHzd169Y1sbGxbrv/gpNBnD592qcd5/b4usOmFls6bGqxpcOmFls6bGqxpcPX47wxjPVFocWWDptabOmwqYWOwnw9xto2vp7d5OsWWzpsarGl40pwxP8KHT9+XNKZj2jk5+erVatWevTRR5WUlKTjx487P+ohnfmux759+9S8eXNVqVJFX375pSQ53xW6Gr///rsVHWfLy8uzosPhcFjRYktHQYsxxucttnQUtNjwu2PLz0leXp41z4+vO2wZ5yXG+oux5XfHlo6CFlt+h235ebXh+WF8dWXLGGvj+CrZMcba8HtjW4sNvztXion/FZg+fbpmzZqlI0eOSDozUDgcDt18883697//rT179sjhcDg/5nH48GElJSWpXr16+uqrryS552QOr7zyilq2bKndu3fL4XD4rGPLli364YcftH37dp92SFJOTo6OHz+u06dPS/rfc9O8eXOvtmRmZio3N9d5P77qOB+Hw+Gz58eWjvz8fOfPiOS73+EDBw7o6NGjys7OlnTmO2G+ekyWLFkiY4zze2m+en7eeOMNbdu2zXnZVx22jPMSY/35MNZfmq9+d2wZXyV7xljG18JsGWNtGV8le8ZYW8ZXyd4x1pbX0pfNo58n8ENDhgwxlSpVMosWLTIHDx40xrj+GYYePXqYtm3bmhMnTjiXLVu2zAwaNMh52R1/tqF///7G4XCY0qVLm+XLlxtjjDl16pTXO1588UVTr149U716dVOtWjWzdOlSl/Xe6jDGmFGjRplOnTqZhg0bmieffLLQR28eeughr7S88sorpn379qZ27drmkUceMV999ZVPOowxZuHChea777674HpvPT+2dBhjzOTJk80jjzximjdvbqZNm2b27Nnjk5YxY8aYdu3amWuvvdY8/vjjZtu2bT7pMMaY8ePHG4fDYR5++GHnR9hOnjzp9ZZBgwYZh8Nhtm/fft7b9VaHLeO8MYz158NYX5gtY6wt46sx9oyxjK+F2TLG2jK+GmPPGGvL+GqMPWOsLeOrOzDxvwxz5841UVFRzr+9mJmZabKzs83+/fud2/znP/8xd999t/n3v//tXHb2IOKOJ37gwIGmfPnyZufOnaZz584mJiam0PeTNm3a5PGOl156yYSFhZmlS5eapKQkc++995qnn37aZRtvPB7GGPP3v//dVKpUycyZM8e8/PLLpmvXriYwMNDMnTvXuc3GjRs93jJy5EhToUIFM2PGDDN8+HBnx7vvvuvVDmOM+ec//2kcDod54IEHzLp161zWFdyHN35ObOkwxpgXXnjBREREmBdffNF06dLFXH/99WbixInGmP+9EPNGy/PPP28qV65sPvjgAxMfH2+io6OdPyMF9+WtnxNjjBk7dqxp3ry5ad26tenevbvztgsek82bN5u77rrLoy0DBgwwISEhZsOGDRfcxhuPiS3jvDGM9efDWF+YLWOsLeOrMXaNsYyvrmwZY20ZX42xZ4y1ZXw1xp4x1pbx1V2Y+F+G+Ph407NnT2OMMZ9++qmJjY019evXN3Xr1jUzZ840xhhz7Ngx0717d9O1a1fn9QoGEnd49tlnTZkyZcz69euNMcbMmTPHXH/99SY5OdkY878frtzcXNOjRw+PdezZs8f89a9/NQsXLnQui4+PN0OGDDEbNmxw9h07dsw89NBDHuswxpjt27ebv/zlL2bZsmXOZStWrDAOh8M4HA7z3nvvGWOMycnJ8WhLVlaWadWqlZk+fbpz2f79+83IkSNNsWLFzDvvvOPs8OTPiDFn3p0seLf25ptvNg899JD5/vvvC92fp39ObOkwxpiZM2eaGjVqOF9sGHPmf/y1a9d2Ofri6ZapU6eaqKgol/+B3HvvvWb69Onm4MGD5r///a8xxjs/JwXee+89c/vtt5spU6aYxo0bm+7duxtjzownR44cMcePH/foY/LKK68Yh8Nhdu3aZYw58/s7atQoc9ddd5lx48Y5f2a88ZjYMM4bw1h/Poz1hdkyxtoyvhpj3xjL+OrKhjHWlvHVGHvGWFvGV2PsGWNtGV/diYn/H1AwAHTv3t0MHz7cZGRkmAoVKphx48aZqVOnmhEjRhiHw2EmTZpkjDEmLS3NVKlSxeUH1h3WrVtnWrVqZf7zn/84lx04cMDUqlXLPPnkk4V609PTPdJhjDE///yzKV26tJk/f75zWd26dc11111n6tSpY0qWLGnGjRtnjDFm3759Husw5sy7oOXLlzcrV650Wd6pUyfzyCOPmJIlS5qUlBRjjGcfk4yMDFOxYkUzbdo0l+UnTpww//znP02xYsXMZ599Zozx3M9Igc8++8w8+uijJjs72yxYsMDceOONhQasgne009PTTWRkpEdabOk4evSoGTJkiHnxxRfN8ePHnS9EU1NTTb169cyRI0eMMa6/O55oycnJMRMnTjRTp051NuTl5Zlrr73WNG3a1FSvXt00a9bM+a6xp39OCiQnJ5sHHnjAGGPM22+/bW666SbTuXNnExoa6mzx1O/OsWPHzHPPPWccDofZsGGDWbFihYmIiDD33HOPadWqlYmJiTH16tVzvhjx1GNiyzhvDGP9hTDWF2bDGGvL+GqMnWMs4+sZtoyxNo2vxtgzxtoyvhpjzxhrw/jqbkz8L8PEiRNNrVq1zODBg80TTzzhsm78+PGmfPny5ocffjDGnPlu2aOPPmoyMjLc2nDo0CFjzJl3kgoGpffff99UqlTJrF692rldwQ+ipzpycnJMt27dTHh4uBkxYoS59tprTevWrc3OnTvNvn37zLvvvmuKFy/uHEA81WGMMT/99JO58cYbzcSJE016erox5sxHc6Kiosz69etNmzZtzIgRI5zbe7KlR48e5vbbbze///67y/IDBw6YHj16mC5dujhfBHmyIzc316Xh448/Pu+AVdAyevRoj7QcP37cig5jzhyR+uabb1yW/fDDD6ZChQpm9+7dzmUF39HyVMuePXvMgQMHjDFnXljUrVvX3Hrrreabb74xn376qXn88cdN48aNza+//mqM8ezPSYH//ve/plmzZs7vWr788sumZMmSpmrVqiYnJ8e5nSfHtYLvn4aGhpp3333XHD161BhjzJo1a8xdd91lunXrZjIzMz3aYYwxkyZN8vk4b4zvx/qCoxU2jPUFLT/++CNj/TlOnDhhxRg7a9YsK8ZXY4zZu3evVWOsr8fXI0eOWDO+GmPHa+nDhw8bY3z/WtqYM2/O+HqMNcaYrVu3WjO+GmPHGGvTa1h3CfTtqQWLlpYtWyopKUlz585VbGyspP+dofHWW29VmTJlnGdzbNeunfLy8lS6dGm3NpQvX955nw6HQ5LUpEkThYSEaO3atfrrX/+qvLw8BQQEeLSjVKlSGjJkiOrWrauQkBBdc801mjRpkmrUqCFJuu222xQeHq6DBw96tEOS6tatqxYtWmj69Ol67733VLFiRa1cuVLJyclq2rSpatWqpWXLlskYI4fD4dGWNm3a6K233tJHH32kxx9/XKGhoZKkChUq6IYbbtC4ceOUl5cnybOPScmSJRUZGenc53vvvVeSNHbsWL311lsaPHiwypcvrwcffFAffPCB2rZtq/z8fLe3lChRQpGRkc6fWV91SFLPnj0LLQsMDFR+fr7zOTly5IheffVVDR06VO3atfNIS9WqVZ3/bYzRfffdp8GDByskJETSmTPYJiYmOv/kiyd/TiTp9OnTcjgcOnTokHJzc3XkyBFNmDBBTZo00cmTJ/X0008rISFBxYoV8+i4NmLECJUtW1YHDx7Ufffdp1KlSkmSmjdvrujoaM2YMcMrvzu33nqrPv/8c5+O85Lvx/qC+7RhrC9oqVevnlq0aKFp06b5ZKw/+4zM7dq10/jx43021hc890FBQapSpYrPxvrTp08rMDBQDz/8cKF13h5fC1oiIyOdy3wxxp79c1LwvPhifC14PEJCQvSPf/xD5cqV04EDB3wyvp79mLRp08Znr6VPnTql4sWL65prrpH0vzOzS95/LV2wz8HBwXr++ed9NsYW7GedOnXUqlUrK15LS3a8ni5RooRPx1eP8NlbDpZbvHixef31183kyZNdvrM2adIkU7FiRVOhQgWXk6Rs27bNNGnSxPldHGPOvIvnqY5zDR482ISHhzvfZTr7uyXu7vj2229d1v3yyy+mYsWKLt+n27p1q6lXr57LGTjd0XFuy9nvzM6aNcv84x//MM8995zZuXOnc/mAAQMKvavsjpb33nvPPPXUU+bxxx8377//vnP5wIEDTa1atcy4cePM3r17ncu//PJLc/PNN5t9+/a5tePclg8//NBl3dk/C5988olp3ry5ufvuu03lypVN27Zt3dry3nvvmX79+pkhQ4a4PCbGuJ7cxNMd57bMmjXLZV3BY7J3715Tq1Ytk52dbY4cOWJq1aplOnXq5NaWCz0m557speDIwueff25at27t8rPjicfkgw8+cFnXp08fM3HiRBMWFmYeeeQRc/DgQTN16lRTtWpVM3XqVLe2XOi5OXTokPN7qMb87+Q4kyZNMnfeeafLfXvyuZkyZYqpUKGC18b5c1vOfW7O5umx/mK/Nz///LNXx/qzWxISEpzLP/jgA/Piiy96baw/+2fg7BM2+WKsP7vl3DHEm2P92R0FY9e5vDG+ntty9mNybpenx9iLPTf9+vXz2vh6oefm4MGD5rfffnNe9vT4erGWt99+26uvpS/23JzN0+PruS1njyfGePf19NkdZ5+H4/333/fqa2ljLjzHGDBggFfH2IvNubw5vnoSE//zeP755021atXMbbfdZmrUqGHatWvn/F6LMWdeFNarV89Uq1bNTJ482cyYMcM0atTI3H///R7vWLVqlcs2BQPY5s2bTcOGDc3kyZPdfvbI83Wc/R2gzMxMExsba5599lmzcuVKs379ehMdHe32x+NCLQV/gqVAwS9nXl6e2b9/v6lXr54ZNWqUy7qr9dxzz5kqVaqYxx57zMTFxZkmTZq4DFb9+vUzjRo1Ml26dDHz5883n3/+ualXr57p0aOHW+7/Ui3nnnzk7P2eMGGCcTgcplu3bs5l7jpTfaVKlcyDDz5o2rRpY8qVK2fuv/9+l488nX0/nur4oy3GGLNjxw5Tq1Yts379etOoUSNz++23O9e542flj3ScfT9paWmmadOmpk+fPld933+0peBMyk8++aRxOBzmySefdH78NDs7u9Cfz/FER7du3Zwn3DpXenq6adKkiRk6dKjHO+677z7nx12nTZtm6tat6/Fx/kItF/rd8fRYf77npuBnJCsry7Rv395rY/25Lffee6/zI5XG/O8x8eRYP3LkSFOpUiUzYcIE57Kz/2TTs88+67Wx/nwtF5v8e2qM/SMdxnh+fL2clgKeGmMv1fHEE094ZXw9X8eF3pgxxnPj64Vazp5geuu19B/5GfHG+HqhlrOfH2+9nr7UuGaMd15LG3PpOZe3xtg/MufyxvjqaUz8z/Hmm2+aqlWrmjVr1hhjzpzs4sYbbzRvvPGGy3ZLliwxTz/9tKlcubJp06aNy7tg7viF+KMdZ99n06ZNzQsvvHDV930lHePGjTMxMTGmePHipkmTJi6DlLt+ES7Vcvbjnp2dbebNm2fq1Klj7rzzTrfcf4HRo0ebqKgo5+T6xx9/NNdff73ZsmWLS8OUKVPMPffcY0qUKGH+8pe/mAcffNC5zl2D5sVazlbwHPz4448mIiLC3HvvvYXWXY0NGzaYqlWrOl/E5ObmmmXLlpmwsDBz++23OycOZ39X1xMdl9NizJl30oODg03p0qVNbGysW1sup+O///2vWbJkiWnUqJG5++67ncvd9XNysZb27dubrKwsY8yZ8yAUfPfz3Pv29GMSGxvr8phkZGSYL774wtSvX9/tj8nFOtq2beucXH7xxRceHecv1XL2z0nB4++psf5SHQVvQrz66qseH+sv9fNa8P3TvLw8j471M2bMMFFRUaZ169amRYsWF3yRPH36dI+P9RdrOd/j7qkx9nI6PDm+Xm6LJ8fYi3UUHNHNz883H3zwgUfH18t5PDw5vl6q5ezfHU+/lr7c3xtPja+X0+Lp19MX6zj3TSJPjq/G/PE5hqfH2Mudc3nyNaynMfE/y++//27+9re/mbfeessY878fpueff97Exsaa/Pz8Qr8UBw8eNMePH3dedscT/0c6zlZwnwVHqtzlch+PLVu2mGXLlrl8PMZdvwiX+5gcPnzYzJw50wwYMMCtLWlpaaZLly7OPzljzJkXpQUvJu655x7z97//3eU6O3fuvOBRb0+3vPTSSy7XWbp0qUdegK1Zs8ZUqVLF5WNXxpwZHMPCwsx9993nlY7Lbfnll19MSEiIeeSRR9zecjkdS5YsMb169XI5CuXNx6RLly5uu6+r6Tj7Mfn8889N165dXV4Ieuu5Offx8MQ4/0dbzn5MCiYR7h7r/0jH2Y/J5s2bPTbW/5GWsx+TQ4cOeWSsP378uOndu7cZMGCA2bhxo+ndu7e5+eabL3qEzFNj/R9pOfe+PDHGXm7Hr7/+6rHx9XJbkpOTPTLGXsnPiSdc7uORlJTksfH1Sh4TT4yxl/uYFLye9cT4+kdazv40hKdeT1/uY+Kp19LG/LHX9ed+FcITY+zlzi+M8exrWE9j4v//LV261Pz000/mueeec37vpeDJfuONN0zz5s3Pe72zJ77ueNfJHR3u+AG80o6zueud4yttOft/LO56TA4cOGDWr1/v/K5RXl6eadq0qWnatKmJj4838fHxplixYoUm/wXc+Zj80ZZzJ/8F3PGYfP311yYnJ8fs3LnTBAUFubwJUfAzuWrVKlO2bFnn9xg9caTjSluMMSYxMdGtLVfaUXCGaXd1XE2Lu11px/bt253/7e3nZsqUKc51Z//Muut32B3Pjbcfk8mTJ5/3Nnz9mLj7/39fffWVOXXqlPntt9+c37XdtWuX8285X+hFsid+Ti6n5UK8/Zic+11Yd3ZcTYu7x5Mr7XD3JOFKO3766Se3N13p787ZEzx3/O5c6e+Nu8eSy2250NcyfPmYuPu1tDH2zDHc0VGUJv3GMPE3+fn5Zvfu3aZUqVLmiy++cFlX8GR+8sknpn379s7lmZmZ5tNPP6XDgx1X01Lwd3Hd3REcHOzyd1aNMWbOnDnmvvvuc/6ZHmOM6d+/v/nrX/9qsrOz3fo9qKttcefglJ+fb/bs2WOCg4PN3LlzjTFnviPeqlUrl3Mu5OXlmdOnT5uuXbuaRx991LnMna605ULf8fN2x/lu52pdTYs7f2avtOPchqttsuXxsKnFlo6rbfFUx7x581zu1xjXF8kFR4e2bdtm3nzzTb9tudKOgr87fu72vmh5/fXXC92OLzpseW7c/XhcTYstj4lNv8Pjx4/3y46CFhvmGLZ0+MKffuJfYNy4caZ58+bm559/LrTuo48+Mn/961+NMWf+fmSDBg1Mr1696PBCh00tBe/+nX1k1hjXj2cZc+Zke2d//8ifWwo69u/fb9auXWtuvfVWc88995gVK1a4bNe3b99CH/f31xZbOmxqocPeFls6bGo53/haMDnauXOnefLJJ80tt9xihg8fbqpXr25uvvlmv2+xpcOmFjrsbbGlw6YWWzqMsed1vS0d3lTM139O0BZ33XWXqlatqu+//16SnH8bUjrzt2fz8vJ04MABtWnTRpGRkUpISKDDCx02tXTs2FFVq1bV2rVrJcn5d2aLFy/u3Gbfvn1aunSpGjdu7JEG21o6duyoyMhILVu2TDfddJMGDRqk/fv36+WXX9acOXN08uRJbd26VV9//bXq1q3rsQ6bWmzpsKmFDntbbOmwqeXc8TUvL08Oh0PGGNWoUUP/+Mc/VKVKFY0ZM0Y33XSTvv32W0ln/ma7v7bY0mFTCx32ttjSYVOLLR2SPa/rbenwKu++z2C34cOHm/r167v8iSBjjJk/f76Jjo42tWrVMu3atXNu76nvddBhb8uFOo4ePWrWrl1rGjdu7PJ3it39kVhbWs7+Htrw4cNN3bp1nbf/9ddfm0cffdSULFnSVK1a1VSvXt2jj4ktLbZ02NRCh70ttnTY1HJux9nj69n3s2fPHlOlShXTtWtX5zJ3/z/HlhZbOmxqocPeFls6bGqxpeNSLd58XW9Lhy/8KSf+KSkpZs6cOWbVqlXm8OHDLutatWplhg0b5rJs/vz5xuFwuP2XgQ57Wy6nIzc317z//vumffv2Lh+r98Vj4smWtLQ0s2vXrvOua9WqlXn++eedl7OysszWrVtNYmKiWbp0qVs7bGqxpcOmFjrsbbGlw6aWS3Wc+/+c06dPm27dupm2bdu6tcOmFls6bGqhw94WWzpsarGl40paPPW63pYOX/vTTfyff/55c+2115pq1aqZa6+91kyaNMkY8793f959913TtWtXlz8jtGHDBjN69GjnZXc88XTY23IlHb/++muhk1C5gy0tf//7302zZs1M9erVTePGjc348eOd95mXl+fs+P33340xptCfYHFXh00ttnTY1EKHvS22dNjU8kc7zl5mjOuf+/L2Y+LpFls6bGqhw94WWzpsarGl40pajPHM63pbOmzwp5r4v/766yYiIsJ888035ujRo+bJJ580N910k8tHXX7//XdTp04d89JLL533NtzxxNNhb4s7Otz10VNbWsaOHWsiIiLMokWLzKZNm8yTTz5pypQpY7p27Wp++eWXP9ThLra02NJhUwsd9rbY0mFTy5V2uPtP+NrUYkuHTS102NtiS4dNLbZ0XE3L2dzxut6WDlv8KSb++fn5Jisry7Rv395MnDjRuXz16tXm4YcfNjNnzjSfffaZ8wfgyy+/NHXr1jWrVq2iw4MdNrXY0mFTS35+vjl48KBp2bKlef/9913WNWrUyERERJh7773X/Pbbb8YYY5KTk029evU89pjY0GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS4dt/hRn9Xc4HAoICFB2drZ+//135xnQH3vsMa1du1avv/66Ro4cqUceeUS7du1STEyMWrZsqW+++UaS+85oSYe9LbZ02NTicDh06tQp7d27V8HBwZL+d8bTOnXqqF27dtq+fbu+/vprSVKjRo106623euwxsaHFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZYO63jpDQYr9OvXz1x33XWmTZs2pm7duqZFixZm3759Jj8/3yQnJ5smTZqYhIQEY4wx06ZNM1FRUWb//v10eLjDphZbOmxqufXWW81tt91mDh48aPLy8szo0aNNVFSUOXTokHnooYdM8+bNndu+8847Hn1MbGmxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxqsaXDFn498Z83b5558803zdixY82OHTuMMcZ8/PHH5uOPPzY33XSTSUxMdG57/Phx06BBA/PKK684l/3f//2fycjIoMPNHTa12NJhU0tBx6uvvmq2bt1qNm/ebJo0aWLKlStn6tevb6655hrnyQMXLlxoatWqZQ4cOOD2DptabOmwqYUOe1ts6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWmzpsJXfTvyfe+45ExoaauLi4kzFihVNo0aNzHPPPedc36JFC7N48WLn5d27d5vo6Gjz0UcfOZe542QOdNjbYkuHTS1nd1SoUMHccMMNZuDAgSYrK8v861//MjNnzjR79uxxbv/222+btm3bmhMnTjhPDuOJx8SXLbZ02NRCh70ttnTY1GJLh00ttnTY1EKHvS22dNjUYkuHTS22dNjMLyf+K1asMFFRUeabb74xxhiTk5NjRo0aZRo3bmzuu+8+Y4wx99xzj6lXr56ZM2eOmT9/vmnatKnp1KkTHR7ssKnFlg6bWs7X8corr5iGDRuaHj16uGx76tQps3v3btOoUSMzePBgt3bY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS4ft/HLi/69//ctUrVrVHDp0yLns6NGjZsaMGaZBgwZm6NCh5ujRo+a2224zlStXNk2bNjW9e/d2buuud3vosLfFlg6bWi7W0bhxY/PUU08ZY858zeBf//qXady4senYsaNzW3f9CRibWmzpsKmFDntbbOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1ps6bCdX078V65caa677jrndzgKZGdnm3HjxplGjRqZ9evXG2OM2bp1q8vHPtw5oaPD3hZbOmxquVRH06ZNzYoVK4wxxixatMjlTw16+zHxVostHTa10GFviy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR2288uJf3p6uqlXr565//77zeHDh13W5ebmmpo1a5oXXnih0PXc/W4PHfa22NJhU8ulOq699lozfPjwQtfzxIBpS4stHTa10GFviy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR22C/T1nxP0hLCwMCUkJKhly5aqWLGiRo0apXLlykmSSpYsqZtvvlmnT58udD2Hw0GHBztsarGlw6aWS3U0b95cJ0+eLHS9YsWKubXDphZbOmxqocPeFls6bGqxpcOmFls6bGqhw94WWzpsarGlw6YWWzqs5+t3Hjxp0aJFJigoyHTv3t1899135vjx42b37t3m2muvNa+//jodPuqwqcWWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg5bOYwxxtdvPnjS6tWr9dBDD6lUqVLKzc1V8eLFdd111+nTTz+lw4cdNrXY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSYVMLHfa22NJhU4stHTa12NJhI7+f+EvS3r17tXHjRu3cuVPh4eG69957JUn5+fle/YgHHfa22NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSYZs/xcT/fGx54ukozJYWWzoke1ps6ZDsabGlQ7KnhY7CbGmxpUOyp8WWDsmeFls6JHta6CjMlhZbOiR7WmzpkOxpsaXDl/60E38AAAAAAP4M/txvewAAAAAA4OeY+AMAAAAA4MeY+AMAAAAA4MeY+AMAAAAA4MeY+AMAAAAA4MeY+AMAAAAA4MeY+AMAAAAA4MeY+AMAAPXq1UsOh0MOh0PFixdXWFiY2rdvr/fee0/5+fl/+HZmzpypa665xnOhAADgsjHxBwAAkqQOHTooLS1Nu3bt0hdffKE2bdro2Wef1Z133qnTp0/7Og8AAFwhJv4AAECSVKJECYWHh6tKlSq64YYbNHz4cC1atEhffPGFZs6cKUkaP368GjVqpNKlSysqKkrPPPOMsrOzJUnLly/XI488oszMTOenB+Lj4yVJJ0+e1NChQ1WlShWVLl1azZs31/Lly32zowAA/Mkw8QcAABd02223KTo6WgsWLJAkFStWTBMnTtSWLVs0a9YsLV26VEOHDpUkxcTEaMKECSpXrpzS0tKUlpamIUOGSJIeeeQRffPNN5o7d642bdqk++67Tx06dNCOHTt8tm8AAPxZOIwxxtcRAADAt3r16qUjR45o4cKFhdbdf//92rRpk3788cdC6z7++GM9/fTTOnDggKQz3/EfMGCAjhw54tzml19+Ue3atfX7778rMjLSubxdu3a66aabNHr0aLfvDwAA+J9AXwcAAAC7GWPkcDgkScuWLdPo0aP1448/KisrS6dPn9bx48eVk5Oj0qVLn/f669evlzFG119/vcvyEydOqEKFCh7vBwDgz46JPwAAuKiffvpJNWvW1G+//aY77rhDTz31lF5++WWFhoZq1apVeuyxx3Tq1KkLXj8/P18BAQFKTU1VQECAy7oyZcp4Oh8AgD89Jv4AAOCCli5dqs2bN2vgwIFat26dTp8+rTfeeEPFip05TdC//vUvl+2DgoKUl5fnsqxp06bKy8tTRkaGbr31Vq+1AwCAM5j4AwAASWc+ep+enq68vDzt379fSUlJGjNmjO688049/PDD2rx5s06fPq1Jkybprrvu0jfffKNp06a53EaNGjWUnZ2tr7/+WtHR0SpVqpSuv/56de/eXQ8//LDeeOMNNW3aVAcOHNDSpUvVqFEj3XHHHT7aYwAA/hw4qz8AAJAkJSUlKSIiQjVq1FCHDh20bNkyTZw4UYsWLVJAQICaNGmi8ePHa+zYsWrYsKE++ugjjRkzxuU2YmJi9NRTT6lbt26qVKmSXnvtNUlSQkKCHn74YQ0ePFh16tTR3XffrbVr1yoqKsoXuwoAwJ8KZ/UHAAAAAMCPccQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/xsQfAAAAAAA/9v8ATielhhV/LukAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot showing the usage over time with notifications color-coded using Seaborn\n",
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.barplot(data=data, x=\"Date\", y=\"Usage\", hue=\"Notifications\")\n",
+ "plt.title(\"Usage Over Time with Notifications\")\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f4727e5a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "alignmentgroup": "True",
+ "hovertemplate": "App=Instagram Date=%{x} Usage=%{y} ",
+ "legendgroup": "Instagram",
+ "marker": {
+ "color": "#636efa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "Instagram",
+ "offsetgroup": "Instagram",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "08/26/2022",
+ "08/27/2022",
+ "08/28/2022",
+ "08/29/2022",
+ "08/30/2022",
+ "08/31/2022",
+ "09/01/2022",
+ "09/02/2022",
+ "09/03/2022",
+ "09/04/2022",
+ "09/05/2022",
+ "09/06/2022",
+ "09/07/2022",
+ "09/08/2022",
+ "09/09/2022",
+ "09/10/2022",
+ "09/11/2022",
+ "09/12/2022",
+ "09/13/2022",
+ "09/14/2022",
+ "09/15/2022",
+ "09/16/2022",
+ "09/17/2022",
+ "09/18/2022",
+ "09/19/2022",
+ "09/20/2022",
+ "09/21/2022"
+ ],
+ "xaxis": "x",
+ "y": [
+ 38,
+ 39,
+ 64,
+ 14,
+ 3,
+ 19,
+ 44,
+ 16,
+ 27,
+ 72,
+ 42,
+ 19,
+ 38,
+ 71,
+ 43,
+ 45,
+ 94,
+ 114,
+ 17,
+ 1,
+ 2,
+ 3,
+ 2,
+ 3,
+ 4,
+ 5,
+ 2
+ ],
+ "yaxis": "y"
+ },
+ {
+ "alignmentgroup": "True",
+ "hovertemplate": "App=Whatsapp Date=%{x} Usage=%{y} ",
+ "legendgroup": "Whatsapp",
+ "marker": {
+ "color": "#EF553B",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "Whatsapp",
+ "offsetgroup": "Whatsapp",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "08/26/2022",
+ "08/27/2022",
+ "08/28/2022",
+ "08/29/2022",
+ "08/30/2022",
+ "08/31/2022",
+ "09/01/2022",
+ "09/02/2022",
+ "09/03/2022",
+ "09/04/2022",
+ "09/05/2022",
+ "09/06/2022",
+ "09/07/2022",
+ "09/08/2022",
+ "09/09/2022",
+ "09/10/2022",
+ "09/11/2022",
+ "09/12/2022",
+ "09/13/2022",
+ "09/14/2022",
+ "09/15/2022",
+ "09/16/2022",
+ "09/17/2022",
+ "09/18/2022",
+ "09/19/2022",
+ "09/20/2022",
+ "09/21/2022"
+ ],
+ "xaxis": "x",
+ "y": [
+ 82,
+ 69,
+ 130,
+ 59,
+ 128,
+ 108,
+ 23,
+ 76,
+ 1,
+ 6,
+ 126,
+ 91,
+ 160,
+ 69,
+ 119,
+ 103,
+ 203,
+ 182,
+ 71,
+ 64,
+ 50,
+ 71,
+ 212,
+ 244,
+ 77,
+ 58,
+ 89
+ ],
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "barmode": "relative",
+ "legend": {
+ "title": {
+ "text": "App"
+ },
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Usage"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Date"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Usage"
+ }
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot showing the usage over time with apps\n",
+ "fig = px.bar(data_frame=data,x = \"Date\",y = \"Usage\",color='App',title=\"Usage\")\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "f8913aec",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "alignmentgroup": "True",
+ "hovertemplate": "App=Instagram Date=%{x} Notifications=%{y} ",
+ "legendgroup": "Instagram",
+ "marker": {
+ "color": "#636efa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "Instagram",
+ "offsetgroup": "Instagram",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "08/26/2022",
+ "08/27/2022",
+ "08/28/2022",
+ "08/29/2022",
+ "08/30/2022",
+ "08/31/2022",
+ "09/01/2022",
+ "09/02/2022",
+ "09/03/2022",
+ "09/04/2022",
+ "09/05/2022",
+ "09/06/2022",
+ "09/07/2022",
+ "09/08/2022",
+ "09/09/2022",
+ "09/10/2022",
+ "09/11/2022",
+ "09/12/2022",
+ "09/13/2022",
+ "09/14/2022",
+ "09/15/2022",
+ "09/16/2022",
+ "09/17/2022",
+ "09/18/2022",
+ "09/19/2022",
+ "09/20/2022",
+ "09/21/2022"
+ ],
+ "xaxis": "x",
+ "y": [
+ 70,
+ 43,
+ 231,
+ 35,
+ 19,
+ 25,
+ 23,
+ 28,
+ 15,
+ 29,
+ 24,
+ 34,
+ 23,
+ 48,
+ 68,
+ 71,
+ 180,
+ 99,
+ 45,
+ 10,
+ 15,
+ 13,
+ 9,
+ 8,
+ 8,
+ 11,
+ 12
+ ],
+ "yaxis": "y"
+ },
+ {
+ "alignmentgroup": "True",
+ "hovertemplate": "App=Whatsapp Date=%{x} Notifications=%{y} ",
+ "legendgroup": "Whatsapp",
+ "marker": {
+ "color": "#EF553B",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "Whatsapp",
+ "offsetgroup": "Whatsapp",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "08/26/2022",
+ "08/27/2022",
+ "08/28/2022",
+ "08/29/2022",
+ "08/30/2022",
+ "08/31/2022",
+ "09/01/2022",
+ "09/02/2022",
+ "09/03/2022",
+ "09/04/2022",
+ "09/05/2022",
+ "09/06/2022",
+ "09/07/2022",
+ "09/08/2022",
+ "09/09/2022",
+ "09/10/2022",
+ "09/11/2022",
+ "09/12/2022",
+ "09/13/2022",
+ "09/14/2022",
+ "09/15/2022",
+ "09/16/2022",
+ "09/17/2022",
+ "09/18/2022",
+ "09/19/2022",
+ "09/20/2022",
+ "09/21/2022"
+ ],
+ "xaxis": "x",
+ "y": [
+ 209,
+ 111,
+ 183,
+ 157,
+ 246,
+ 169,
+ 99,
+ 144,
+ 80,
+ 38,
+ 218,
+ 205,
+ 212,
+ 217,
+ 405,
+ 166,
+ 173,
+ 290,
+ 153,
+ 192,
+ 181,
+ 176,
+ 212,
+ 303,
+ 169,
+ 190,
+ 262
+ ],
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "barmode": "relative",
+ "legend": {
+ "title": {
+ "text": "App"
+ },
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Usage"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Date"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Notifications"
+ }
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot showing the times opened over time with apps\n",
+ "\n",
+ "fig = px.bar(data_frame=data,x = \"Date\",y = \"Notifications\",color='App',title=\"Usage\")\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "05857195",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "alignmentgroup": "True",
+ "hovertemplate": "App=Instagram Date=%{x} Times opened=%{y} ",
+ "legendgroup": "Instagram",
+ "marker": {
+ "color": "#636efa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "Instagram",
+ "offsetgroup": "Instagram",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "08/26/2022",
+ "08/27/2022",
+ "08/28/2022",
+ "08/29/2022",
+ "08/30/2022",
+ "08/31/2022",
+ "09/01/2022",
+ "09/02/2022",
+ "09/03/2022",
+ "09/04/2022",
+ "09/05/2022",
+ "09/06/2022",
+ "09/07/2022",
+ "09/08/2022",
+ "09/09/2022",
+ "09/10/2022",
+ "09/11/2022",
+ "09/12/2022",
+ "09/13/2022",
+ "09/14/2022",
+ "09/15/2022",
+ "09/16/2022",
+ "09/17/2022",
+ "09/18/2022",
+ "09/19/2022",
+ "09/20/2022",
+ "09/21/2022"
+ ],
+ "xaxis": "x",
+ "y": [
+ 49,
+ 48,
+ 55,
+ 23,
+ 5,
+ 20,
+ 57,
+ 22,
+ 25,
+ 30,
+ 51,
+ 25,
+ 19,
+ 43,
+ 70,
+ 70,
+ 95,
+ 102,
+ 39,
+ 2,
+ 4,
+ 5,
+ 3,
+ 5,
+ 3,
+ 5,
+ 8
+ ],
+ "yaxis": "y"
+ },
+ {
+ "alignmentgroup": "True",
+ "hovertemplate": "App=Whatsapp Date=%{x} Times opened=%{y} ",
+ "legendgroup": "Whatsapp",
+ "marker": {
+ "color": "#EF553B",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "Whatsapp",
+ "offsetgroup": "Whatsapp",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "08/26/2022",
+ "08/27/2022",
+ "08/28/2022",
+ "08/29/2022",
+ "08/30/2022",
+ "08/31/2022",
+ "09/01/2022",
+ "09/02/2022",
+ "09/03/2022",
+ "09/04/2022",
+ "09/05/2022",
+ "09/06/2022",
+ "09/07/2022",
+ "09/08/2022",
+ "09/09/2022",
+ "09/10/2022",
+ "09/11/2022",
+ "09/12/2022",
+ "09/13/2022",
+ "09/14/2022",
+ "09/15/2022",
+ "09/16/2022",
+ "09/17/2022",
+ "09/18/2022",
+ "09/19/2022",
+ "09/20/2022",
+ "09/21/2022"
+ ],
+ "xaxis": "x",
+ "y": [
+ 105,
+ 68,
+ 86,
+ 74,
+ 87,
+ 77,
+ 47,
+ 103,
+ 16,
+ 33,
+ 121,
+ 110,
+ 83,
+ 82,
+ 192,
+ 79,
+ 92,
+ 172,
+ 91,
+ 67,
+ 58,
+ 91,
+ 120,
+ 132,
+ 105,
+ 78,
+ 68
+ ],
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "barmode": "relative",
+ "legend": {
+ "title": {
+ "text": "App"
+ },
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Times Opened"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Date"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Times opened"
+ }
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot showing the relationship between notifications and usage\n",
+ "fig = px.bar(data_frame=data, \n",
+ " x = \"Date\", \n",
+ " y = \"Times opened\", \n",
+ " color=\"App\",\n",
+ " title=\"Times Opened\")\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a89c5473",
+ "metadata": {},
+ "source": [
+ "# relations btw notif and usage it shud be as notif is high, usage should be high\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "17cf7e36",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "Notifications=%{marker.size} Usage=%{y} ",
+ "legendgroup": "",
+ "marker": {
+ "color": "#636efa",
+ "size": [
+ 70,
+ 43,
+ 231,
+ 35,
+ 19,
+ 25,
+ 23,
+ 28,
+ 15,
+ 29,
+ 24,
+ 34,
+ 23,
+ 48,
+ 68,
+ 71,
+ 180,
+ 99,
+ 45,
+ 10,
+ 15,
+ 13,
+ 9,
+ 8,
+ 8,
+ 11,
+ 12,
+ 209,
+ 111,
+ 183,
+ 157,
+ 246,
+ 169,
+ 99,
+ 144,
+ 80,
+ 38,
+ 218,
+ 205,
+ 212,
+ 217,
+ 405,
+ 166,
+ 173,
+ 290,
+ 153,
+ 192,
+ 181,
+ 176,
+ 212,
+ 303,
+ 169,
+ 190,
+ 262
+ ],
+ "sizemode": "area",
+ "sizeref": 1.0125,
+ "symbol": "circle"
+ },
+ "mode": "markers",
+ "name": "",
+ "orientation": "v",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 70,
+ 43,
+ 231,
+ 35,
+ 19,
+ 25,
+ 23,
+ 28,
+ 15,
+ 29,
+ 24,
+ 34,
+ 23,
+ 48,
+ 68,
+ 71,
+ 180,
+ 99,
+ 45,
+ 10,
+ 15,
+ 13,
+ 9,
+ 8,
+ 8,
+ 11,
+ 12,
+ 209,
+ 111,
+ 183,
+ 157,
+ 246,
+ 169,
+ 99,
+ 144,
+ 80,
+ 38,
+ 218,
+ 205,
+ 212,
+ 217,
+ 405,
+ 166,
+ 173,
+ 290,
+ 153,
+ 192,
+ 181,
+ 176,
+ 212,
+ 303,
+ 169,
+ 190,
+ 262
+ ],
+ "xaxis": "x",
+ "y": [
+ 38,
+ 39,
+ 64,
+ 14,
+ 3,
+ 19,
+ 44,
+ 16,
+ 27,
+ 72,
+ 42,
+ 19,
+ 38,
+ 71,
+ 43,
+ 45,
+ 94,
+ 114,
+ 17,
+ 1,
+ 2,
+ 3,
+ 2,
+ 3,
+ 4,
+ 5,
+ 2,
+ 82,
+ 69,
+ 130,
+ 59,
+ 128,
+ 108,
+ 23,
+ 76,
+ 1,
+ 6,
+ 126,
+ 91,
+ 160,
+ 69,
+ 119,
+ 103,
+ 203,
+ 182,
+ 71,
+ 64,
+ 50,
+ 71,
+ 212,
+ 244,
+ 77,
+ 58,
+ 89
+ ],
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "OLS trendline Usage = 0.465523 * Notifications + 10.2432 R2 =0.599775 Notifications=%{x} Usage=%{y} (trend) ",
+ "legendgroup": "",
+ "marker": {
+ "color": "#636efa",
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 8,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 15,
+ 15,
+ 19,
+ 23,
+ 23,
+ 24,
+ 25,
+ 28,
+ 29,
+ 34,
+ 35,
+ 38,
+ 43,
+ 45,
+ 48,
+ 68,
+ 70,
+ 71,
+ 80,
+ 99,
+ 99,
+ 111,
+ 144,
+ 153,
+ 157,
+ 166,
+ 169,
+ 169,
+ 173,
+ 176,
+ 180,
+ 181,
+ 183,
+ 190,
+ 192,
+ 205,
+ 209,
+ 212,
+ 212,
+ 217,
+ 218,
+ 231,
+ 246,
+ 262,
+ 290,
+ 303,
+ 405
+ ],
+ "xaxis": "x",
+ "y": [
+ 13.967425551701634,
+ 13.967425551701634,
+ 14.432948681378898,
+ 14.898471811056162,
+ 15.363994940733425,
+ 15.829518070410689,
+ 16.295041200087955,
+ 17.226087459442482,
+ 17.226087459442482,
+ 19.088179978151537,
+ 20.950272496860592,
+ 20.950272496860592,
+ 21.415795626537857,
+ 21.88131875621512,
+ 23.277888145246912,
+ 23.743411274924174,
+ 26.071026923310495,
+ 26.53655005298776,
+ 27.93311944201955,
+ 30.26073509040587,
+ 31.191781349760397,
+ 32.58835073879219,
+ 41.89881333233747,
+ 42.82985959169199,
+ 43.29538272136926,
+ 47.48509088846463,
+ 56.33003035233265,
+ 56.33003035233265,
+ 61.916307908459814,
+ 77.27857118780952,
+ 81.4682793549049,
+ 83.33037187361396,
+ 87.52008004070933,
+ 88.91664942974111,
+ 88.91664942974111,
+ 90.77874194845018,
+ 92.17531133748197,
+ 94.03740385619102,
+ 94.50292698586829,
+ 95.43397324522282,
+ 98.69263515296366,
+ 99.62368141231819,
+ 105.67548209812261,
+ 107.53757461683168,
+ 108.93414400586347,
+ 108.93414400586347,
+ 111.26175965424979,
+ 111.72728278392705,
+ 117.77908346973148,
+ 124.76193041489044,
+ 132.21030048972665,
+ 145.24494812069005,
+ 151.2967488064945,
+ 198.7801080335754
+ ],
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "legend": {
+ "itemsizing": "constant",
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Relationship Between Number of Notifications and Usage"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Notifications"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Usage"
+ }
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = px.scatter(data_frame = data, \n",
+ " x=\"Notifications\",\n",
+ " y=\"Usage\", \n",
+ " size=\"Notifications\", \n",
+ " trendline=\"ols\", \n",
+ " title = \"Relationship Between Number of Notifications and Usage\")\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3f9533c0",
+ "metadata": {},
+ "source": [
+ "there is a linear relationship between the number of notifications and the amount of usage. It means that more notifications result in more use of smartphones."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2d9c7925",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b342616e",
+ "metadata": {},
+ "source": [
+ "# Machine Learning using Linear Regression"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "2a55f8b8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Importing necessary libraries\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.metrics import mean_squared_error"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "38b941c4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# App column is categorical, we convert it to numerical using one-hot encoding\n",
+ "data = pd.get_dummies(data, columns=['App'], drop_first=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "7a700978",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Splitting the data into feature (X) and target-variable (y)\n",
+ "X = data.drop(columns=['Usage', 'Date']) # Features\n",
+ "y = data['Usage'] # Target variable"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "06a62eda",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Splitting dataset into training & testing sets 80:20 ratio\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "bea22e8a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "LinearRegression()"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Model Loading and training\n",
+ "model = LinearRegression()\n",
+ "model.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "b9368f20",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training RMSE: 32.410704975029894\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Model Eval\n",
+ "y_pred_train = model.predict(X_train)\n",
+ "train_rmse = mean_squared_error(y_train, y_pred_train, squared=False)\n",
+ "print(\"Training RMSE:\", train_rmse)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "6f7a734d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Testing RMSE: 35.9699712374762\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_test = model.predict(X_test)\n",
+ "test_rmse = mean_squared_error(y_test, y_pred_test, squared=False)\n",
+ "print(\"Testing RMSE:\", test_rmse)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "246e0541",
+ "metadata": {},
+ "source": [
+ "*Data Exploration:*\n",
+ "\n",
+ "- The dataset contains usage statistics of various smartphone apps, including usage duration, notifications received, and number of times opened.\n",
+ "- EDA revealed the distribution and trends of app usage over time, relationships between different variables, and potential insights into user behavior.\n",
+ "\n",
+ "*Data Preprocessing:*\n",
+ "\n",
+ "- Checked for missing values (none found).\n",
+ "- Utilized one-hot encoding to convert categorical variable App into numerical format.\n",
+ "\n",
+ "*Model Building:*\n",
+ "\n",
+ "- Used linear regression for predicting app usage based on features like notifications and times opened.\n",
+ "- Split the dataset into training and testing sets (80% train, 20% test).\n",
+ "- Trained the model on the training data and evaluated its performance using Root Mean Squared Error (RMSE).\n",
+ "\n",
+ "*Model Evaluation:*\n",
+ "\n",
+ "- Achieved a training RMSE of approximately 32.41 and testing RMSE of around 35.97.\n",
+ "- The RMSE values suggest a reasonably balanced model performance, with consistent performance on both training and testing sets.\n",
+ "\n",
+ "*Conclusion:*\n",
+ "\n",
+ "- Found that linear regression model provides a reasonable baseline for predicting app usage.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "26d2c6e1",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Machine Learning and Data Science/Basic/screen-time/Screentime-App-Details.csv b/Machine Learning and Data Science/Basic/screen-time/Screentime-App-Details.csv
new file mode 100644
index 000000000..5432c40bb
--- /dev/null
+++ b/Machine Learning and Data Science/Basic/screen-time/Screentime-App-Details.csv
@@ -0,0 +1,55 @@
+Date,Usage,Notifications,Times opened,App
+08/26/2022,38,70,49,Instagram
+08/27/2022,39,43,48,Instagram
+08/28/2022,64,231,55,Instagram
+08/29/2022,14,35,23,Instagram
+08/30/2022,3,19,5,Instagram
+08/31/2022,19,25,20,Instagram
+09/01/2022,44,23,57,Instagram
+09/02/2022,16,28,22,Instagram
+09/03/2022,27,15,25,Instagram
+09/04/2022,72,29,30,Instagram
+09/05/2022,42,24,51,Instagram
+09/06/2022,19,34,25,Instagram
+09/07/2022,38,23,19,Instagram
+09/08/2022,71,48,43,Instagram
+09/09/2022,43,68,70,Instagram
+09/10/2022,45,71,70,Instagram
+09/11/2022,94,180,95,Instagram
+09/12/2022,114,99,102,Instagram
+09/13/2022,17,45,39,Instagram
+09/14/2022,1,10,2,Instagram
+09/15/2022,2,15,4,Instagram
+09/16/2022,3,13,5,Instagram
+09/17/2022,2,9,3,Instagram
+09/18/2022,3,8,5,Instagram
+09/19/2022,4,8,3,Instagram
+09/20/2022,5,11,5,Instagram
+09/21/2022,2,12,8,Instagram
+08/26/2022,82,209,105,Whatsapp
+08/27/2022,69,111,68,Whatsapp
+08/28/2022,130,183,86,Whatsapp
+08/29/2022,59,157,74,Whatsapp
+08/30/2022,128,246,87,Whatsapp
+08/31/2022,108,169,77,Whatsapp
+09/01/2022,23,99,47,Whatsapp
+09/02/2022,76,144,103,Whatsapp
+09/03/2022,1,80,16,Whatsapp
+09/04/2022,6,38,33,Whatsapp
+09/05/2022,126,218,121,Whatsapp
+09/06/2022,91,205,110,Whatsapp
+09/07/2022,160,212,83,Whatsapp
+09/08/2022,69,217,82,Whatsapp
+09/09/2022,119,405,192,Whatsapp
+09/10/2022,103,166,79,Whatsapp
+09/11/2022,203,173,92,Whatsapp
+09/12/2022,182,290,172,Whatsapp
+09/13/2022,71,153,91,Whatsapp
+09/14/2022,64,192,67,Whatsapp
+09/15/2022,50,181,58,Whatsapp
+09/16/2022,71,176,91,Whatsapp
+09/17/2022,212,212,120,Whatsapp
+09/18/2022,244,303,132,Whatsapp
+09/19/2022,77,169,105,Whatsapp
+09/20/2022,58,190,78,Whatsapp
+09/21/2022,89,262,68,Whatsapp
\ No newline at end of file
diff --git a/Machine Learning and Data Science/Basic/screen-time/readme.md b/Machine Learning and Data Science/Basic/screen-time/readme.md
new file mode 100644
index 000000000..1273b8a37
--- /dev/null
+++ b/Machine Learning and Data Science/Basic/screen-time/readme.md
@@ -0,0 +1,41 @@
+# Smartphone App Usage Analysis
+
+This folder contains data(.csv file) and code for analyzing smartphone app usage statistics. The analysis explores various metrics such as usage duration, notifications received, and times opened for different apps.
+
+## Dataset
+
+The dataset (`Screentime-App-Details.csv`) consists of the following columns:
+
+- **Date:** Date of the data entry.
+- **Usage:** Duration of app usage in minutes.
+- **Notifications:** Number of notifications received from the app.
+- **Times Opened:** Count of times the app was opened.
+- **App:** Name of the app.
+
+## Analysis
+
+### Data Exploration
+
+The Jupyter Notebook (`screen-time-LR.ipynb`) explores the dataset through descriptive statistics, data visualization, and insights into user behavior. The analysis includes:
+
+- Distribution and trends of app usage over time.
+- Relationships between different variables such as usage, notifications, and times opened.
+- Correlation analysis to understand the associations between variables.
+
+### Model Building
+
+The notebook also includes machine learning model development for predicting app usage based on features like notifications and times opened. Key steps include:
+
+- Data preprocessing, including handling categorical variables and splitting the dataset into training and testing sets.
+- Training a linear regression model and evaluating its performance using Root Mean Squared Error (RMSE).
+
+### Conclusion
+
+The analysis provides insights into smartphone app usage patterns and demonstrates the performance of the predictive model. It discusses the model's strengths and limitations, suggests potential areas for further exploration, and highlights opportunities for improving predictive accuracy.
+
+## Requirements
+
+- Python 3.7 onwards
+- Jupyter Notebook
+- Libraries: pandas, numpy, matplotlib, seaborn, plotly, scikit-learn
+
diff --git a/Machine Learning and Data Science/Basic/screen-time/screen-time-LR.ipynb b/Machine Learning and Data Science/Basic/screen-time/screen-time-LR.ipynb
new file mode 100644
index 000000000..7725a9fa9
--- /dev/null
+++ b/Machine Learning and Data Science/Basic/screen-time/screen-time-LR.ipynb
@@ -0,0 +1,531 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "283689c6",
+ "metadata": {},
+ "source": [
+ "This dataset contains the usage statistics of various apps on a phone.\n",
+ "\n",
+ "The dataset contains 5 columns:\n",
+ "\n",
+ "- Date column represents the date of the data.\n",
+ "- Usage column represents the duration of app usage in minutes.\n",
+ "- Notifications column represents the count of notifications received from the app.\n",
+ "- Times Opened column represents the count of times the app was opened.\n",
+ "- App column represents the name of the app."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "3c295738",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Importing necessary libraries\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import plotly.express as px\n",
+ "import plotly.graph_objects as gr"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "5504a9e0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Date Usage Notifications Times opened App\n",
+ "0 08/26/2022 38 70 49 Instagram\n",
+ "1 08/27/2022 39 43 48 Instagram\n",
+ "2 08/28/2022 64 231 55 Instagram\n",
+ "3 08/29/2022 14 35 23 Instagram\n",
+ "4 08/30/2022 3 19 5 Instagram\n"
+ ]
+ }
+ ],
+ "source": [
+ "data = pd.read_csv(\"Screentime-App-Details.csv\") # Loading the dataset\n",
+ "print(data.head()) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "3fe4c6a2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Date 0\n",
+ "Usage 0\n",
+ "Notifications 0\n",
+ "Times opened 0\n",
+ "App 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.isnull().sum() # Checking for any missing values\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9d3ebe9c",
+ "metadata": {},
+ "source": [
+ "The dataset doesn’t have any null values\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "9dfb9b4f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Usage \n",
+ " Notifications \n",
+ " Times opened \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 54.000000 \n",
+ " 54.000000 \n",
+ " 54.000000 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 65.037037 \n",
+ " 117.703704 \n",
+ " 61.481481 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 58.317272 \n",
+ " 97.017530 \n",
+ " 43.836635 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 1.000000 \n",
+ " 8.000000 \n",
+ " 2.000000 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 17.500000 \n",
+ " 25.750000 \n",
+ " 23.500000 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 58.500000 \n",
+ " 99.000000 \n",
+ " 62.500000 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 90.500000 \n",
+ " 188.250000 \n",
+ " 90.000000 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 244.000000 \n",
+ " 405.000000 \n",
+ " 192.000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Usage Notifications Times opened\n",
+ "count 54.000000 54.000000 54.000000\n",
+ "mean 65.037037 117.703704 61.481481\n",
+ "std 58.317272 97.017530 43.836635\n",
+ "min 1.000000 8.000000 2.000000\n",
+ "25% 17.500000 25.750000 23.500000\n",
+ "50% 58.500000 99.000000 62.500000\n",
+ "75% 90.500000 188.250000 90.000000\n",
+ "max 244.000000 405.000000 192.000000"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.describe() # Descriptive statistics of the dataset\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "db4d7ae5",
+ "metadata": {},
+ "source": [
+ "# checking the time of usage of the apps:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "f4727e5a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/4AAAJWCAYAAADhpFz6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2fklEQVR4nO3dd3hTdf//8VeAFii7rFL2BqUMQUBU9lRARYYbEMetgrIRFQREUJEhoOjtlyUOnLhQZCsCKiIqLlwgsyCzlFFo+/79wa+5CWWWpPlweD6ui+syJyfJM0l77DsnOfGZmQkAAAAAAHhSlnAHAAAAAACA0GHwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAhMWwYcPk8/m0c+fOk55frVo1NW7cOHOjQmTTpk3q2bOnypcvrxw5cqhAgQJq3LixXnvtNZlZuPP80p6TM/1r3LixNmzYIJ/PpxkzZoQ7+7z5fD4NGzbMf/qXX37RsGHDtGHDhnTrNm7cWNWqVTvv2zx69KhiYmLk8/n0zjvvnPf1AQBwOtnCHQAAgJctX75cbdu2Ve7cuTVgwABVr15d+/bt01tvvaXbbrtNH330kV5//XVlyRL+1+LvuusutW7d2n9627Zt6tChg3r16qVbbrnFvzxv3rwqVqyYVq5cqfLly4cjNahWrlypEiVK+E//8ssvGj58uBo3bqwyZcqE5DY//vhjbd++XZI0depUdezYMSS3AwCAxOAPAEDI7N27Vx06dFC+fPn09ddfq2jRov7zrrvuOlWvXl0PP/ywatasqYcffjjTulJSUpScnKzs2bMHLC9RokTAAJy2x7tUqVKqX79+uus52bILUTjux9SpUxUZGalGjRpp/vz52rx5c8BjDwBAMIV/9wIAAGchNTVVI0eOVOXKlZUzZ07lz59f1atX13PPPedf588//1T37t1VsWJFRUVFqXjx4mrXrp3Wrl2b7vp+/vlntWzZUlFRUSpcuLAeeOABzZ07Vz6fT0uXLg1Yd+HChWrWrJny5s2rqKgoXXnllVq0aNEZm//v//5PO3bs0FNPPRUw9KcZOHCgqlSpojFjxujo0aP6999/FRkZqSFDhqRb97fffpPP59PEiRP9y+Lj43XvvfeqRIkSioyMVNmyZTV8+HAlJyf710l7S/4zzzyjkSNHqmzZssqePbuWLFlyxv7TOdlb/dM+KvDjjz+qU6dOypcvn6Kjo9W3b18lJydr3bp1at26tfLkyaMyZcromWeeSXe9CQkJ6t+/v8qWLavIyEgVL15cvXv31oEDB07b8/zzzytLlizasWOHf9nYsWPl8/n0wAMP+JelpqaqQIEC6tevn3/Z8W/1nzFjhjp16iRJatKkif/jDSd+pGHVqlW6+uqrFRUVpXLlyumpp55SamrqWT12W7du1bx589SuXTsNGDBAqampJ/3IRLdu3ZQ7d279/PPPatasmXLlyqXChQurZ8+eOnjwYMC6Pp9PPXv21EsvvaRKlSope/bsuuSSSzR79uyA9Q4ePOh/fHPkyKHo6GjVqVNHb7zxxlm1AwAuTAz+AIALwjPPPKNhw4bp5ptv1ty5c/Xmm2+qR48e2rt3r3+drVu3qmDBgnrqqac0b948Pf/888qWLZvq1aundevW+dfbtm2bGjVqpHXr1mnKlCl65ZVXtH//fvXs2TPd7b766qtq2bKl8ubNq5kzZ+qtt95SdHS0WrVqdcbhf8GCBcqaNavatWt30vN9Pp/at2+v3bt3a/Xq1SpcuLDatm2rmTNnphsip0+frsjISN16662Sjg39devW1WeffaahQ4fq008/VY8ePTR69Gjdfffd6W5r4sSJWrx4sZ599ll9+umnqlKlymnbz0fnzp1Vo0YNvfvuu7r77rs1fvx49enTR9dff72uvfZazZkzR02bNtWgQYP03nvv+S938OBBNWrUSDNnztSDDz6oTz/9VIMGDdKMGTPUvn370x4PoXnz5jKzgOdk4cKFypkzpxYsWOBf9u2332rv3r1q3rz5Sa/n2muv1ahRoyQdezFh5cqVWrlypa699lr/OvHx8br11lt122236cMPP1SbNm00ePBgvfrqq2f1+MyYMUMpKSm688471bx5c5UuXVrTpk076f07evSorrnmGjVr1kzvv/++f7jv0qVLunU//PBDTZw4USNGjNA777yj0qVL6+abbw44hkDfvn01ZcoUPfjgg5o3b55mzZqlTp06adeuXWfVDgC4QBkAAGHw+OOPmyT7999/T3r+pZdeao0aNfKfbtu2rdWsWfOcbiM5OdmOHDliFStWtD59+viXDxgwwHw+n/38888B67dq1cok2ZIlS8zM7MCBAxYdHW3t2rULWC8lJcVq1KhhdevWPe3tV6lSxWJiYk67zpQpU0ySvfnmm2Zm9uGHH5okmz9/fsD9iI2NtRtvvNG/7N5777XcuXPbP//8E3B9zz77rEny37f169ebJCtfvrwdOXLktC0nSrvsmDFjTnne9OnT/cvSntOxY8cGrFuzZk2TZO+9955/2dGjR61w4cLWoUMH/7LRo0dblixZbNWqVQGXf+edd0ySffLJJ6ftLVGihN15551mZpaUlGS5cuWyQYMGmST/4/Tkk09aRESEJSYm+i8nyR5//HH/6bfffjvg5+B4jRo1Mkn29ddfByy/5JJLrFWrVqftMzNLTU21ChUqWPHixS05OdnM/ve4LVq0KGDdrl27miR77rnnApY/+eSTJsm+/PLLgPuQM2dOi4+P9y9LTk62KlWqWIUKFfzLqlWrZtdff/0ZOwEA3sIefwDABaFu3br64YcfdP/99+uzzz5TQkJCunWSk5M1atQoXXLJJYqMjFS2bNkUGRmpP/74Q7/++qt/vc8//1zVqlXTJZdcEnD5m2++OeD0ihUrtHv3bnXt2lXJycn+f6mpqWrdurVWrVp1xregn4n9/728Pp9PktSmTRvFxMRo+vTp/nU+++wzbd26VXfeead/2ccff6wmTZooNjY2oK1Nmzb++3i89u3bKyIi4rxaz1bbtm0DTletWlU+n8/fJknZsmVThQoV9M8///iXffzxx6pWrZpq1qwZcJ9atWp10o9gnKhZs2ZauHChpGPP3cGDB9W3b18VKlTIv9d/4cKFuuKKK5QrV64M37+YmBjVrVs3YFn16tUD7supfP755/rzzz/VtWtXZc2aVZLUvXt3+Xw+TZs27aSXSXuXR5q0Ay2e+HGNZs2aBXykJGvWrOrSpYv+/PNPbd68WdKx36NPP/1UDz/8sJYuXapDhw6dsRkAcOFj8AcAhEW2bMeOL5uSknLS85OTkwMG1cGDB+vZZ5/VV199pTZt2qhgwYJq1qyZvv32W/86ffv21ZAhQ3T99dfro48+0tdff61Vq1apRo0aAQPOrl27TvqZ+xOXpR11vWPHjoqIiAj49/TTT8vMtHv37lPex1KlSunff/897YsDaQfQK1mypP9xuf322zVnzhz/xxhmzJihYsWKqVWrVgFtH330UbquSy+9VJLSfU1isWLFTtkQbNHR0QGnIyMjFRUVpRw5cqRbfvjwYf/p7du368cff0x3n/LkySMzO+VXP6Zp3ry5Nm7cqD/++EMLFy5UrVq1VKRIETVt2lQLFy7UoUOHtGLFilO+zf9sFSxYMN2y7Nmzn9UQPXXqVEnSDTfcoL1792rv3r3Kly+frrrqKr377rsBH12Rjv08nHh7MTExkpTu7flpy0+37sSJEzVo0CC9//77atKkiaKjo3X99dfrjz/+OGM7AODCxVH9AQBhkTZkb9myJd3AbWbatm2b6tSp41+WLVs29e3bV3379tXevXu1cOFCPfLII2rVqpU2bdqkqKgovfrqq7rjjjv8n9FOs3PnTuXPn99/umDBgv6h/njx8fEBpwsVKiRJmjRp0imP/H6yFxDStGjRQvPnz9dHH32km266Kd35ZqYPP/xQ0dHRql27tn959+7dNWbMGM2ePVtdunTRhx9+qN69e/v3EKe1Va9eXU8++eRJbzs2NjbgdNo7ClxWqFAh5cyZ85R7vtOej1Np1qyZpGN79RcsWKAWLVr4lz/22GP64osvlJSUdN6Df0bt27dP7777riTp8ssvP+k6r7/+uu6//37/6eTkZO3atStg+E/7OT3xBYETf35Ptm6uXLk0fPhwDR8+XNu3b/fv/W/Xrp1+++2387h3AACXMfgDAMKiadOm8vl8evPNN3XZZZcFnDdv3jwlJCScckDLnz+/OnbsqC1btqh3797asGGDLrnkEvl8vnRfUTd37lxt2bJFFSpU8C9r1KiRnn32Wf3yyy8Bb/c/8QjoV155pfLnz69ffvnlpAf+O5O77rpLY8aM0eDBg9W0aVMVKVIk4PxnnnlGv/32m5566qmAdzdUrVpV9erV0/Tp05WSkqKkpCR179494LJt27bVJ598ovLly6tAgQLn3Oaitm3batSoUSpYsKDKli17zpcvVqyYLrnkEr377rtavXq1/wWgFi1a6N5779W4ceOUN2/eUw7dadJ+hoL9NvjXX39dhw4d0hNPPKGrrroq3fmdOnXStGnTAgZ/SXrttdf04IMPBlyPJDVu3DhgvUWLFmn79u3+F6NSUlL05ptvqnz58if9qsCiRYuqW7du+uGHHzRhwgQdPHhQUVFR53s3AQAOYvAHAIRF+fLl1bNnT40ZM0Z79+7VNddco5w5c2rVqlV66qmnVKdOHf9nmSWpXbt2qlatmurUqaPChQvrn3/+0YQJE1S6dGlVrFhR0rHBccaMGapSpYqqV6+u1atXa8yYMemGnt69e2vatGlq06aNRowYoaJFi+r111/37/HMkuXYJ+Fy586tSZMmqWvXrtq9e7c6duyoIkWK6N9//9UPP/ygf//9V1OmTDnlfcyfP7/ee+89tW3bVrVr19aAAQNUo0YNJSQk6M0339Rrr72mLl26aMCAAekue+edd+ree+/V1q1b1aBBA1WuXDng/BEjRmjBggVq0KCBHnzwQVWuXFmHDx/Whg0b9Mknn+jFF1+84L4Xvnfv3nr33XfVsGFD9enTR9WrV1dqaqo2btyo+fPnq1+/fqpXr95pr6NZs2aaNGmScubMqSuvvFKSVLZsWZUtW1bz589X+/bt/R8zOZVq1apJkv773/8qT548ypEjh8qWLXvSt/ifi6lTp6pAgQLq379/uo89SNIdd9yhcePG6YcfflCNGjUkHfs4xNixY5WYmKjLL79cK1as0MiRI9WmTZt0Lx4UKlRITZs21ZAhQ5QrVy698MIL+u233wJe0KpXr57atm2r6tWrq0CBAvr11181a9YsXXHFFQz9AOBlYT20IADgopaammpTpkyxOnXqWFRUlEVGRlrFihVt0KBBtn///oB1x44daw0aNLBChQpZZGSklSpVynr06GEbNmzwr7Nnzx7r0aOHFSlSxKKiouyqq66yZcuWWaNGjQK+IcDM7KeffrLmzZtbjhw5LDo62nr06GEzZ840SfbDDz8ErPv555/btddea9HR0RYREWHFixe3a6+91t5+++2zup8bN260Bx54wMqVK2eRkZGWL18+a9iwob366quWmpp60svs27fPcubMaZLs5ZdfPuk6//77rz344INWtmxZi4iIsOjoaKtdu7Y9+uij/qPWn+7I/GeS0aP6n/hNDV27drVcuXKlu45GjRrZpZdeGrAsMTHRHnvsMatcubL/sYqLi7M+ffoEHLH+VD744AOTZC1atAhYfvfdd5skmzhxYrrL6ISj+puZTZgwwcqWLWtZs2YNuJ8na067j6VLlz5l1w8//GCSrHfv3qdc57fffjNJ1qtXL/915sqVy3788Udr3Lix5cyZ06Kjo+2+++4L+FaCtPvwwAMP2AsvvGDly5e3iIgIq1Klir322msB6z388MNWp04dK1CggGXPnt3KlStnffr0sZ07d56yCwBw4fOZneZLcQEAuIjcc889euONN7Rr1y5FRkaGOwcXuW7duumdd95RYmLiGdf1+Xx64IEHNHny5EwoAwBcaHirPwDgojRixAjFxsaqXLlySkxM1Mcff6z/+7//02OPPcbQDwAAPIXBHwBwUYqIiNCYMWO0efNmJScnq2LFiho3bpweeuihcKcBAAAEFW/1BwAAAADAw7KEOwAAAAAAAIQOgz8AAAAAAB7G4A8AAAAAgIdxcD9Jqamp2rp1q/LkySOfzxfuHAAAAACAx5mZ9u/fr9jYWGXJEtp98gz+krZu3aqSJUuGOwMAAAAAcJHZtGmTSpQoEdLbYPCXlCdPHknHHvC8efOGuQYAAAAA4HUJCQkqWbKkfx4NJQZ/yf/2/rx58zL4AwAAAAAyTWZ83JyD+wEAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsZn/M9BSkqKjh49Gu4MBFFERISyZs0a7gwAAAAACJmwDv6jR4/We++9p99++005c+ZUgwYN9PTTT6ty5cr+dbp166aZM2cGXK5evXr66quv/KeTkpLUv39/vfHGGzp06JCaNWumF154IWhfiWBmio+P1969e4NyfXBL/vz5FRMTkykH1QAAAACAzBbWwf/zzz/XAw88oMsvv1zJycl69NFH1bJlS/3yyy/KlSuXf73WrVtr+vTp/tORkZEB19O7d2999NFHmj17tgoWLKh+/fqpbdu2Wr16dVD25qYN/UWKFFFUVBQDokeYmQ4ePKgdO3ZIkooVKxbmIgAAAAAIvrAO/vPmzQs4PX36dBUpUkSrV69Ww4YN/cuzZ8+umJiYk17Hvn37NHXqVM2aNUvNmzeXJL366qsqWbKkFi5cqFatWp1XY0pKin/oL1iw4HldF9yTM2dOSdKOHTtUpEgR3vYPAAAAwHOcOrjfvn37JEnR0dEBy5cuXaoiRYqoUqVKuvvuu/17aCVp9erVOnr0qFq2bOlfFhsbq2rVqmnFihUnvZ2kpCQlJCQE/DuVtM/0R0VFZfh+wW1pzy3HbwAAAADgRc4M/mamvn376qqrrlK1atX8y9u0aaPXXntNixcv1tixY7Vq1So1bdpUSUlJko69DT8yMlIFChQIuL6iRYsqPj7+pLc1evRo5cuXz/+vZMmSZ+zj7f3exXMLAAAAwMucOap/z5499eOPP+rLL78MWN6lSxf/f1erVk116tRR6dKlNXfuXHXo0OGU12dmpxzoBg8erL59+/pPJyQknNXwDwAAAADAhcaJPf69evXShx9+qCVLlpzxSPzFihVT6dKl9ccff0iSYmJidOTIEe3ZsydgvR07dqho0aInvY7s2bMrb968Af8AAAAAAPCisA7+ZqaePXvqvffe0+LFi1W2bNkzXmbXrl3atGmT/wjstWvXVkREhBYsWOBfZ9u2bfrpp5/UoEGDkLVfiFasWKGsWbOqdevW4U4BAAAAAGSSsA7+DzzwgF599VW9/vrrypMnj+Lj4xUfH69Dhw5JkhITE9W/f3+tXLlSGzZs0NKlS9WuXTsVKlRIN9xwgyQpX7586tGjh/r166dFixZpzZo1uu222xQXF+c/yj+OmTZtmnr16qUvv/xSGzduDHcOAAAAACAThHXwnzJlivbt26fGjRurWLFi/n9vvvmmJClr1qxau3atrrvuOlWqVEldu3ZVpUqVtHLlSuXJk8d/PePHj9f111+vzp0768orr1RUVJQ++ugjvprtOAcOHNBbb72l++67T23bttWMGTP85y1dulQ+n09z585VjRo1lCNHDtWrV09r1671rzNjxgzlz59f77//vipVqqQcOXKoRYsW2rRpUxjuDQAAAADgbIX9rf4n+9etWzdJx75j/bPPPtOOHTt05MgR/fPPP5oxY0a6A/HlyJFDkyZN0q5du3Tw4EF99NFHHKzvBG+++aYqV66sypUr67bbbtP06dNlZgHrDBgwQM8++6xWrVqlIkWKqH379gFfcXfw4EE9+eSTmjlzppYvX66EhATddNNNmX1XAAAAAADnwImD+yH0pk6dqttuu02S1Lp1ayUmJmrRokUB6zz++ONq0aKF4uLiNHPmTG3fvl1z5szxn3/06FFNnjxZV1xxhWrXrq2ZM2dqxYoV+uabbzL1vgAAAAAAzh6D/0Vg3bp1+uabb/x757Nly6YuXbpo2rRpAetdccUV/v+Ojo5W5cqV9euvv/qXZcuWTXXq1PGfrlKlivLnzx+wDgAAAADALdnCHYDQmzp1qpKTk1W8eHH/MjNTREREuq9BPJHP5zvt6VMtAwAAAAC4gT3+HpecnKxXXnlFY8eO1ffff+//98MPP6h06dJ67bXX/Ot+9dVX/v/es2ePfv/9d1WpUiXgur799lv/6XXr1mnv3r0B6wAAAAAA3MIef4/7+OOPtWfPHvXo0UP58uULOK9jx46aOnWqxo8fL0kaMWKEChYsqKJFi+rRRx9VoUKFdP311/vXj4iIUK9evTRx4kRFRESoZ8+eql+/vurWrZuZdwkAAAC4KGwcEZehy5UauvbMK+Giwh5/j5s6daqaN2+ebuiXpBtvvFHff/+9vvvuO0nSU089pYceeki1a9fWtm3b9OGHHyoyMtK/flRUlAYNGqRbbrlFV1xxhXLmzKnZs2dn2n0BAAAAAJw79vh73EcffXTK8y677DKZmZYuXSpJuuqqq/TTTz+d9vo6dOigDh06BDMRAAAAABBC7PEHAAAAAMDDGPwBAAAAAPAwBn+ocePGMjPlz5//lOt069ZNe/fuzbQmAAAAAEBwMPgDAAAAAOBhDP4AAAAAAHgYgz8AAAAAAB7G4A8AAAAAgIcx+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHpYt3AEXqtoDXsnU21s95o5zvky3bt20d+9evf/+++d9+2XKlFHv3r3Vu3fv874uAAAAAEDmYY8/nHPkyJFwJwAAAACAZzD4XyQaN26sBx98UAMHDlR0dLRiYmI0bNiwgHWGDRumUqVKKXv27IqNjdWDDz7ov+w///yjPn36yOfzyefzSZJ27dqlm2++WSVKlFBUVJTi4uL0xhtvBFzn/v37deuttypXrlwqVqyYxo8fr8aNGwe8c6BMmTIaOXKkunXrpnz58unuu++WJA0aNEiVKlVSVFSUypUrpyFDhujo0aMBvTVr1tS0adNUqlQp5c6dW/fdd59SUlL0zDPPKCYmRkWKFNGTTz4ZgkcUAAAAAC4MvNX/IjJz5kz17dtXX3/9tVauXKlu3brpyiuvVIsWLfTOO+9o/Pjxmj17ti699FLFx8frhx9+kCS99957qlGjhu655x7/UC5Jhw8fVu3atTVo0CDlzZtXc+fO1e23365y5cqpXr16kqS+fftq+fLl+vDDD1W0aFENHTpU3333nWrWrBnQNmbMGA0ZMkSPPfaYf1mePHk0Y8YMxcbGau3atbr77ruVJ08eDRw40L/OX3/9pU8//VTz5s3TX3/9pY4dO2r9+vWqVKmSPv/8c61YsUJ33nmnmjVrpvr164fw0QUAAAAANzH4X0SqV6+uxx9/XJJUsWJFTZ48WYsWLVKLFi20ceNGxcTEqHnz5oqIiFCpUqVUt25dSVJ0dLSyZs2qPHnyKCYmxn99xYsXV//+/f2ne/XqpXnz5untt99WvXr1tH//fs2cOVOvv/66mjVrJkmaPn26YmNj07U1bdo04LokBbwIUKZMGfXr109vvvlmwOCfmpqqadOmKU+ePLrkkkvUpEkTrVu3Tp988omyZMmiypUr6+mnn9bSpUsZ/AEAAABclBj8LyLVq1cPOF2sWDHt2LFDktSpUydNmDBB5cqVU+vWrXXNNdeoXbt2ypbt1D8iKSkpeuqpp/Tmm29qy5YtSkpKUlJSknLlyiVJ+vvvv3X06FH/CwiSlC9fPlWuXDndddWpUyfdsnfeeUcTJkzQn3/+qcTERCUnJytv3rwB65QpU0Z58uTxny5atKiyZs2qLFmyBCxLu58AAAAAcLHhM/4XkYiIiIDTPp9PqampkqSSJUtq3bp1ev7555UzZ07df//9atiwYcBn6k80duxYjR8/XgMHDtTixYv1/fffq1WrVv6D85mZ/3aOl7b8eGkvFqT56quvdNNNN6lNmzb6+OOPtWbNGj366KPpDvx3svt0uvsJAAAAABcbBn/45cyZU+3bt9fEiRO1dOlSrVy5UmvXrpUkRUZGKiUlJWD9ZcuW6brrrtNtt92mGjVqqFy5cvrjjz/855cvX14RERH65ptv/MsSEhIC1jmV5cuXq3Tp0nr00UdVp04dVaxYUf/880+Q7ikAAAAAXDx4qz8kSTNmzFBKSorq1aunqKgozZo1Szlz5lTp0qUlHXtL/RdffKGbbrpJ2bNnV6FChVShQgW9++67WrFihQoUKKBx48YpPj5eVatWlXTs4Hxdu3bVgAEDFB0drSJFiujxxx9XlixZ0r0L4EQVKlTQxo0bNXv2bF1++eWaO3eu5syZE/LHAQAAAAC8hj3+kCTlz59fL7/8sq688kpVr15dixYt0kcffaSCBQtKkkaMGKENGzaofPnyKly4sCRpyJAhuuyyy9SqVSs1btxYMTExuv766wOud9y4cbriiivUtm1bNW/eXFdeeaWqVq2qHDlynLbnuuuuU58+fdSzZ0/VrFlTK1as0JAhQ0Jy3wEAAADAy3x2sg9cX2QSEhKUL18+7du3L93B4w4fPqz169erbNmyZxxWcWYHDhxQ8eLFNXbsWPXo0SPcOZJ4jgEAAOCmjSPiMnS5UkPXBrkEoXC6OTTYeKs/QmrNmjX67bffVLduXe3bt08jRoyQdGyPPgAAAAAg9Bj8EXLPPvus1q1bp8jISNWuXVvLli1ToUKFwp0FAAAAABcFBn+EVK1atbR69epwZwAAAADARYuD+wEAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4GIM/Avh8Pr3//vvhzgAAAAAABEm2cAdcqDaOiMvU2ys1dO05rf/iiy9qwIAB2rNnj7JlO/Y0JyYmqkCBAqpfv76WLVvmX3fZsmVq2LCh1q1bF5TWbt26ae/evbyAAAAAAAAOYI+/RzVp0kSJiYn69ttv/cuWLVummJgYrVq1SgcPHvQvX7p0qWJjY1WpUqVwpAIAAAAAQojB36MqV66s2NhYLV261L9s6dKluu6661S+fHmtWLEiYHmTJk38p3fu3KkbbrhBUVFRqlixoj788EP/eSkpKerRo4fKli2rnDlzqnLlynruuef85w8bNkwzZ87UBx98IJ/PJ5/Pp6VLl+rIkSPq2bOnihUrphw5cqhMmTIaPXq0/3Ljxo1TXFyccuXKpZIlS+r+++9XYmKi//wZM2Yof/78ev/991WpUiXlyJFDLVq00KZNmwJuu2bNmnrppZdUsmRJRUVFqVOnTtq7d2+wHlYAAAAAuOAw+HtY48aNtWTJEv/pJUuWqHHjxmrUqJF/+ZEjR7Ry5cqAwX/48OHq3LmzfvzxR11zzTW69dZbtXv3bklSamqqSpQoobfeeku//PKLhg4dqkceeURvvfWWJKl///7q3LmzWrdurW3btmnbtm1q0KCBJk6cqA8//FBvvfWW1q1bp1dffVVlypTx32aWLFk0ceJE/fTTT5o5c6YWL16sgQMHBtyfgwcP6sknn9TMmTO1fPlyJSQk6KabbgpY588//9Rbb72ljz76SPPmzdP333+vBx54IKiPKwAAAABcSPiMv4c1btxYffr0UXJysg4dOqQ1a9aoYcOGSklJ0cSJEyVJX331lQ4dOhQw+Hfr1k0333yzJGnUqFGaNGmSvvnmG7Vu3VoREREaPny4f92yZctqxYoVeuutt9S5c2flzp1bOXPmVFJSkmJiYvzrbdy4URUrVtRVV10ln8+n0qVLB7T27t074DqfeOIJ3XfffXrhhRf8y48eParJkyerXr16kqSZM2eqatWq+uabb1S3bl1J0uHDhzVz5kyVKFFCkjRp0iRde+21Gjt2bEAPAAAAAFws2OPvYU2aNNGBAwe0atUqLVu2TJUqVVKRIkXUqFEjrVq1SgcOHNDSpUtVqlQplStXzn+56tWr+/87V65cypMnj3bs2OFf9uKLL6pOnToqXLiwcufOrZdfflkbN248bUu3bt30/fffq3LlynrwwQc1f/78gPOXLFmiFi1aqHjx4sqTJ4/uuOMO7dq1SwcOHPCvky1bNtWpU8d/ukqVKsqfP79+/fVX/7JSpUr5h35JuuKKK5Samhq0AxcCAAAAwIWGwd/DKlSooBIlSmjJkiVasmSJGjVqJEmKiYlR2bJltXz5ci1ZskRNmzYNuFxERETAaZ/Pp9TUVEnSW2+9pT59+ujOO+/U/Pnz9f3336t79+46cuTIaVsuu+wyrV+/Xk888YQOHTqkzp07q2PHjpKkf/75R9dcc42qVaumd999V6tXr9bzzz8v6dhe/hNbTnSyZSeed7p1AAAAAMDLeKu/xzVp0kRLly7Vnj17NGDAAP/yRo0a6bPPPtNXX32l7t27n/X1LVu2TA0aNND999/vX/bXX38FrBMZGamUlJR0l82bN6+6dOmiLl26qGPHjmrdurV2796tb7/9VsnJyRo7dqyyZDn2WlTaMQOOl5ycrG+//db/tv5169Zp7969qlKlin+djRs3auvWrYqNjZUkrVy5UlmyZOEbCwAAAABctNjj73FNmjTRl19+qe+//96/x186Nvi//PLLOnz4cMDn+8+kQoUK+vbbb/XZZ5/p999/15AhQ7Rq1aqAdcqUKaMff/xR69at086dO3X06FGNHz9es2fP1m+//abff/9db7/9tmJiYpQ/f36VL19eycnJmjRpkv7++2/NmjVLL774YrrbjoiIUK9evfT111/ru+++U/fu3VW/fn3/CwGSlCNHDnXt2lU//PCDli1bpgcffFCdO3fm8/0AAAAALlrs8c+gUkPXhjvhrDRp0kSHDh1SlSpVVLRoUf/yRo0aaf/+/SpfvrxKlix51tf3n//8R99//726dOkin8+nm2++Wffff78+/fRT/zp33323li5dqjp16igxMVFLlixR7ty59fTTT+uPP/5Q1qxZdfnll+uTTz5RlixZVLNmTY0bN05PP/20Bg8erIYNG2r06NG64447Am47KipKgwYN0i233KLNmzfrqquu0rRp0wLWqVChgjp06KBrrrlGu3fv1jXXXBNwgEAAAAAAuNj4zMzCHRFuCQkJypcvn/bt26e8efMGnHf48GGtX79eZcuWVY4cOcJUiBkzZqh3797au3fvKdcZNmyY3n//fX3//ffndN08xwAAAHDRxhFxGbrchbKT8mJ3ujk02HirPwAAAAAAHsbgDwAAAACAhzH444LQrVu3077NXzr2Vv9zfZs/AAAAAHgdgz8AAAAAAB7G4H+WOAaid/HcAgAAAPAyBv8ziIiIkCQdPHgwzCUIlbTnNu25BgAAAAAvyRbuANdlzZpV+fPn144dOyQd+y55n88X5ioEg5np4MGD2rFjh/Lnz6+sWbOGOwkAAAAAgo7B/yzExMRIkn/4h7fkz5/f/xwDAAAAgNcw+J8Fn8+nYsWKqUiRIjp69Gi4cxBEERER7OkHAAAA4GkM/ucga9asDIkAAAAAgAsKB/cDAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMz/gDAAAAwHE2jojL0OVKDV0b5BIgONjjDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4GIM/AAAAAAAexuAPAAAAAICHMfgDAAAAAOBhDP4AAAAAAHgYgz8AAAAAAB7G4A8AAAAAgIcx+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4WLZwBwAAACA0No6Iy9DlSg1dG+QSAEA4hXWP/+jRo3X55ZcrT548KlKkiK6//nqtW7cuYB0z07BhwxQbG6ucOXOqcePG+vnnnwPWSUpKUq9evVSoUCHlypVL7du31+bNmzPzrgAAAAAA4KSwDv6ff/65HnjgAX311VdasGCBkpOT1bJlSx04cMC/zjPPPKNx48Zp8uTJWrVqlWJiYtSiRQvt37/fv07v3r01Z84czZ49W19++aUSExPVtm1bpaSkhONuAQAAAADgjLC+1X/evHkBp6dPn64iRYpo9erVatiwocxMEyZM0KOPPqoOHTpIkmbOnKmiRYvq9ddf17333qt9+/Zp6tSpmjVrlpo3by5JevXVV1WyZEktXLhQrVq1yvT7BQAAAACAK5w6uN++ffskSdHR0ZKk9evXKz4+Xi1btvSvkz17djVq1EgrVqyQJK1evVpHjx4NWCc2NlbVqlXzr3OipKQkJSQkBPwDAAAAAMCLnBn8zUx9+/bVVVddpWrVqkmS4uPjJUlFixYNWLdo0aL+8+Lj4xUZGakCBQqccp0TjR49Wvny5fP/K1myZLDvDgAAAAAATnBm8O/Zs6d+/PFHvfHGG+nO8/l8AafNLN2yE51uncGDB2vfvn3+f5s2bcp4OAAAAAAADnNi8O/Vq5c+/PBDLVmyRCVKlPAvj4mJkaR0e+537NjhfxdATEyMjhw5oj179pxynRNlz55defPmDfgHAAAAAIAXhXXwNzP17NlT7733nhYvXqyyZcsGnF+2bFnFxMRowYIF/mVHjhzR559/rgYNGkiSateurYiIiIB1tm3bpp9++sm/DgAAAAAAF6uwHtX/gQce0Ouvv64PPvhAefLk8e/Zz5cvn3LmzCmfz6fevXtr1KhRqlixoipWrKhRo0YpKipKt9xyi3/dHj16qF+/fipYsKCio6PVv39/xcXF+Y/yDwAAAADAxSqsg/+UKVMkSY0bNw5YPn36dHXr1k2SNHDgQB06dEj333+/9uzZo3r16mn+/PnKkyePf/3x48crW7Zs6ty5sw4dOqRmzZppxowZypo1a2bdFQAAAAAAnBTWwd/MzriOz+fTsGHDNGzYsFOukyNHDk2aNEmTJk0KYh0AAAAAABc+Jw7uBwAAAAAAQoPBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD8sW7gAAAAB438YRced8mVJD14agBAAuPuzxBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8LFu4AwAAwLnbOCIuQ5crNXRtkEsAAIDr2OMPAAAAAICHMfgDAAAAAOBhDP4AAAAAAHgYgz8AAAAAAB7G4A8AAAAAgIcx+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4GIM/AAAAAAAeFtbB/4svvlC7du0UGxsrn8+n999/P+D8bt26yefzBfyrX79+wDpJSUnq1auXChUqpFy5cql9+/bavHlzJt4LAAAAAADcFdbB/8CBA6pRo4YmT558ynVat26tbdu2+f998sknAef37t1bc+bM0ezZs/Xll18qMTFRbdu2VUpKSqjzAQAAAABwXrZw3nibNm3Upk2b066TPXt2xcTEnPS8ffv2aerUqZo1a5aaN28uSXr11VdVsmRJLVy4UK1atQp6MwAAAAAAFxLnP+O/dOlSFSlSRJUqVdLdd9+tHTt2+M9bvXq1jh49qpYtW/qXxcbGqlq1alqxYkU4cgEAAAAAcEpY9/ifSZs2bdSpUyeVLl1a69ev15AhQ9S0aVOtXr1a2bNnV3x8vCIjI1WgQIGAyxUtWlTx8fGnvN6kpCQlJSX5TyckJITsPgAAAAAAEE5OD/5dunTx/3e1atVUp04dlS5dWnPnzlWHDh1OeTkzk8/nO+X5o0eP1vDhw4PaCgAAAACAi5x/q//xihUrptKlS+uPP/6QJMXExOjIkSPas2dPwHo7duxQ0aJFT3k9gwcP1r59+/z/Nm3aFNJuAAAAAADC5YIa/Hft2qVNmzapWLFikqTatWsrIiJCCxYs8K+zbds2/fTTT2rQoMEpryd79uzKmzdvwD8AAAAAALworG/1T0xM1J9//uk/vX79en3//feKjo5WdHS0hg0bphtvvFHFihXThg0b9Mgjj6hQoUK64YYbJEn58uVTjx491K9fPxUsWFDR0dHq37+/4uLi/Ef5BwAAAADgYhbWwf/bb79VkyZN/Kf79u0rSerataumTJmitWvX6pVXXtHevXtVrFgxNWnSRG+++aby5Mnjv8z48eOVLVs2de7cWYcOHVKzZs00Y8YMZc2aNdPvDwAAAAAArgnr4N+4cWOZ2SnP/+yzz854HTly5NCkSZM0adKkYKYBAAAAAOAJF9Rn/AEAAAAAwLlh8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8LAMD/5//fWXHnvsMd18883asWOHJGnevHn6+eefgxYHAAAAAADOT4YG/88//1xxcXH6+uuv9d577ykxMVGS9OOPP+rxxx8PaiAAAAAAAMi4DA3+Dz/8sEaOHKkFCxYoMjLSv7xJkyZauXJl0OIAAAAAAMD5ydDgv3btWt1www3plhcuXFi7du067ygAAAAAABAcGRr88+fPr23btqVbvmbNGhUvXvy8owAAAAAAQHBkaPC/5ZZbNGjQIMXHx8vn8yk1NVXLly9X//79dccddwS7EQAAAAAAZFCGBv8nn3xSpUqVUvHixZWYmKhLLrlEDRs2VIMGDfTYY48FuxEAAAAAAGRQtoxcKCIiQq+99ppGjBihNWvWKDU1VbVq1VLFihWD3QcAAAAAAM5Dhgb/NOXLl1f58uWD1QIAAAAAAIIsQ4N/3759T7rc5/MpR44cqlChgq677jpFR0efVxwAAAAAADg/GRr816xZo++++04pKSmqXLmyzEx//PGHsmbNqipVquiFF15Qv3799OWXX+qSSy4JdjMAAAAAADhLGTq433XXXafmzZtr69atWr16tb777jtt2bJFLVq00M0336wtW7aoYcOG6tOnT7B7AQAAAADAOcjQ4D9mzBg98cQTyps3r39Z3rx5NWzYMD3zzDOKiorS0KFDtXr16qCFAgAAAACAc5ehwX/fvn3asWNHuuX//vuvEhISJEn58+fXkSNHzq8OAAAAAACclwy/1f/OO+/UnDlztHnzZm3ZskVz5sxRjx49dP3110uSvvnmG1WqVCmYrQAAAAAA4Bxl6OB+L730kvr06aObbrpJycnJx64oWzZ17dpV48ePlyRVqVJF//d//xe8UlyQNo6Iy9DlSg1dG+QSAAAAALg4ZWjwz507t15++WWNHz9ef//9t8xM5cuXV+7cuf3r1KxZM1iNAAAAAAAggzI0+KfJnTu3qlevHqwWAAAAAAAQZBke/FetWqW3335bGzduTHcQv/fee++8wwCv4uMPAAAAADJThg7uN3v2bF155ZX65ZdfNGfOHB09elS//PKLFi9erHz58gW7EQAAAAAAZFCGBv9Ro0Zp/Pjx+vjjjxUZGannnntOv/76qzp37qxSpUoFuxEAAAAAAGRQhgb/v/76S9dee60kKXv27Dpw4IB8Pp/69Omj//73v0ENBAAAAAAAGZehz/hHR0dr//79kqTixYvrp59+UlxcnPbu3auDBw8GNRAAACljx8fg2BgAAAAZHPyvvvpqLViwQHFxcercubMeeughLV68WAsWLFCzZs2C3QgAAAAAADIoQ4P/5MmTdfjwYUnS4MGDFRERoS+//FIdOnTQkCFDghoIAAAAAAAyLsNv9U+TJUsWDRw4UAMHDgxaFAAAAAAACI4MHdzvu+++09q1//vc5AcffKDrr79ejzzyiI4cORK0OAAAAAAAcH4yNPjfe++9+v333yVJf//9t7p06aKoqCi9/fbb7PkHAAAAAMAhGRr8f//9d9WsWVOS9Pbbb6tRo0Z6/fXXNWPGDL377rvB7AMAAAAAAOchQ4O/mSk1NVWStHDhQl1zzTWSpJIlS2rnzp3BqwMAAAAAAOclQ4N/nTp1NHLkSM2aNUuff/65rr32WknS+vXrVbRo0aAGAgAAAACAjMvQ4D9+/HitXr1aPXv21KOPPqoKFSpIkt555x01aNAgqIEAAAAAACDjMvR1fjVq1NBPP/2UbvmYMWOUNWvW844CAAAAAADBcU57/LNkyaKsWbOm+1egQAHVr19fn3zyiSIiIkLVCgAAAAAAztE57fGfM2fOSZfv3btX33zzjW677TbNnDlTnTp1CkocAADA2do4Ii5Dlys1dG2QSwAAcMs5Df7XXXfdKc/r2rWrLrnkEj377LMM/gAAAAAAOCJDB/c7lZYtW+r3338P5lUCAAAAAIDzENTB/9ChQ8qRI0cwrxIAAAAAAJyHoA7+L7/8smrVqhXMqwQAAAAAAOfhnD7j37dv35Mu37dvn7799lv99ddfWrZsWVDCAAAAAADA+TunwX/NmjUnXZ43b161bt1a999/v0qXLh2UMAAAAAAAcP7OafBfsmRJqDoAAAAAAEAIBPUz/gAAAAAAwC0M/gAAAAAAeNg5vdUfAAAAF7faA17J0OXm5AlyCADgrLHHHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA/LFu4AAOGxcURchi5XaujaIJcAAAAACCX2+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4GIM/AAAAAAAexuAPAAAAAICHZQt3AAAAgNdsHBGXocuVGro2yCUAALDHHwAAAAAATwvr4P/FF1+oXbt2io2Nlc/n0/vvvx9wvplp2LBhio2NVc6cOdW4cWP9/PPPAeskJSWpV69eKlSokHLlyqX27dtr8+bNmXgvAAAAAABwV1gH/wMHDqhGjRqaPHnySc9/5plnNG7cOE2ePFmrVq1STEyMWrRoof379/vX6d27t+bMmaPZs2fryy+/VGJiotq2bauUlJTMuhsAAAAAADgrrJ/xb9Omjdq0aXPS88xMEyZM0KOPPqoOHTpIkmbOnKmiRYvq9ddf17333qt9+/Zp6tSpmjVrlpo3by5JevXVV1WyZEktXLhQrVq1yrT7AgAAAACAi5z9jP/69esVHx+vli1b+pdlz55djRo10ooVKyRJq1ev1tGjRwPWiY2NVbVq1fzrnExSUpISEhIC/gEAAAAA4EXODv7x8fGSpKJFiwYsL1q0qP+8+Ph4RUZGqkCBAqdc52RGjx6tfPny+f+VLFkyyPUAAAAAALjB2cE/jc/nCzhtZumWnehM6wwePFj79u3z/9u0aVNQWgEAAAAAcI2zg39MTIwkpdtzv2PHDv+7AGJiYnTkyBHt2bPnlOucTPbs2ZU3b96AfwAAAAAAeJGzg3/ZsmUVExOjBQsW+JcdOXJEn3/+uRo0aCBJql27tiIiIgLW2bZtm3766Sf/OgAAAAAAXMzCelT/xMRE/fnnn/7T69ev1/fff6/o6GiVKlVKvXv31qhRo1SxYkVVrFhRo0aNUlRUlG655RZJUr58+dSjRw/169dPBQsWVHR0tPr376+4uDj/Uf4BAAAAALiYhXXw//bbb9WkSRP/6b59+0qSunbtqhkzZmjgwIE6dOiQ7r//fu3Zs0f16tXT/PnzlSdPHv9lxo8fr2zZsqlz5846dOiQmjVrphkzZihr1qyZfn8AAAAAAHBNWAf/xo0by8xOeb7P59OwYcM0bNiwU66TI0cOTZo0SZMmTQpBIQAAAAAAFzZnP+MPAAAAAADOH4M/AAAAAAAexuAPAAAAAICHMfgDAAAAAOBhYT24HwAAAM6s9oBXMnS5OXnOvA4AwPvY4w8AAAAAgIcx+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbB/QAAOAcbR8Rl6HKlhq4NcgkAAMDZYY8/AAAAAAAexuAPAAAAAICHMfgDAAAAAOBhfMYfAAAAAIBzlJHj/oTrmD/s8QcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADwsW7gDvGTjiLgMXa7U0LVBLgEAAAAA4Bj2+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4GIM/AAAAAAAexuAPAAAAAICHZQt3AAAAAADAbRtHxGXocqWGrg1yCTKCPf4AAAAAAHgYe/wB4P/jlWwAAAB4EXv8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMr/MDgItA7QGvZOhyq8fcEeQSAAAAZDb2+AMAAAAA4GHs8QcAAJJ4ZwguDhtHxGXocqWGrg1yCU7EcwOEDnv8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAP4zP+HpWRz0jx+SgAQEbwuVwAANzGHn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwsGzhDsCFofaAVzJ0uTl5ghwCAADgERtHxJ3zZUoNXRuCEgBexx5/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8LBs4Q4AMsPGEXEZulypoWuDXAIAAAAAmYvBHwAAAABwQWCHXsbwVn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPc3rwHzZsmHw+X8C/mJgY//lmpmHDhik2NlY5c+ZU48aN9fPPP4exGAAAAAAAtzg9+EvSpZdeqm3btvn/rV271n/eM888o3Hjxmny5MlatWqVYmJi1KJFC+3fvz+MxQAAAAAAuMP5wT9btmyKiYnx/ytcuLCkY3v7J0yYoEcffVQdOnRQtWrVNHPmTB08eFCvv/56mKsBAAAAAHCD84P/H3/8odjYWJUtW1Y33XST/v77b0nS+vXrFR8fr5YtW/rXzZ49uxo1aqQVK1ac9jqTkpKUkJAQ8A8AAAAAAC/KFu6A06lXr55eeeUVVapUSdu3b9fIkSPVoEED/fzzz4qPj5ckFS1aNOAyRYsW1T///HPa6x09erSGDx8esm4AAADgQrFxRFyGLldq6NozrwTACU7v8W/Tpo1uvPFGxcXFqXnz5po7d64kaebMmf51fD5fwGXMLN2yEw0ePFj79u3z/9u0aVPw4wEAAAAAcIDTg/+JcuXKpbi4OP3xxx/+o/un7flPs2PHjnTvAjhR9uzZlTdv3oB/AAAAAAB40QU1+CclJenXX39VsWLFVLZsWcXExGjBggX+848cOaLPP/9cDRo0CGMlAAAAAADucPoz/v3791e7du1UqlQp7dixQyNHjlRCQoK6du0qn8+n3r17a9SoUapYsaIqVqyoUaNGKSoqSrfccku40wEAAAAAcILTg//mzZt18803a+fOnSpcuLDq16+vr776SqVLl5YkDRw4UIcOHdL999+vPXv2qF69epo/f77y5MkT5nIAAAAAANzg9OA/e/bs057v8/k0bNgwDRs2LHOCAAAAAAC4wFxQn/EHAAAAAADnhsEfAAAAAAAPc/qt/gAAAOFUe8ArGbrcHA43BABwCHv8AQAAAADwMPb4AwiajO4ZWz3mjiCXAAAAAEjDHn8AAAAAADyMPf4AAMA5GXkHEZ+rBwDg5Bj8AQCZioOlAQAAZC7e6g8AAAAAgIcx+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAh3FUf8dx9GsAAAAAwPlgjz8AAAAAAB7GHv+TYC87ACAzZeT/O/w/BwAAnC32+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4GIM/AAAAAAAexuAPAAAAAICHMfgDAAAAAOBhDP4AAAAAAHgYgz8AAAAAAB7G4A8AAAAAgIcx+AMAAAAA4GEM/gAAAAAAeBiDPwAAAAAAHsbgDwAAAACAhzH4AwAAAADgYQz+AAAAAAB4WLZwBwCAl9Ue8EqGLrd6zB1BLgEAAMDFij3+AAAAAAB4GIM/AAAAAAAexuAPAAAAAICHMfgDAAAAAOBhDP4AAAAAAHgYgz8AAAAAAB7G4A8AAAAAgIdlC3cAAGwcEZehy5UaujbIJQAAAID3sMcfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMP4Oj/AA2oPeOWcLzMnTwhCgAtIRn5vJH53AADAhYc9/gAAAAAAeBiDPwAAAAAAHsZb/QEAAHDB4eM6AHD22OMPAAAAAICHsccfgOewFwgAAAD4H/b4AwAAAADgYQz+AAAAAAB4GIM/AAAAAAAexmf8ccHJyOe3+ew2AAAAgIsVe/wBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPCwbOEOAAC4a+OIuAxdrtTQtUEuAQAAQEaxxx8AAAAAAA9jjz8AAAAAIFPVHvBKhi43J0+QQy4S7PEHAAAAAMDD2OMPAAAAABcJ9rRfnNjjDwAAAACAh7HHH8ggXi0FAAA4uYz8neT1v5F4TBBOnhn8X3jhBY0ZM0bbtm3TpZdeqgkTJujqq68OdxYAAACQKdgpkR6PCc7GxfBz4om3+r/55pvq3bu3Hn30Ua1Zs0ZXX3212rRpo40bN4Y7DQAAAACAsPLEHv9x48apR48euuuuuyRJEyZM0GeffaYpU6Zo9OjRYa4DgHO3cUTcOV+m1NC1ISgBAJzJxbC3EMCF7YIf/I8cOaLVq1fr4YcfDljesmVLrVix4qSXSUpKUlJSkv/0vn37JEkJCQmSpJSkQxlq2R+RkqHLpd3uyWRmiysdoWhxpcOlFlc6QtHiSkdmt7jS4VKLKx2haHGlw6UWVzpC0eJKR2a3uNLhUosrHaFocaXDpRZXOkLR4kpHZrcc35H232aWods/Fz7LjFsJoa1bt6p48eJavny5GjRo4F8+atQozZw5U+vWrUt3mWHDhmn48OGZmQkAAAAAQDqbNm1SiRIlQnobF/we/zQ+ny/gtJmlW5Zm8ODB6tu3r/90amqqdu/erYIFC57yMmeSkJCgkiVLatOmTcqbN2+GriNYXGmhw90WVzpcanGlw6UWVzpcaqHD3RZXOlxqcaXDpRZXOlxqocPdFlc6XGpxpSNYLWam/fv3KzY2Nsh16V3wg3+hQoWUNWtWxcfHByzfsWOHihYtetLLZM+eXdmzZw9Ylj9//qD05M2bN+w/hGlcaaEjPVdaXOmQ3GlxpUNyp8WVDsmdFjrSc6XFlQ7JnRZXOiR3WlzpkNxpoSM9V1pc6ZDcaXGlQzr/lnz58gWx5tQu+KP6R0ZGqnbt2lqwYEHA8gULFgS89R8AAAAAgIvRBb/HX5L69u2r22+/XXXq1NEVV1yh//73v9q4caP+85//hDsNAAAAAICw8sTg36VLF+3atUsjRozQtm3bVK1aNX3yyScqXbp0pjVkz55djz/+eLqPEISDKy10uNviSodLLa50uNTiSodLLXS42+JKh0strnS41OJKh0stdLjb4kqHSy2udLjWcjYu+KP6AwAAAACAU7vgP+MPAAAAAABOjcEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMOyhTsAZ/bXX38pISFBhQsXVokSJehwpMOlFlc6XGpxpcOlFlc6XGqhw90WVzpcanGlw6UWVzpcaqHD3RZXOlxqcaXDpZaQdRicNmTIEKtdu7blzJnTGjRoYE8//TQdDnS41OJKh0strnS41OJKh0stdLjb4kqHSy2udLjU4kqHSy10uNviSodLLa50uNQSyg4Gf4cNHz7cYmJi7NNPP7Vly5ZZz549rWHDhrZ582Y6wtjhUosrHS61uNLhUosrHS610OFuiysdLrW40uFSiysdLrXQ4W6LKx0utbjS4VJLqDsY/B31xRdfWI0aNWzu3Ln+ZVu2bLE8efLY66+/TkeYOlxqcaXDpRZXOlxqcaXDpRY63G1xpcOlFlc6XGpxpcOlFjrcbXGlw6UWVzpcasmMDg7u56jExETVq1dPcXFxkqTU1FTFxsaqdu3aSkpK8i+jI3M7XGpxpcOlFlc6XGpxpcOlFjrcbXGlw6UWVzpcanGlw6UWOtxtcaXDpRZXOlxqyYwODu7nEDOTz+eTJNWpU0fFixdXyZIlJUlZshx7jSYqKsr/5GfJkkWHDx9Wjhw56Ahhh0strnS41OJKh0strnS41EKHuy2udLjU4kqHSy2udLjUQoe7La50uNTiSodLLZndwR5/hxw8eFBHjhzRoUOHVLhwYVWvXj3gfDPT7t27tXv3bknS7t271aRJE02dOpWOEHa41OJKh0strnS41OJKh0stdLjb4kqHSy2udLjU4kqHSy10uNviSodLLa50uNSS2R0M/o4YN26cbrnlFtWtW1d9+vTRhg0bJB17wtP4fD5FRUUpOjpahw8fVoMGDZQnTx716NGDjhB1uNTiSodLLa50uNTiSodLLXS42+JKh0strnS41OJKh0stdLjb4kqHSy2udLjUEo4OBn8HDB48WE8//bRat26tRo0a6e+//9bIkSOVlJTkf/tHmpiYGG3fvl3169dXqVKlNH/+fEnB+ewJHe62uNLhUosrHS61uNLhUgsd7ra40uFSiysdLrW40uFSCx3utrjS4VKLKx0utYSt45wPB4igmj17tlWoUMFWrlzpXzZ+/HirWLGi7dmzJ2DdlJQUa9Kkifl8Pmvfvn3AcjqC2+FSiysdLrW40uFSiysdLrXQ4W6LKx0utbjS4VKLKx0utdDhbosrHS61uNLhUks4O9jjH0ZHjx7Vpk2b1KxZM1WrVk0pKSmSpNtvv11Hjx7Vli1b/Ova/z/4w+WXX677779fH3zwgaRjr/akHfyBjuB0uNTiSodLLa50uNTiSodLLXS42+JKh0strnS41OJKh0stdLjb4kqHSy2udLjUEvaODL1cgPOWmppqZmafffaZffvttwHLt27dagULFrQ1a9b4l6e9srNz5850y+gIXodLLa50uNTiSodLLa50uNRCh7strnS41OJKh0strnS41EKHuy2udLjU4kqHSy0udDD4h8mJT1zaD4OZ2e7duy02NtZWr17tP92hQwfbsmXLSdenI3gdLrW40uFSiysdLrW40uFSCx3utrjS4VKLKx0utbjS4VILHe62uNLhUosrHS61uNCR7bzer4BzNnnyZH3zzTdKSEhQ06ZN1bVrV+XLl08+n8//lo48efIoZ86cioqK0t69e3XllVcqJiZGsbGx/us58cAPdJxfh0strnS41OJKh0strnS41EKHuy2udLjU4kqHSy2udLjUQoe7La50uNTiSodLLa50SBzVP1M98sgjGj58uHLnzq3o6GgNHDhQt912mxYtWiTp2BOampqqffv2SZI2bNig5s2bq2TJklq8eLGk4BxJkg53W1zpcKnFlQ6XWlzpcKmFDndbXOlwqcWVDpdaXOlwqYUOd1tc6XCpxZUOl1pc6fA77/cM4KysW7fOKlasaPPnz/cv+/nnn61GjRrWokULW7BggX95fHy8RUdHm8/ns2uuuca/PBifL6HD3RZXOlxqcaXDpRZXOlxqocPdFlc6XGpxpcOlFlc6XGqhw90WVzpcanGlw6UWVzqOx+CfSf766y8rUaKELV261MzMjhw5YmZmv//+u9WsWdPatGlj27dvNzOzxMREq127tt16663+ywfriafD3RZXOlxqcaXDpRZXOlxqocPdFlc6XGpxpcOlFlc6XGqhw90WVzpcanGlw6UWVzqOx+CfSTZt2mQFCxa0CRMmmNmxJ/Po0aNmduwVoaioKBs1apR//WXLlvn/O5hPPB3utrjS4VKLKx0utbjS4VILHe62uNLhUosrHS61uNLhUgsd7ra40uFSiysdLrW40nE8Bv9MNGbMGMubN6/NnTvXzI4dnTEpKcnMzB5++GFr0KCBJSYmBlwmmEe1pMP9Flc6XGpxpcOlFlc6XGqhw90WVzpcanGlw6UWVzpcaqHD3RZXOlxqcaXDpRZXOtJwVP8QWb58uRISEnTo0CF16NBBknTddddp7dq16tu3r3w+n9q0aaPIyEhJUs6cOZUvXz7lypUr4HrO9wiOdLjb4kqHSy2udLjU4kqHSy10uNviSodLLa50uNTiSodLLXS42+JKh0strnS41OJKx2mF7CWFi9jgwYOtSpUqVq5cOStQoIB16NDBf97XX39tt99+u0VHR9uLL75oP//8s/3yyy926aWXWu/evekIYYdLLa50uNTiSodLLa50uNRCh7strnS41OJKh0strnS41EKHuy2udLjU4kqHSy2udJwJg3+QjRo1yooWLWpfffWV/fnnn7ZkyRIrXry4zZw507/O77//bk888YTlzp3bYmNjrXz58nbDDTf4zw/GWzzocLfFlQ6XWlzpcKnFlQ6XWuhwt8WVDpdaXOlwqcWVDpda6HC3xZUOl1pc6XCpxZWOs8HgH0Q///yzXXbZZTZnzhz/sn379tmVV15pI0aMSLf+n3/+aStXrrSvv/7avywYB3Ogw90WVzpcanGlw6UWVzpcaqHD3RZXOlxqcaXDpRZXOlxqocPdFlc6XGpxpcOlFlc6zhaf8Q+SFStWqFy5cqpRo4bKli3rX543b17FxcVp/fr1kqQjR44oMjJSZqby5curfPny/nVTU1OVJUsWOoLY4VKLKx0utbjS4VKLKx0utdDhbosrHS61uNLhUosrHS610OFuiysdLrW40uFSiysd5yLzbsnD1qxZo8GDB2vDhg165plnVKNGDUmSmUmSsmbNqpSUFElSZGSkDhw4oAMHDqS7nvN94ulwt8WVDpdaXOlwqcWVDpda6HC3xZUOl1pc6XCpxZUOl1rocLfFlQ6XWlzpcKnFlY5zxeAfBLGxscqSJYsWLFigQoUKSTr2Ck5qaqok6ejRo/519+zZo/Lly2vixIl0hLjDpRZXOlxqcaXDpRZXOlxqocPdFlc6XGpxpcOlFlc6XGqhw90WVzpcanGlw6UWVzrOWTA/N3AxSvtcxpIlS6xAgQK2aNGidOs88MAD1qNHDzt8+LBVqVLFWrZsGbTbTzsYRHJyclg7TuwJd4dLLa50uNTiSodLLa50uNTiSke4t/NmbOsvhBZXOlxqcaXDpRY60gv3Nta17evxTeFucaXDpRZXOjKCPf4ZdPjwYUnH3qKRmpqqRo0a6c4779S8efN0+PBh/1s9pGOf9di6davq1aun4sWL67PPPpMk/6tC52Pz5s1OdBwvJSXFiQ6fz+dEiysdaS1mFvYWVzrSWlz43XHl5yQlJcWZ5yfcHa5s5yW29afjyu+OKx1pLa78Drvy8+rC88P2NZAr21gXt6+SG9tYF35vXGtx4Xcnoxj8M+Cll17SzJkztXfvXknHNhQ+n0/169fXRx99pE2bNsnn8/nf5rFnzx7NmzdPVatW1cKFCyUF52AOI0eOVMOGDbVx40b5fL6wdfz000/6+eef9fvvv4e1Q5IOHDigw4cPKzk5WdL/npt69eplasu+fft06NAh/+2Eq+NkfD5f2J4fVzpSU1P9PyNS+H6Hd+7cqf379ysxMVHSsc+EhesxmT9/vszM/7m0cD0/Y8eO1bp16/ynw9XhynZeYlt/MmzrzyxcvzuubF8ld7axbF/Tc2Ub68r2VXJnG+vK9lVydxvryt/S5yyk7yfwoP79+1vhwoXtgw8+sF27dplZ4Ncw3H777dasWTNLSkryL1uyZIn17dvXfzoYX9vw4IMPms/ns1y5ctnSpUvNzOzo0aOZ3jFkyBCrWrWqlS5d2kqVKmWLFy8OOD+zOszMnnzySbvuuuusWrVqds8996R7681tt92WKS0jR460Fi1aWMWKFa179+62cOHCsHSYmb3//vv2zTffnPL8zHp+XOkwM5s8ebJ1797d6tWrZy+++KJt2rQpLC2jR4+25s2bW7ly5eyuu+6ydevWhaXDzGzcuHHm8/nsjjvu8L+F7ciRI5ne0rdvX/P5fPb777+f9Hozq8OV7bwZ2/qTYVufnivbWFe2r2bubGPZvqbnyjbWle2rmTvbWFe2r2bubGNd2b4GA4P/OZg9e7aVLFnS/92L+/bts8TERNu+fbt/nR9++MHat29vH330kX/Z8RuRYDzxffr0sQIFCtj69evt+uuvtwYNGqT7fNKPP/4Y8o7HH3/cihYtaosXL7Z58+ZZx44d7b777gtYJzMeDzOzxx57zAoXLmxvvPGGPfHEE9a5c2fLli2bzZ4927/O999/H/KW4cOHW8GCBW3q1Kn2yCOP+DtefvnlTO0wMxsxYoT5fD67+eab7dtvvw04L+02MuPnxJUOM7OHH37YihUrZkOGDLEOHTpYpUqVbOLEiWb2vz/EMqNl0KBBVqRIEZs1a5YNGzbMatSo4f8ZSbutzPo5MTN7+umnrV69eta4cWO79dZb/ded9pisXbvW2rVrF9KW3r17W758+WzNmjWnXCczHhNXtvNmbOtPhm19eq5sY13Zvpq5tY1l+xrIlW2sK9tXM3e2sa5sX83c2ca6sn0NFgb/czBs2DDr2rWrmZl9/PHH1rJlS7vkkkusSpUqNmPGDDMzO3jwoN16663WuXNn/+XSNiTB8NBDD1nu3Lntu+++MzOzN954wypVqmQLFiwws//9cB06dMhuv/32kHVs2rTJrrjiCnv//ff9y4YNG2b9+/e3NWvW+PsOHjxot912W8g6zMx+//13u/zyy23JkiX+ZV988YX5fD7z+Xw2bdo0MzM7cOBASFsSEhKsUaNG9tJLL/mXbd++3YYPH25ZsmSx//73v/6OUP6MmB17dTLt1dr69evbbbfdZqtWrUp3e6H+OXGlw8xsxowZVqZMGf8fG2bH/sdfsWLFgL0voW6ZMmWKlSxZMuB/IB07drSXXnrJdu3aZf/++6+ZZc7PSZpp06ZZq1at7IUXXrDq1avbrbfeambHtid79+61w4cPh/QxGTlypPl8PtuwYYOZHfv9ffLJJ61du3Y2ZswY/89MZjwmLmznzdjWnwzb+vRc2ca6sn01c28by/Y1kAvbWFe2r2bubGNd2b6aubONdWX7GkwM/mchbQNw66232iOPPGI7duywggUL2pgxY2zKlCn26KOPms/ns0mTJpmZ2bZt26x48eIBP7DB8O2331qjRo3shx9+8C/buXOnlS9f3u655550vfHx8SHpMDP7888/LVeuXPbuu+/6l1WpUsUqVKhglStXthw5ctiYMWPMzGzr1q0h6zA79ipogQIFbNmyZQHLr7vuOuvevbvlyJHDPv/8czML7WOyY8cOK1SokL344osBy5OSkmzEiBGWJUsWmzt3rpmF7mckzdy5c+3OO++0xMREe++996xOnTrpNlhpr2jHx8dbbGxsSFpc6di/f7/179/fhgwZYocPH/b/Ibp69WqrWrWq7d2718wCf3dC0XLgwAGbOHGiTZkyxd+QkpJi5cqVs1q1alnp0qWtdu3a/leNQ/1zkmbBggV28803m5nZ888/b3Xr1rXrr7/eoqOj/S2h+t05ePCgDRgwwHw+n61Zs8a++OILK1asmN14443WqFEja9CggVWtWtX/x0ioHhNXtvNmbOtPhW19ei5sY13Zvpq5uY1l+3qMK9tYl7avZu5sY13Zvpq5s411YfsabAz+52DixIlWvnx569evn919990B540bN84KFChgP//8s5kd+2zZnXfeaTt27Ahqw+7du83s2CtJaRulV155xQoXLmwrVqzwr5f2gxiqjgMHDliXLl0sJibGHn30UStXrpw1btzY1q9fb1u3brWXX37ZIiIi/BuQUHWYmf36669Wp04dmzhxosXHx5vZsbfmlCxZ0r777jtr0qSJPfroo/71Q9ly++23W6tWrWzz5s0By3fu3Gm33367dejQwf9HUCg7Dh06FNDw9ttvn3SDldYyatSokLQcPnzYiQ6zY3ukli9fHrDs559/toIFC9rGjRv9y9I+oxWqlk2bNtnOnTvN7NgfFlWqVLGrr77ali9fbh9//LHdddddVr16dfv777/NLLQ/J2n+/fdfq127tv+zlk888YTlyJHDSpQoYQcOHPCvF8rtWtrnT6Ojo+3ll1+2/fv3m5nZV199Ze3atbMuXbrYvn37QtphZjZp0qSwb+fNwr+tT9tb4cK2Pq3ll19+YVt/gqSkJCe2sTNnznRi+2pmtmXLFqe2seHevu7du9eZ7auZG39L79mzx8zC/7e02bEXZ8K9jTUz++2335zZvpq5sY116W/YYMkW3kMLXlgaNmyoefPmafbs2WrZsqWk/x2h8eqrr1bu3Ln9R3Ns3ry5UlJSlCtXrqA2FChQwH+bPp9PklSzZk3ly5dPX3/9ta644gqlpKQoa9asIe2IiopS//79VaVKFeXLl0/58+fXpEmTVKZMGUlS06ZNFRMTo127doW0Q5KqVKmiq666Si+99JKmTZumQoUKadmyZVqwYIFq1aql8uXLa8mSJTIz+Xy+kLY0adJEzz33nF577TXdddddio6OliQVLFhQl112mcaMGaOUlBRJoX1McuTIodjYWP997tixoyTp6aef1nPPPad+/fqpQIECuuWWWzRr1iw1a9ZMqampQW/Jnj27YmNj/T+z4eqQpK5du6Zbli1bNqWmpvqfk7179+qpp57SwIED1bx585C0lChRwv/fZqZOnTqpX79+ypcvn6RjR7CdM2eO/ytfQvlzIknJycny+XzavXu3Dh06pL1792rChAmqWbOmjhw5ovvuu0/Tp09XlixZQrpde/TRR5UnTx7t2rVLnTp1UlRUlCSpXr16qlGjhqZOnZopvztXX321Pvnkk7Bu56Xwb+vTbtOFbX1aS9WqVXXVVVfpxRdfDMu2/vgjMjdv3lzjxo0L27Y+7bmPjIxU8eLFw7atT05OVrZs2XTHHXekOy+zt69pLbGxsf5l4djGHv9zkva8hGP7mvZ45MuXT0OHDlXevHm1c+fOsGxfj39MmjRpEra/pY8ePaqIiAjlz59f0v+OzC5l/t/Safc5Z86cGjRoUNi2sWn3s3LlymrUqJETf0tLbvw9nT179rBuX0MibC85OO7DDz+0Z5991iZPnhzwmbVJkyZZoUKFrGDBggEHSVm3bp3VrFnT/1kcs2Ov4oWq40T9+vWzmJgY/6tMx3+2JNgdK1euDDjvr7/+skKFCgV8nu63336zqlWrBhyBMxgdJ7Yc/8rszJkzbejQoTZgwABbv369f3nv3r3TvaocjJZp06bZf/7zH7vrrrvslVde8S/v06ePlS9f3saMGWNbtmzxL//ss8+sfv36tnXr1qB2nNjy6quvBpx3/M/CO++8Y/Xq1bP27dtbkSJFrFmzZkFtmTZtmvXq1cv69+8f8JiYBR7cJNQdJ7bMnDkz4Ly0x2TLli1Wvnx5S0xMtL1791r58uXtuuuuC2rLqR6TEw/2krZn4ZNPPrHGjRsH/OyE4jGZNWtWwHkPPPCATZw40YoWLWrdu3e3Xbt22ZQpU6xEiRI2ZcqUoLac6rnZvXu3/3OoZv87OM6kSZOsbdu2AbcdyufmhRdesIIFC2badv7ElhOfm+OFelt/ut+bP//8M1O39ce3TJ8+3b981qxZNmTIkEzb1h//M3D8AZvCsa0/vuXEbUhmbuuP70jbdp0oM7avJ7Yc/5ic2BXqbezpnptevXpl2vb1VM/Nrl277J9//vGfDvX29XQtzz//fKb+LX265+Z4od6+nthy/PbELHP/nj6+4/jjcLzyyiuZ+re02alnjN69e2fqNvZ0M1dmbl9DicH/JAYNGmSlSpWypk2bWpkyZax58+b+z7WYHfujsGrVqlaqVCmbPHmyTZ061eLi4uymm24KeceXX34ZsE7aBmzt2rVWrVo1mzx5ctCPHnmyjuM/A7Rv3z5r2bKlPfTQQ7Zs2TL77rvvrEaNGkF/PE7VkvYVLGnSfjlTUlJs+/btVrVqVXvyyScDzjtfAwYMsOLFi1uPHj2sTZs2VrNmzYCNVa9evSwuLs46dOhg7777rn3yySdWtWpVu/3224Ny+2dqOfHgI8ff7wkTJpjP57MuXbr4lwXrSPWFCxe2W265xZo0aWJ58+a1m266KeAtT8ffTqg6zrbFzOyPP/6w8uXL23fffWdxcXHWqlUr/3nB+Fk5m47jb2fbtm1Wq1Yte+CBB877ts+2Je1Iyvfcc4/5fD675557/G8/TUxMTPf1OaHo6NKli/+AWyeKj4+3mjVr2sCBA0Pe0alTJ//bXV988UWrUqVKyLfzp2o51e9OqLf1J3tu0n5GEhISrEWLFpm2rT+xpWPHjv63VJr97zEJ5bZ++PDhVrhwYZswYYJ/2fFf2fTQQw9l2rb+ZC2nG/5DtY09mw6z0G9fz6UlTai2sWfquPvuuzNl+3qyjlO9MGMWuu3rqVqOHzAz62/ps/kZyYzt66lajn9+Muvv6TNt18wy529pszPPXJm1jT2bmSsztq+hxuB/gvHjx1uJEiXsq6++MrNjB7uoU6eOjR07NmC9+fPn23333WdFihSxJk2aBLwKFoxfiLPtOP42a9WqZQ8//PB533ZGOsaMGWMNGjSwiIgIq1mzZsBGKli/CGdqOf5xT0xMtDfffNMqV65sbdu2Dcrtpxk1apSVLFnSP1z/8ssvVqlSJfvpp58CGl544QW78cYbLXv27Hb55ZfbLbfc4j8vWBvN07UcL+05+OWXX6xYsWLWsWPHdOedjzVr1liJEiX8f8QcOnTIlixZYkWLFrVWrVr5B4fjP6sbio5zaTE79kp6zpw5LVeuXNayZcugtpxLx7///mvz58+3uLg4a9++vX95sH5OTtfSokULS0hIMLNjx0FI++znibcd6sekZcuWAY/Jjh077NNPP7VLLrkk6I/J6TqaNWvmHy4//fTTkG7nz9Ry/M9J2uMfqm39mTrSXoR46qmnQr6tP9PPa9rnT1NSUkK6rZ86daqVLFnSGjdubFddddUp/0h+6aWXQr6tP13LyR73UG1jz6UjlNvXc20J5Tb2dB1pe3RTU1Nt1qxZId2+nsvjEcrt65lajv/dCfXf0uf6exOq7eu5tIT67+nTdZz4IlEot69mZz9jhHobe64zVyj/hg01Bv/jbN682W644QZ77rnnzOx/P0yDBg2yli1bWmpqarpfil27dtnhw4f9p4PxxJ9Nx/HSbjNtT1WwnOvj8dNPP9mSJUsC3h4TrF+Ec31M9uzZYzNmzLDevXsHtWXbtm3WoUMH/1fOmB37ozTtj4kbb7zRHnvssYDLrF+//pR7vUPd8vjjjwdcZvHixSH5A+yrr76y4sWLB7ztyuzYxrFo0aLWqVOnTOk415a//vrL8uXLZ927dw96y7l0zJ8/37p16xawFyozH5MOHToE7bbOp+P4x+STTz6xzp07B/whmFnPzYmPRyi282fbcvxjkjZEBHtbfzYdxz8ma9euDdm2/mxajn9Mdu/eHZJt/eHDh+3ee++13r172/fff2/33nuv1a9f/7R7yEK1rT+blhNvKxTb2HPt+Pvvv0O2fT3XlgULFoRkG5uRn5NQONfHY968eSHbvmbkMQnFNvZcH5O0v2dDsX09m5bj3w0Rqr+nz/UxCdXf0mZn93f9iR+FCMU29lznC7PQ/g0bagz+/9/ixYvt119/tQEDBvg/95L2ZI8dO9bq1at30ssdP/gG41WnYHQE4wcwox3HC9YrxxltOf5/LMF6THbu3Gnfffed/7NGKSkpVqtWLatVq5YNGzbMhg0bZlmyZEk3/KcJ5mNyti0nDv9pgvGYLFq0yA4cOGDr16+3yMjIgBch0n4mv/zyS8uTJ4//c4yh2NOR0RYzszlz5gS1JaMdaUeYDlbH+bQEW0Y7fv/9d/9/Z/Zz88ILL/jPO/5nNli/w8F4bjL7MZk8efJJryPcj0mw//+3cOFCO3r0qP3zzz/+z9pu2LDB/13Op/ojORQ/J+fSciqZ/Zic+FnYYHacT0uwtycZ7Qj2kJDRjl9//TXoTRn93Tl+wAvG705Gf2+CvS0515ZTfSwjnI9JsP+WNnNnxghGx4U09Jsx+Ftqaqpt3LjRoqKi7NNPPw04L+3JfOedd6xFixb+5fv27bOPP/6YjhB2nE9L2vfiBrsjZ86cAd+zamb2xhtvWKdOnfxf02Nm9uCDD9oVV1xhiYmJQf0c1Pm2BHPjlJqaaps2bbKcOXPa7NmzzezYZ8QbNWoUcMyFlJQUS05Ots6dO9udd97pXxZMGW051Wf8MrvjZNdzvs6nJZg/sxntOLHhfJtceTxcanGl43xbQtXx5ptvBtyuWeAfyWl7h9atW2fjx4/3bEtGO9K+d/zE9cPR8uyzz6a7nnB0uPLcBPvxOJ8WVx4Tl36Hx40b58mOtBYXZgxXOsLhoh/804wZM8bq1atnf/75Z7rzXnvtNbviiivM7Nj3R1566aXWrVs3OjKhw6WWtFf/jt8zaxb49iyzYwfbO/7zR15uSevYvn27ff3113b11VfbjTfeaF988UXAej179kz3dn+vtrjS4VILHe62uNLhUsvJtq9pw9H69evtnnvusSuvvNIeeeQRK126tNWvX9/zLa50uNRCh7strnS41OJKh5k7f9e70pGZsoT76wRd0a5dO5UoUUKrVq2SJP93Q0rHvns2JSVFO3fuVJMmTRQbG6vp06fTkQkdLrVce+21KlGihL7++mtJ8n/PbEREhH+drVu3avHixapevXpIGlxrufbaaxUbG6slS5aobt266tu3r7Zv364nnnhCb7zxho4cOaLffvtNixYtUpUqVULW4VKLKx0utdDhbosrHS61nLh9TUlJkc/nk5mpTJkyGjp0qIoXL67Ro0erbt26WrlypaRj39nu1RZXOlxqocPdFlc6XGpxpUNy5+96VzoyVea+zuC2Rx55xC655JKArwgyM3v33XetRo0aVr58eWvevLl//VB9roMOd1tO1bF//377+uuvrXr16gHfUxzst8S60nL859AeeeQRq1Kliv/6Fy1aZHfeeaflyJHDSpQoYaVLlw7pY+JKiysdLrXQ4W6LKx0utZzYcfz29fjb2bRpkxUvXtw6d+7sXxbs/+e40uJKh0stdLjb4kqHSy2udJypJTP/rnelIxwuysH/888/tzfeeMO+/PJL27NnT8B5jRo1ssGDBwcse/fdd83n8wX9l4EOd1vOpePQoUP2yiuvWIsWLQLeVh+OxySULdu2bbMNGzac9LxGjRrZoEGD/KcTEhLst99+szlz5tjixYuD2uFSiysdLrXQ4W6LKx0utZyp48T/5yQnJ1uXLl2sWbNmQe1wqcWVDpda6HC3xZUOl1pc6chIS6j+rnelI9wuusF/0KBBVq5cOStVqpSVK1fOJk2aZGb/e/Xn5Zdfts6dOwd8jdCaNWts1KhR/tPBeOLpcLclIx1///13uoNQBYMrLY899pjVrl3bSpcubdWrV7dx48b5bzMlJcXfsXnzZjOzdF/BEqwOl1pc6XCphQ53W1zpcKnlbDuOX2YW+HVfmf2YhLrFlQ6XWuhwt8WVDpdaXOnISItZaP6ud6XDBRfV4P/ss89asWLFbPny5bZ//3675557rG7dugFvddm8ebNVrlzZHn/88ZNeRzCeeDrcbQlGR7DeeupKy9NPP23FihWzDz74wH788Ue75557LHfu3Na5c2f766+/zqojWFxpcaXDpRY63G1xpcOllox2BPsrfF1qcaXDpRY63G1xpcOlFlc6zqfleMH4u96VDldcFIN/amqqJSQkWIsWLWzixIn+5StWrLA77rjDZsyYYXPnzvX/AHz22WdWpUoV+/LLL+kIYYdLLa50uNSSmppqu3btsoYNG9orr7wScF5cXJwVK1bMOnbsaP/884+ZmS1YsMCqVq0assfEhRZXOlxqocPdFlc6XGpxpcOlFlc6XGqhw90WVzpcanGlw6UWVzpcc1Ec1d/n8ylr1qxKTEzU5s2b/UdA79Gjh77++ms9++yzGj58uLp3764NGzaoQYMGatiwoZYvXy4peEe0pMPdFlc6XGrx+Xw6evSotmzZopw5c0r63xFPK1eurObNm+v333/XokWLJElxcXG6+uqrQ/aYuNDiSodLLXS42+JKh0strnS41OJKh0stdLjb4kqHSy2udLjU4kqHczLpBQYn9OrVyypUqGBNmjSxKlWq2FVXXWVbt2611NRUW7BggdWsWdOmT59uZmYvvviilSxZ0rZv305HiDtcanGlw6WWq6++2po2bWq7du2ylJQUGzVqlJUsWdJ2795tt912m9WrV8+/7n//+9+QPiautLjS4VILHe62uNLhUosrHS61uNLhUgsd7ra40uFSiysdLrW40uEKTw/+b775po0fP96efvpp++OPP8zM7O2337a3337b6tata3PmzPGve/jwYbv00ktt5MiR/mX/93//Zzt27KAjyB0utbjS4VJLWsdTTz1lv/32m61du9Zq1qxpefPmtUsuucTy58/vP3jg+++/b+XLl7edO3cGvcOlFlc6XGqhw90WVzpcanGlw6UWVzpcaqHD3RZXOlxqcaXDpRZXOlzl2cF/wIABFh0dbW3atLFChQpZXFycDRgwwH/+VVddZR9++KH/9MaNG61GjRr22muv+ZcF42AOdLjb4kqHSy3HdxQsWNAuu+wy69OnjyUkJNhbb71lM2bMsE2bNvnXf/75561Zs2aWlJTkPzhMKB6TcLa40uFSCx3utrjS4VKLKx0utbjS4VILHe62uNLhUosrHS61uNLhMk8O/l988YWVLFnSli9fbmZmBw4csCeffNKqV69unTp1MjOzG2+80apWrWpvvPGGvfvuu1arVi277rrr6Ahhh0strnS41HKyjpEjR1q1atXs9ttvD1j36NGjtnHjRouLi7N+/foFtcOlFlc6XGqhw90WVzpcanGlw6UWVzpcaqHD3RZXOlxqcaXDpRZXOlznycH/rbfeshIlStju3bv9y/bv329Tp061Sy+91AYOHGj79++3pk2bWpEiRaxWrVp27733+tcN1qs9dLjb4kqHSy2n66hevbr95z//MbNjHzN46623rHr16nbttdf61w3WV8C41OJKh0stdLjb4kqHSy2udLjU4kqHSy10uNviSodLLa50uNTiSofrPDn4L1u2zCpUqOD/DEeaxMREGzNmjMXFxdl3331nZma//fZbwNs+gjnQ0eFuiysdLrWcqaNWrVr2xRdfmJnZBx98EPBVg5n9mGRWiysdLrXQ4W6LKx0utbjS4VKLKx0utdDhbosrHS61uNLhUosrHa7z5OAfHx9vVatWtZtuusn27NkTcN6hQ4esbNmy9vDDD6e7XLBf7aHD3RZXOlxqOVNHuXLl7JFHHkl3uVBsMF1pcaXDpRY63G1xpcOlFlc6XGpxpcOlFjrcbXGlw6UWVzpcanGlw3XZwv11gqFQtGhRTZ8+XQ0bNlShQoX05JNPKm/evJKkHDlyqH79+kpOTk53OZ/PR0cIO1xqcaXDpZYzddSrV09HjhxJd7ksWbIEtcOlFlc6XGqhw90WVzpcanGlw6UWVzpcaqHD3RZXOlxqcaXDpRZXOpwX7lceQumDDz6wyMhIu/XWW+2bb76xw4cP28aNG61cuXL27LPP0hGmDpdaXOlwqcWVDpdaXOlwqYUOd1tc6XCpxZUOl1pc6XCphQ53W1zpcKnFlQ6XWlzpcJXPzCzcLz6E0ooVK3TbbbcpKipKhw4dUkREhCpUqKCPP/6YjjB2uNTiSodLLa50uNTiSodLLXS42+JKh0strnS41OJKh0stdLjb4kqHSy2udLjU4kqHizw/+EvSli1b9P3332v9+vWKiYlRx44dJUmpqamZ+hYPOtxtcaXDpRZXOlxqcaXDpRY63G1xpcOlFlc6XGpxpcOlFjrcbXGlw6UWVzpcanGlwzUXxeB/Mq488XSk50qLKx2SOy2udEjutLjSIbnTQkd6rrS40iG50+JKh+ROiysdkjstdKTnSosrHZI7La50SO60uNIRThft4A8AAAAAwMXg4n7ZAwAAAAAAj2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDDGPwBAAAAAPAwBn8AAKBu3brJ5/PJ5/MpIiJCRYsWVYsWLTRt2jSlpqae9fXMmDFD+fPnD10oAAA4Zwz+AABAktS6dWtt27ZNGzZs0KeffqomTZrooYceUtu2bZWcnBzuPAAAkEEM/gAAQJKUPXt2xcTEqHjx4rrsssv0yCOP6IMPPtCnn36qGTNmSJLGjRunuLg45cqVSyVLltT999+vxMRESdLSpUvVvXt37du3z//ugWHDhkmSjhw5ooEDB6p48eLKlSuX6tWrp6VLl4bnjgIAcJFh8AcAAKfUtGlT1ahRQ++9954kKUuWLJo4caJ++uknzZw5U4sXL9bAgQMlSQ0aNNCECROUN29ebdu2Tdu2bVP//v0lSd27d9fy5cs1e/Zs/fjjj+rUqZNat26tP/74I2z3DQCAi4XPzCzcEQAAILy6deumvXv36v3330933k033aQff/xRv/zyS7rz3n77bd13333auXOnpGOf8e/du7f27t3rX+evv/5SxYoVtXnzZsXGxvqXN2/eXHXr1tWoUaOCfn8AAMD/ZAt3AAAAcJuZyefzSZKWLFmiUaNG6ZdfflFCQoKSk5N1+PBhHThwQLly5Trp5b/77juZmSpVqhSwPCkpSQULFgx5PwAAFzsGfwAAcFq//vqrypYtq3/++UfXXHON/vOf/+iJJ55QdHS0vvzyS/Xo0UNHjx495eVTU1OVNWtWrV69WlmzZg04L3fu3KHOBwDgosfgDwAATmnx4sVau3at+vTpo2+//VbJyckaO3assmQ5dpigt956K2D9yMhIpaSkBCyrVauWUlJStGPHDl199dWZ1g4AAI5h8AcAAJKOvfU+Pj5eKSkp2r59u+bNm6fRo0erbdu2uuOOO7R27VolJydr0qRJateunZYvX64XX3wx4DrKlCmjxMRELVq0SDVq1FBUVJQqVaqkW2+9VXfccYfGjh2rWrVqaefOnVq8eLHi4uJ0zTXXhOkeAwBwceCo/gAAQJI0b948FStWTGXKlFHr1q21ZMkSTZw4UR988IGyZs2qmjVraty4cXr66adVrVo1vfbaaxo9enTAdTRo0ED/+c9/1KVLFxUuXFjPPPOMJGn69Om644471K9fP1WuXFnt27fX119/rZIlS4bjrgIAcFHhqP4AAAAAAHgYe/wBAAAAAPAwBn8AAAAAADyMwR8AAAAAAA9j8AcAAAAAwMMY/AEAAAAA8DAGfwAAAAAAPIzBHwAAAAAAD2PwBwAAAADAwxj8AQAAAADwMAZ/AAAAAAA8jMEfAAAAAAAPY/AHAAAAAMDD/h85SYGwnEMuegAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.barplot(data=data, x=\"Date\", y=\"Usage\", hue=\"App\")\n",
+ "plt.title(\"Usage Over Time with Apps\")\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f8913aec",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/4AAAJWCAYAAADhpFz6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEj0lEQVR4nOzdd3hTdf//8VdoSweUQhkdUPaWspUhCmWKC0UFBZHlFpQlCjgKKrgYAore3kgBB+AA5UaRrQxRpgIqLhBQamW1FEqB9vP7g1/Pl1BmSZoP4fm4rl6XPTlJnhkc+05OTlzGGCMAAAAAAOCXCvg6AAAAAAAAeA+DPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AMBNUlKSXC6XQkJC9Oeff+Y6vUWLFqpVq1aeLvuNN95QUlJSruXbt2+Xy+XKddrMmTN1xRVXKDQ0VC6XSxs3blRiYqJcLleerv98rFq1SomJiTpw4ECu01q0aKEWLVp47bo9YfXq1brjjjsUExOjggULKjo6Wrfffru++eYbX6e5adGihVwu1zl/EhMTnefk9u3bfZ19UZYtWyaXy6Vly5Y5yz7//HMlJiaedn2Xy6U+ffpc9PVu2rRJLpdLQUFB2r1790VfHgDg0sPgDwA4rczMTD311FMevcwzDf4xMTH65ptvdMMNNzjL/v33X3Xr1k2VKlXS/Pnz9c0336hq1aq69957vTrErlq1SsOHDz/t4P/GG2/ojTfe8Np1X6wJEybo6quv1q5du/Tyyy9r0aJFevXVV/XXX3+pWbNmmjhxoq8THW+88Ya++eYb5yfnuTZlyhS35ffee69uuOEGffPNN4qJifFx9cWpX7++vvnmG9WvX99Z9vnnn2v48OFevd7//ve/kqTjx49r2rRpXr0uAICdAn0dAACw03XXXaf3339fgwYNUp06dbx6XcHBwWrcuLHbsl9++UXHjh3T3XffrebNmzvLw8LCVKZMGa/2nEnNmjV9cr3nY+XKlerXr5+uv/56zZ49W4GB//e/+DvvvFO33nqrHnvsMdWrV09XX311vnVlZGQoJCQk114ap96XP//8sySpVq1aatiwYa7LKVmypPci80mRIkVyPc+9LTMzU++9957q1KmjPXv26J133tETTzyRrw0AAN/jHX8AwGkNHjxYxYsXP68h4ciRIxoyZIgqVKigggULqnTp0nrkkUfc3jUvX768tmzZoq+++srZjbt8+fKScu/q36NHDzVr1kyS1LlzZ7lcLmcX+zPt6v/++++rSZMmKly4sAoXLqy6detq8uTJzukLFy5Uhw4dVKZMGYWEhKhy5cp64IEHtGfPHmedxMREPf7445KkChUqOJ05u2afblf/ffv26eGHH1bp0qVVsGBBVaxYUcOGDVNmZqbbejm7bU+fPl01atRQWFiY6tSpo//9739u6/3777+6//77FRcXp+DgYJUsWVJXX321Fi1adNbHYNSoUXK5XJo0aZLb0C9JgYGBeuONN+RyufTiiy9KkubMmSOXy6XFixfnuqxJkybJ5XLphx9+cJatXbtWN998syIjIxUSEqJ69epp1qxZbufL2SV/wYIF6tWrl0qWLKmwsLBc98WFOt2u/jkfOfnmm2/UtGlThYaGqnz58poyZYokad68eapfv77CwsIUHx+v+fPn57rcX3/9VV26dFGpUqUUHBysGjVq6PXXXz9nzx133KErrrjCbdlNN90kl8ulDz/80Fm2fv16uVwuzZ07V1LuXf179OjhXN/JH2849SMN53rOnM2cOXO0d+9e3Xvvverevbt++eUXrVixItd65cuX14033qjZs2erdu3aCgkJUcWKFTV+/Hi39XJuw7vvvqsBAwYoOjpaoaGhat68uTZs2OC27h9//KE777xTsbGxCg4OVlRUlFq1aqWNGzeedz8AwDN4xx8AcFrh4eF66qmn9Nhjj2nJkiVq2bLladczxuiWW27R4sWLNWTIEF1zzTX64Ycf9Oyzzzq7awcHB2v27Nm6/fbbFRER4ewuHxwcfNrLfPrpp3XVVVfpkUce0ciRI5WQkKAiRYqcsfWZZ57Rc889p44dO2rgwIGKiIjQ5s2b3Y5R8Pvvv6tJkya69957FRERoe3bt2vMmDFq1qyZNm3apKCgIN17773at2+fJkyYoE8++cTZtfxM7/QfOXJECQkJ+v333zV8+HDVrl1by5cv16hRo7Rx40bNmzfPbf158+ZpzZo1GjFihAoXLqyXX35Zt956q7Zu3aqKFStKkrp166b169frhRdeUNWqVXXgwAGtX79ee/fuPePtz8rK0tKlS9WwYcMz7g0RFxenBg0aaMmSJcrKytKNN96oUqVKacqUKWrVqpXbuklJSapfv75q164tSVq6dKmuu+46NWrUSG+++aYiIiI0Y8YMde7cWYcPH1aPHj3czt+rVy/dcMMNmj59ug4dOqSgoKAztl+M5ORk9ezZU4MHD1aZMmU0YcIE9erVSzt37tRHH32koUOHKiIiQiNGjNAtt9yiP/74Q7GxsZKkH3/8UU2bNlXZsmU1evRoRUdH68svv9Sjjz6qPXv26Nlnnz3j9bZu3VofffSRdu/erZiYGB0/flxfffWVQkNDtXDhQt1xxx2SpEWLFikwMPCMx4V4+umndejQIX300UduH185+SMN5/OcOZvJkycrODhYXbt21b59+zRq1ChNnjzZeWHtZBs3blS/fv2UmJio6Ohovffee3rsscd09OhRDRo0yG3doUOHqn79+vrvf/+r1NRUJSYmqkWLFtqwYYPTdf311ysrK0svv/yyypYtqz179mjVqlWn/RgNAMDLDAAAJ5kyZYqRZNasWWMyMzNNxYoVTcOGDU12drYxxpjmzZubK664wll//vz5RpJ5+eWX3S5n5syZRpL5z3/+4yy74oorTPPmzXNd57Zt24wkM2XKFGfZ0qVLjSTz4Ycfuq377LPPmpP/9/XHH3+YgIAA07Vr1/O+jdnZ2ebYsWPmzz//NJLMp59+6pz2yiuvGElm27Ztuc7XvHlzt/4333zTSDKzZs1yW++ll14yksyCBQucZZJMVFSUSUtLc5YlJyebAgUKmFGjRjnLChcubPr163fetyXnciSZO++886zrde7c2Ugy//zzjzHGmAEDBpjQ0FBz4MABZ50ff/zRSDITJkxwllWvXt3Uq1fPHDt2zO3ybrzxRhMTE2OysrKMMf/33LnnnnsuqP/k865Zs+aMp538mDRv3txIMmvXrnWW7d271wQEBJjQ0FDz119/Ocs3btxoJJnx48c7y9q1a2fKlCljUlNT3a6rT58+JiQkxOzbt++Mrb/99puRZKZNm2aMMWbFihVGkhk8eLCpUKGCs16bNm1M06ZNnd9zntNLly51lj3yyCPmTH+One9z5ky2b99uChQo4Pa8aN68uSlUqJDbZRpjTLly5YzL5TIbN250W96mTRtTpEgRc+jQIbfbUL9+fWebkHNdQUFB5t577zXGGLNnzx4jyYwbN+6cnQAA72NXfwDAGRUsWFDPP/+81q5dm2u37hxLliyRpFzv+t5xxx0qVKjQaXcl96SFCxcqKytLjzzyyFnXS0lJ0YMPPqi4uDgFBgYqKChI5cqVkyT99NNPebruJUuWqFChQrr99tvdlufcF6fe9oSEBIWHhzu/R0VFqVSpUm57Jlx11VVKSkrS888/r9WrV+vYsWN5ajsdY4wkOR+V6NWrlzIyMjRz5kxnnSlTpig4OFhdunSRJP3222/6+eef1bVrV0knDhCX83P99ddr9+7d2rp1q9v13HbbbR5rPpuYmBg1aNDA+T0yMlKlSpVS3bp1nXf2JalGjRqS5NzPR44c0eLFi3XrrbcqLCws1206cuSIVq9efcbrrVSpksqXL+98/GLhwoWKj4/X3XffrW3btun3339XZmamVqxYodatW1/UbTyf58yZTJkyRdnZ2erVq5ezrFevXjp06JDbY57jiiuuyHU8jy5duigtLU3r16/Ptfzkj9yUK1dOTZs21dKlSyWdeCwqVaqkV155RWPGjNGGDRuUnZ19fjcaAOBxDP4AgLO68847Vb9+fQ0bNuy0Q+jevXsVGBiY6+BrLpdL0dHRZ91F3RP+/fdfSTrrAf+ys7PVtm1bffLJJxo8eLAWL16s7777zhnuMjIy8nTde/fuVXR0dK5jDpQqVUqBgYG5bnvx4sVzXUZwcLDb9c+cOVPdu3fXf//7XzVp0kSRkZG65557lJycfMaOEiVKKCwsTNu2bTtr7/bt2xUWFqbIyEhJJwa9K6+80vlcfFZWlt5991116NDBWeeff/6RJA0aNEhBQUFuPw8//LAkuR0nQVK+HX0/p/FkBQsWzLW8YMGCkk4M/NKJx+348eOaMGFCrtt0/fXXS8p9m07VqlUr54WdRYsWqU2bNoqPj1dUVJQWLVqklStXKiMj46IH//N5zpxOdna2kpKSFBsbqwYNGujAgQM6cOCAWrdurUKFCrkd/yJHdHT0GZed+lw+07o56+UcP6Jdu3Z6+eWXVb9+fZUsWVKPPvqoDh48eNZ2AIDn8Rl/AMBZuVwuvfTSS2rTpo3+85//5Dq9ePHiOn78uP7991+34d8Yo+TkZF155ZVe7cu5zl27dikuLu6062zevFnff/+9kpKS1L17d2f5b7/9dlHXXbx4cX377bcyxrgN/ykpKTp+/LhKlChxwZdZokQJjRs3TuPGjdOOHTv02Wef6cknn1RKSsppD1AnSQEBAUpISND8+fO1a9eu074IsmvXLq1bt07t27dXQECAs7xnz556+OGH9dNPP+mPP/7Q7t271bNnT7ceSRoyZIg6dux42uuvVq2a2++nO/iiTYoVK6aAgAB169btjHuKVKhQ4ayX0apVK02ePFnfffedvv32W+frCFu2bKmFCxfqzz//VOHChfP9KP45Fi1a5OwVcLoXD1avXq0ff/zR7fgVp3txKWfZqZdxpnVPXq9cuXLOCwy//PKLZs2apcTERB09elRvvvlmHm4VACCveMcfAHBOrVu3Vps2bTRixAilp6e7nZZzYLh3333XbfnHH3+sQ4cOuR047nzeqbxQbdu2VUBAgCZNmnTGdXIG0VMPJvjWW2/lWjdnnfPpbNWqldLT0zVnzhy35TnflX7qQfMuVNmyZdWnTx+1adMm167WpxoyZIiMMXr44YeVlZXldlpWVpYeeughGWM0ZMgQt9PuuusuhYSEKCkpSUlJSSpdurTatm3rnF6tWjVVqVJF33//vRo2bHjan5N3Rb8UhIWFKSEhQRs2bFDt2rVPe5tONyyfrFWrVnK5XHr66adVoEABXXvttZJO/FtZunSpFi5cqGuvvfacBza8kOfbhZg8ebIKFCigOXPmaOnSpW4/06dPlyS98847bufZsmWLvv/+e7dl77//vsLDw1W/fn235R988IHz0RHpxMcoVq1adcYDGVatWlVPPfWU4uPjz/lcBgB4Hu/4AwDOy0svvaQGDRooJSXF7avM2rRpo3bt2umJJ55QWlqarr76aueo/vXq1VO3bt2cdePj4zVjxgzNnDlTFStWVEhIiOLj4y+qq3z58ho6dKiee+45ZWRk6K677lJERIR+/PFH7dmzR8OHD1f16tVVqVIlPfnkkzLGKDIyUnPnztXChQtzXV5Oz2uvvabu3bsrKChI1apVO+1we8899+j1119X9+7dtX37dsXHx2vFihUaOXKkrr/++gvezTs1NVUJCQnq0qWLqlevrvDwcK1Zs0bz588/47vtOa6++mqNGzdO/fr1U7NmzdSnTx+VLVtWO3bs0Ouvv65vv/1W48aNU9OmTd3OV7RoUd16661KSkrSgQMHNGjQIBUo4P6+wFtvvaX27durXbt26tGjh0qXLq19+/bpp59+0vr1692+wu5S8dprr6lZs2a65ppr9NBDD6l8+fI6ePCgfvvtN82dO9c5dsWZlCpVSrVq1dKCBQuUkJCgsLAwSScG/3379mnfvn0aM2bMOTtynm8vvfSSszdG7dq1nY8n5MXevXv16aefql27durQocNp1xk7dqymTZumUaNGOS9OxMbG6uabb1ZiYqJiYmL07rvvauHChXrppZec25cjJSVFt956q+677z6lpqbq2WefVUhIiPPC0g8//KA+ffrojjvuUJUqVVSwYEEtWbJEP/zwg5588sk83zYAQN4w+AMAzku9evV011136f3333db7nK5NGfOHCUmJmrKlCl64YUXVKJECXXr1k0jR450e5d9+PDh2r17t+677z4dPHhQ5cqVy/Wd5XkxYsQIValSRRMmTFDXrl0VGBioKlWq6NFHH5UkBQUFae7cuXrsscf0wAMPKDAwUK1bt9aiRYtUtmxZt8tq0aKFhgwZoqlTp+rtt99Wdna2li5detp3MkNCQrR06VINGzZMr7zyiv7991+VLl1agwYNOuvXwZ1JSEiIGjVqpOnTp2v79u06duyYypYtqyeeeEKDBw8+5/n79u2rK6+8UqNHj9bAgQO1d+9eRUZGqlmzZlqxYoWaNGly2vP17NlTH3zwgaTcB2mUThxg7rvvvtMLL7ygfv36af/+/SpevLhq1qypTp06XfDttEHNmjW1fv16Pffcc3rqqaeUkpKiokWLqkqVKs7n/M+ldevW2rRpk9sLPGXLllWVKlX066+/ntcLP126dNHKlSv1xhtvaMSIETLGaNu2bSpfvnxeb5reffddZWZm6oEHHjjjOvfff78efPBBzZ0713lRqW7duurZs6eeffZZ/frrr4qNjdWYMWPUv3//XOcfOXKk1qxZo549eyotLU1XXXWVZsyYoUqVKkk68Xn/SpUq6Y033tDOnTvlcrlUsWJFjR49Wn379s3zbQMA5I3LnLyfFgAAAC475cuXV61atfS///3vrOstW7ZMCQkJ+vDDD3N9mwUAwF58xh8AAAAAAD/G4A8AAAAAgB9jV38AAAAAAPwY7/gDAAAAAODHGPwBAAAAAPBjDP4AAAAAAPixQF8H2CA7O1t///23wsPD5XK5fJ0DAAAAAPBzxhgdPHhQsbGxKlDAu+/JM/hL+vvvvxUXF+frDAAAAADAZWbnzp0qU6aMV6+DwV9SeHi4pBN3eJEiRXxcAwAAAADwd2lpaYqLi3PmUW9i8Jec3fuLFCnC4A8AAAAAyDf58XFzDu4HAAAAAIAfY/AHAAAAAMCPMfgDAAAAAODH+Iw/AAAAAPhYVlaWjh075usMeFBQUJACAgJ8nSGJwR8AAAAAfMYYo+TkZB04cMDXKfCCokWLKjo6Ol8O4Hc2DP4AAAAA4CM5Q3+pUqUUFhbm8wERnmGM0eHDh5WSkiJJiomJ8WkPgz8AAAAA+EBWVpYz9BcvXtzXOfCw0NBQSVJKSopKlSrl093+ObgfAAAAAPhAzmf6w8LCfFwCb8l5bH19/AYGfwAAAADwIXbv91+2PLYM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAADgoqxatUoBAQG67rrrfJ2C02DwBwAAAABclHfeeUd9+/bVihUrtGPHDl/n4BQM/gAAAACAPDt06JBmzZqlhx56SDfeeKOSkpKc05YtWyaXy6V58+apTp06CgkJUaNGjbRp0yZnnaSkJBUtWlRz5sxR1apVFRISojZt2mjnzp0+uDX+icEfAAAAAJBnM2fOVLVq1VStWjXdfffdmjJliowxbus8/vjjevXVV7VmzRqVKlVKN998s9tX3B0+fFgvvPCCpk6dqpUrVyotLU133nlnft8Uv8XgDwAAAADIs8mTJ+vuu++WJF133XVKT0/X4sWL3dZ59tln1aZNG8XHx2vq1Kn6559/NHv2bOf0Y8eOaeLEiWrSpIkaNGigqVOnatWqVfruu+/y9bb4KwZ/AAAAAECebN26Vd99953z7nxgYKA6d+6sd955x229Jk2aOP8dGRmpatWq6aeffnKWBQYGqmHDhs7v1atXV9GiRd3WQd4F+joAAAAAAHBpmjx5so4fP67SpUs7y4wxCgoK0v79+896XpfLddbfz7QMF453/AEAAAAAF+z48eOaNm2aRo8erY0bNzo/33//vcqVK6f33nvPWXf16tXOf+/fv1+//PKLqlev7nZZa9eudX7funWrDhw44LYO8o53/AEAgF/YMSI+T+cr+8ymc68EAMjlf//7n/bv36/evXsrIiLC7bTbb79dkydP1tixYyVJI0aMUPHixRUVFaVhw4apRIkSuuWWW5z1g4KC1LdvX40fP15BQUHq06ePGjdurKuuuio/b5LfsuYd/1GjRsnlcqlfv37OMmOMEhMTFRsbq9DQULVo0UJbtmxxO19mZqb69u2rEiVKqFChQrr55pu1a9eufK4HAAAAgMvL5MmT1bp161xDvyTddttt2rhxo9avXy9JevHFF/XYY4+pQYMG2r17tz777DMVLFjQWT8sLExPPPGEunTpoiZNmig0NFQzZszIt9vi76x4x3/NmjX6z3/+o9q1a7stf/nllzVmzBglJSWpatWqev7559WmTRtt3bpV4eHhkqR+/fpp7ty5mjFjhooXL66BAwfqxhtv1Lp16xQQEOCLmwMAAAAAfm/u3LlnPK1+/foyxmjZsmWSpGbNmmnz5s1nvbyOHTuqY8eOnkzE/+fzd/zT09PVtWtXvf322ypWrJiz3BijcePGadiwYerYsaNq1aqlqVOn6vDhw3r//fclSampqZo8ebJGjx6t1q1bq169enr33Xe1adMmLVq0yFc3CQAAAAAAa/h88H/kkUd0ww03qHXr1m7Lt23bpuTkZLVt29ZZFhwcrObNm2vVqlWSpHXr1unYsWNu68TGxqpWrVrOOgAAAAAAXM58uqv/jBkztH79eq1ZsybXacnJyZKkqKgot+VRUVH6888/nXUKFizotqdAzjo55z+dzMxMZWZmOr+npaXl+TYAAAAAAE6vRYsWMsacdZ0ePXqoR48e+RN0mfLZO/47d+7UY489pnfffVchISFnXO/U7200xpzzuxzPtc6oUaMUERHh/MTFxV1YPAAAAAAAlwifDf7r1q1TSkqKGjRooMDAQAUGBuqrr77S+PHjFRgY6LzTf+o79ykpKc5p0dHROnr0qPbv33/GdU5nyJAhSk1NdX527tzp4VsHAAAAAIAdfDb4t2rVSps2bdLGjRudn4YNG6pr167auHGjKlasqOjoaC1cuNA5z9GjR/XVV1+padOmkqQGDRooKCjIbZ3du3dr8+bNzjqnExwcrCJFirj9AAAAAADgj3z2Gf/w8HDVqlXLbVmhQoVUvHhxZ3m/fv00cuRIValSRVWqVNHIkSMVFhamLl26SJIiIiLUu3dvDRw4UMWLF1dkZKQGDRqk+Pj4XAcLBAAAAADgcuTTg/udy+DBg5WRkaGHH35Y+/fvV6NGjbRgwQKFh4c764wdO1aBgYHq1KmTMjIy1KpVKyUlJSkgIMCH5QAAAAAA2MFlznWIxctAWlqaIiIilJqaym7/AABconaMiM/T+co+s8nDJQBwfo4cOaJt27apQoUKZz3gOS5dZ3uM83MO9dln/AEAAAAAgPdZvas/AAAAAFyOGjw+LV+vb90r91zQ+j169NCBAwc0Z86ci77u8uXLq1+/furXr99FXxZOj3f8AQAAAACXhaNHj/o6wScY/AEAAAAAedaiRQs9+uijGjx4sCIjIxUdHa3ExES3dRITE1W2bFkFBwcrNjZWjz76qHPeP//8U/3795fL5ZLL5ZIk7d27V3fddZfKlCmjsLAwxcfH64MPPnC7zIMHD6pr164qVKiQYmJiNHbsWLVo0cJtz4Hy5cvr+eefV48ePRQREaH77rtPkvTEE0+oatWqCgsLU8WKFfX000/r2LFjbr1169bVO++8o7Jly6pw4cJ66KGHlJWVpZdfflnR0dEqVaqUXnjhBS/co57Hrv4AAAAAgIsydepUDRgwQN9++62++eYb9ejRQ1dffbXatGmjjz76SGPHjtWMGTN0xRVXKDk5Wd9//70k6ZNPPlGdOnV0//33O0O5dOKgeA0aNNATTzyhIkWKaN68eerWrZsqVqyoRo0aSZIGDBiglStX6rPPPlNUVJSeeeYZrV+/XnXr1nVre+WVV/T000/rqaeecpaFh4crKSlJsbGx2rRpk+677z6Fh4dr8ODBzjq///67vvjiC82fP1+///67br/9dm3btk1Vq1bVV199pVWrVqlXr15q1aqVGjdu7MV79+Ix+AMAAAAALkrt2rX17LPPSpKqVKmiiRMnavHixWrTpo127Nih6OhotW7dWkFBQSpbtqyuuuoqSVJkZKQCAgIUHh6u6Oho5/JKly6tQYMGOb/37dtX8+fP14cffqhGjRrp4MGDmjp1qt5//321atVKkjRlyhTFxsbmamvZsqXbZUlyexGgfPnyGjhwoGbOnOk2+GdnZ+udd95ReHi4atasqYSEBG3dulWff/65ChQooGrVqumll17SsmXLGPwBAAAAAP6tdu3abr/HxMQoJSVFknTHHXdo3Lhxqlixoq677jpdf/31uummmxQYeOZxNCsrSy+++KJmzpypv/76S5mZmcrMzFShQoUkSX/88YeOHTvmvIAgSREREapWrVquy2rYsGGuZR999JHGjRun3377Tenp6Tp+/Hiur9QrX768wsPDnd+joqIUEBCgAgUKuC3LuZ024zP+AAAAAICLEhQU5Pa7y+VSdna2JCkuLk5bt27V66+/rtDQUD388MO69tpr3T5Tf6rRo0dr7NixGjx4sJYsWaKNGzeqXbt2zsH5jDHO9ZwsZ/nJcl4syLF69Wrdeeedat++vf73v/9pw4YNGjZsWK4D/53uNp3tdtqMwR8AAAAA4FWhoaG6+eabNX78eC1btkzffPONNm3aJEkqWLCgsrKy3NZfvny5OnTooLvvvlt16tRRxYoV9euvvzqnV6pUSUFBQfruu++cZWlpaW7rnMnKlStVrlw5DRs2TA0bNlSVKlX0559/euiW2old/QEAAAAAXpOUlKSsrCw1atRIYWFhmj59ukJDQ1WuXDlJJ3ap//rrr3XnnXcqODhYJUqUUOXKlfXxxx9r1apVKlasmMaMGaPk5GTVqFFD0omD83Xv3l2PP/64IiMjVapUKT377LMqUKBArr0ATlW5cmXt2LFDM2bM0JVXXql58+Zp9uzZXr8ffIl3/AEAAAAAXlO0aFG9/fbbuvrqq1W7dm0tXrxYc+fOVfHixSVJI0aM0Pbt21WpUiWVLFlSkvT000+rfv36ateunVq0aKHo6Gjdcsstbpc7ZswYNWnSRDfeeKNat26tq6++WjVq1FBISMhZezp06KD+/furT58+qlu3rlatWqWnn37aK7fdFi5zug9BXGbS0tIUERGh1NTUXAd0AAAAl4YdI+LzdL6yz2zycAkAnJ8jR45o27ZtqlChwjmHVZzboUOHVLp0aY0ePVq9e/f2dY6ksz/G+TmHsqs/AAAAAOCSs2HDBv3888+66qqrlJqaqhEjRkg68Y4+3DH4AwAAAAAuSa+++qq2bt2qggULqkGDBlq+fLlKlCjh6yzrMPgDAAAAAC459erV07p163ydcUng4H4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/G4A8AAAAAgB9j8AcAAAAAwI8x+AMAAAAAvM7lcmnOnDm+zrgsBfo6AAAAAADgbseI+Hy9vrLPbDrvdd988009/vjj2r9/vwIDT4yU6enpKlasmBo3bqzly5c76y5fvlzXXnuttm7d6pHOHj166MCBA7yAcIF4xx8AAAAAcN4SEhKUnp6utWvXOsuWL1+u6OhorVmzRocPH3aWL1u2TLGxsapataovUvH/MfgDAAAAAM5btWrVFBsbq2XLljnLli1bpg4dOqhSpUpatWqV2/KEhATn9z179ujWW29VWFiYqlSpos8++8w5LSsrS71791aFChUUGhqqatWq6bXXXnNOT0xM1NSpU/Xpp5/K5XLJ5XJp2bJlOnr0qPr06aOYmBiFhISofPnyGjVqlHO+MWPGKD4+XoUKFVJcXJwefvhhpaenO6cnJSWpaNGimjNnjqpWraqQkBC1adNGO3fudLvuunXr6q233lJcXJzCwsJ0xx136MCBA566W72KwR8AAAAAcEFatGihpUuXOr8vXbpULVq0UPPmzZ3lR48e1TfffOM2+A8fPlydOnXSDz/8oOuvv15du3bVvn37JEnZ2dkqU6aMZs2apR9//FHPPPOMhg4dqlmzZkmSBg0apE6dOum6667T7t27tXv3bjVt2lTjx4/XZ599plmzZmnr1q169913Vb58eec6CxQooPHjx2vz5s2aOnWqlixZosGDB7vdnsOHD+uFF17Q1KlTtXLlSqWlpenOO+90W+e3337TrFmzNHfuXM2fP18bN27UI4884tH71Vv4jD8AAAAA4IK0aNFC/fv31/Hjx5WRkaENGzbo2muvVVZWlsaPHy9JWr16tTIyMtwG/x49euiuu+6SJI0cOVITJkzQd999p+uuu05BQUEaPny4s26FChW0atUqzZo1S506dVLhwoUVGhqqzMxMRUdHO+vt2LFDVapUUbNmzeRyuVSuXDm31n79+rld5nPPPaeHHnpIb7zxhrP82LFjmjhxoho1aiRJmjp1qmrUqKHvvvtOV111lSTpyJEjmjp1qsqUKSNJmjBhgm644QaNHj3arcdGvOMPAAAAALggCQkJOnTokNasWaPly5eratWqKlWqlJo3b641a9bo0KFDWrZsmcqWLauKFSs656tdu7bz34UKFVJ4eLhSUlKcZW+++aYaNmyokiVLqnDhwnr77be1Y8eOs7b06NFDGzduVLVq1fToo49qwYIFbqcvXbpUbdq0UenSpRUeHq577rlHe/fu1aFDh5x1AgMD1bBhQ+f36tWrq2jRovrpp5+cZWXLlnWGfklq0qSJsrOzPXbgQm9i8AcAAAAAXJDKlSurTJkyWrp0qZYuXarmzZtLkqKjo1WhQgWtXLlSS5cuVcuWLd3OFxQU5Pa7y+VSdna2JGnWrFnq37+/evXqpQULFmjjxo3q2bOnjh49etaW+vXra9u2bXruueeUkZGhTp066fbbb5ck/fnnn7r++utVq1Ytffzxx1q3bp1ef/11SSfe5T+15VSnW3bqaWdbxxbs6g8AAAAAuGAJCQlatmyZ9u/fr8cff9xZ3rx5c3355ZdavXq1evbsed6Xt3z5cjVt2lQPP/yws+z33393W6dgwYLKysrKdd4iRYqoc+fO6ty5s26//XZdd9112rdvn9auXavjx49r9OjRKlDgxPveOccMONnx48e1du1aZ7f+rVu36sCBA6pevbqzzo4dO/T3338rNjZWkvTNN9+oQIECl8Q3FvCOPwAAAADggiUkJGjFihXauHGj846/dGLwf/vtt3XkyBG3z/efS+XKlbV27Vp9+eWX+uWXX/T0009rzZo1buuUL19eP/zwg7Zu3ao9e/bo2LFjGjt2rGbMmKGff/5Zv/zyiz788ENFR0eraNGiqlSpko4fP64JEybojz/+0PTp0/Xmm2/muu6goCD17dtX3377rdavX6+ePXuqcePGzgsBkhQSEqLu3bvr+++/1/Lly/Xoo4+qU6dO1n++X+IdfwAAAACwTtlnNvk64ZwSEhKUkZGh6tWrKyoqylnevHlzHTx4UJUqVVJcXNx5X96DDz6ojRs3qnPnznK5XLrrrrv08MMP64svvnDWue+++7Rs2TI1bNhQ6enpWrp0qQoXLqyXXnpJv/76qwICAnTllVfq888/V4ECBVS3bl2NGTNGL730koYMGaJrr71Wo0aN0j333ON23WFhYXriiSfUpUsX7dq1S82aNdM777zjtk7lypXVsWNHXX/99dq3b5+uv/56twME2sxljDG+jvC1tLQ0RUREKDU1VUWKFPF1DgAAyIMdI+LzdL5L4Y9rAP7pyJEj2rZtmypUqKCQkBBf51y2kpKS1K9fPx04cOCM6yQmJmrOnDnauHHjBV322R7j/JxD2dUfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAFy2evTocdbd/KUTu/pf6G7+NmHwBwAAAADAjzH4AwAAAIAPcbx1/2XLY8vgDwAAAAA+EBQUJEk6fPiwj0vgLTmPbc5j7SuBPr12AAAAALhMBQQEqGjRokpJSZF04rvkXS6Xj6vgCcYYHT58WCkpKSpatKgCAgJ82sPgDwAAAAA+Eh0dLUnO8A//UrRoUecx9iUGfwAAAADwEZfLpZiYGJUqVUrHjh3zdQ48KCgoyOfv9Odg8AcAAAAAHwsICLBmSIT/4eB+AAAAAAD4MZ8O/pMmTVLt2rVVpEgRFSlSRE2aNNEXX3zhnN6jRw+5XC63n8aNG7tdRmZmpvr27asSJUqoUKFCuvnmm7Vr1678vikAAAAAAFjJp4N/mTJl9OKLL2rt2rVau3atWrZsqQ4dOmjLli3OOtddd512797t/Hz++edul9GvXz/Nnj1bM2bM0IoVK5Senq4bb7xRWVlZ+X1zAAAAAACwjk8/43/TTTe5/f7CCy9o0qRJWr16ta644gpJUnBw8BmPgpiamqrJkydr+vTpat26tSTp3XffVVxcnBYtWqR27dp59wYAAAAAAGA5az7jn5WVpRkzZujQoUNq0qSJs3zZsmUqVaqUqlatqvvuu8/tay7WrVunY8eOqW3bts6y2NhY1apVS6tWrTrjdWVmZiotLc3tBwAAAAAAf+TzwX/Tpk0qXLiwgoOD9eCDD2r27NmqWbOmJKl9+/Z67733tGTJEo0ePVpr1qxRy5YtlZmZKUlKTk5WwYIFVaxYMbfLjIqKUnJy8hmvc9SoUYqIiHB+4uLivHcDAQAAAADwIZ9/nV+1atW0ceNGHThwQB9//LG6d++ur776SjVr1lTnzp2d9WrVqqWGDRuqXLlymjdvnjp27HjGyzTGyOVynfH0IUOGaMCAAc7vaWlpDP8AAAAAAL/k88G/YMGCqly5siSpYcOGWrNmjV577TW99dZbudaNiYlRuXLl9Ouvv0qSoqOjdfToUe3fv9/tXf+UlBQ1bdr0jNcZHBys4OBgD98SAAAAAADs4/Nd/U9ljHF25T/V3r17tXPnTsXExEiSGjRooKCgIC1cuNBZZ/fu3dq8efNZB38AAAAAAC4XPn3Hf+jQoWrfvr3i4uJ08OBBzZgxQ8uWLdP8+fOVnp6uxMRE3XbbbYqJidH27ds1dOhQlShRQrfeeqskKSIiQr1799bAgQNVvHhxRUZGatCgQYqPj3eO8g8AAAAAwOXMp4P/P//8o27dumn37t2KiIhQ7dq1NX/+fLVp00YZGRnatGmTpk2bpgMHDigmJkYJCQmaOXOmwsPDncsYO3asAgMD1alTJ2VkZKhVq1ZKSkpSQECAD28ZAAAAAAB2cBljjK8jfC0tLU0RERFKTU1VkSJFfJ0DAADyYMeI+Dydr+wzmzxcAgDAueXnHGrdZ/wBAAAAAIDnMPgDAAAAAODHGPwBAAAAAPBjDP4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/G4A8AAAAAgB9j8AcAAAAAwI8x+AMAAAAA4McY/AEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAMCPMfgDAAAAAODHGPwBAAAAAPBjDP4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/G4A8AAAAAgB9j8AcAAAAAwI8x+AMAAAAA4McY/AEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwYz4d/CdNmqTatWurSJEiKlKkiJo0aaIvvvjCOd0Yo8TERMXGxio0NFQtWrTQli1b3C4jMzNTffv2VYkSJVSoUCHdfPPN2rVrV37fFAAAAAAArBToyysvU6aMXnzxRVWuXFmSNHXqVHXo0EEbNmzQFVdcoZdfflljxoxRUlKSqlatqueff15t2rTR1q1bFR4eLknq16+f5s6dqxkzZqh48eIaOHCgbrzxRq1bt04BAQG+vHkAAAAAkGc7RsTn6Xxln9nk4RJc6nz6jv9NN92k66+/XlWrVlXVqlX1wgsvqHDhwlq9erWMMRo3bpyGDRumjh07qlatWpo6daoOHz6s999/X5KUmpqqyZMna/To0WrdurXq1aund999V5s2bdKiRYt8edMAAAAAALCCNZ/xz8rK0owZM3To0CE1adJE27ZtU3Jystq2beusExwcrObNm2vVqlWSpHXr1unYsWNu68TGxqpWrVrOOqeTmZmptLQ0tx8AAAAAAPyRzwf/TZs2qXDhwgoODtaDDz6o2bNnq2bNmkpOTpYkRUVFua0fFRXlnJacnKyCBQuqWLFiZ1zndEaNGqWIiAjnJy4uzsO3CgAAAAAAO/h88K9WrZo2btyo1atX66GHHlL37t31448/Oqe7XC639Y0xuZad6lzrDBkyRKmpqc7Pzp07L+5GAAAAAABgKZ8P/gULFlTlypXVsGFDjRo1SnXq1NFrr72m6OhoScr1zn1KSoqzF0B0dLSOHj2q/fv3n3Gd0wkODna+SSDnBwAAAAAAf+Tzwf9UxhhlZmaqQoUKio6O1sKFC53Tjh49qq+++kpNmzaVJDVo0EBBQUFu6+zevVubN2921gEAAAAA4HLm06/zGzp0qNq3b6+4uDgdPHhQM2bM0LJlyzR//ny5XC7169dPI0eOVJUqVVSlShWNHDlSYWFh6tKliyQpIiJCvXv31sCBA1W8eHFFRkZq0KBBio+PV+vWrX150wAAAAAAsIJPB/9//vlH3bp10+7duxUREaHatWtr/vz5atOmjSRp8ODBysjI0MMPP6z9+/erUaNGWrBggcLDw53LGDt2rAIDA9WpUydlZGSoVatWSkpKUkBAgK9uFgAAAAAA1nAZY4yvI3wtLS1NERERSk1N5fP+AABconaMiM/T+co+s8nDJQDgGWzX/Ft+zqHWfcYfAAAAAAB4DoM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAf8+lR/QEAAHB5yMtByjhAGQB4Bu/4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAMCPMfgDAAAAAODHGPwBAAAAAPBjDP4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/G4A8AAAAAgB9j8AcAAAAAwI8x+AMAAAAA4McY/AEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+LNDXAQAAAAAAXGp2jIi/4POUfWaTF0rOjXf8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAMCPMfgDAAAAAODHfDr4jxo1SldeeaXCw8NVqlQp3XLLLdq6davbOj169JDL5XL7ady4sds6mZmZ6tu3r0qUKKFChQrp5ptv1q5du/LzpgAAAAAAYCWfDv5fffWVHnnkEa1evVoLFy7U8ePH1bZtWx06dMhtveuuu067d+92fj7//HO30/v166fZs2drxowZWrFihdLT03XjjTcqKysrP28OAAAAAADWCfTllc+fP9/t9ylTpqhUqVJat26drr32Wmd5cHCwoqOjT3sZqampmjx5sqZPn67WrVtLkt59913FxcVp0aJFateunfduAAAAAAAAlrPqM/6pqamSpMjISLfly5YtU6lSpVS1alXdd999SklJcU5bt26djh07prZt2zrLYmNjVatWLa1ateq015OZmam0tDS3HwAAAAAA/JE1g78xRgMGDFCzZs1Uq1YtZ3n79u313nvvacmSJRo9erTWrFmjli1bKjMzU5KUnJysggULqlixYm6XFxUVpeTk5NNe16hRoxQREeH8xMXFee+GAQAAAADgQ3na1T8jI0PGGIWFhUmS/vzzT82ePVs1a9Z0e+f9QvTp00c//PCDVqxY4ba8c+fOzn/XqlVLDRs2VLly5TRv3jx17NjxjJdnjJHL5TrtaUOGDNGAAQOc39PS0hj+AQAAAAB+KU/v+Hfo0EHTpk2TJB04cECNGjXS6NGj1aFDB02aNOmCL69v37767LPPtHTpUpUpU+as68bExKhcuXL69ddfJUnR0dE6evSo9u/f77ZeSkqKoqKiTnsZwcHBKlKkiNsPAAAAAAD+KE+D//r163XNNddIkj766CNFRUXpzz//1LRp0zR+/PjzvhxjjPr06aNPPvlES5YsUYUKFc55nr1792rnzp2KiYmRJDVo0EBBQUFauHChs87u3bu1efNmNW3a9AJvGQAAAAAA/iVPu/ofPnxY4eHhkqQFCxaoY8eOKlCggBo3bqw///zzvC/nkUce0fvvv69PP/1U4eHhzmfyIyIiFBoaqvT0dCUmJuq2225TTEyMtm/frqFDh6pEiRK69dZbnXV79+6tgQMHqnjx4oqMjNSgQYMUHx/vHOUfAAAAAIDLVZ4G/8qVK2vOnDm69dZb9eWXX6p///6STuxefyG7zed8LKBFixZuy6dMmaIePXooICBAmzZt0rRp03TgwAHFxMQoISFBM2fOdF54kKSxY8cqMDBQnTp1UkZGhlq1aqWkpCQFBATk5eYBXrVjRHyezlf2mU0eLgEAAABwOcjT4P/MM8+oS5cu6t+/v1q1aqUmTZpIOvHuf7169c77cowxZz09NDRUX3755TkvJyQkRBMmTNCECRPO+7oBAAAAALgc5Gnwv/3229WsWTPt3r1bderUcZa3atXK2QUfAAAAAAD4Xp4Gf+nE0fSjo6Pdll111VUXHQQAAAAAADwnT4P/oUOH9OKLL2rx4sVKSUlRdna22+l//PGHR+IAAAAAAMDFydPgf++99+qrr75St27dFBMTI5fL5ekuAAAAAADgAXka/L/44gvNmzdPV199tad7AAAAAACABxXIy5mKFSumyMhIT7cAAAAAAAAPy9Pg/9xzz+mZZ57R4cOHPd0DAAAAAAA8KE+7+o8ePVq///67oqKiVL58eQUFBbmdvn79eo/EAQAAAACAi5Onwf+WW27xcAYAAAAAAPCGPA3+zz77rKc7AAAAAACAF+Rp8M+xbt06/fTTT3K5XKpZs6bq1avnqS4AAAAAAOABeRr8U1JSdOedd2rZsmUqWrSojDFKTU1VQkKCZsyYoZIlS3q6EwAAAAAA5EGejurft29fpaWlacuWLdq3b5/279+vzZs3Ky0tTY8++qinGwEAAAAAQB7l6R3/+fPna9GiRapRo4azrGbNmnr99dfVtm1bj8UBAAAAAICLk6fBPzs7O9dX+ElSUFCQsrOzLzoK9mnw+LQ8nW/dK/d4uAQAAAAAcCHytKt/y5Yt9dhjj+nvv/92lv3111/q37+/WrVq5bE4AAAAAABwcfI0+E+cOFEHDx5U+fLlValSJVWuXFkVKlTQwYMHNWHCBE83AgAAAACAPMrTrv5xcXFav369Fi5cqJ9//lnGGNWsWVOtW7f2dB8AAAAAALgIeRr8c7Rp00Zt2rTxVAsAAAAAAPCw8x78x48fr/vvv18hISEaP378WdflK/0AAAAAALDDeQ/+Y8eOVdeuXRUSEqKxY8eecT2Xy8XgDwAAAACAJc578N+2bdtp/xsAAAAAANgrT0f1HzFihA4fPpxreUZGhkaMGHHRUQAAAAAAwDPyNPgPHz5c6enpuZYfPnxYw4cPv+goAAAAAADgGXka/I0xcrlcuZZ///33ioyMvOgoAAAAAADgGRf0dX7FihWTy+WSy+VS1apV3Yb/rKwspaen68EHH/R4JAAAAAAAyJsLGvzHjRsnY4x69eql4cOHKyIiwjmtYMGCKl++vJo0aeLxSAAAAAAAkDcXNPh3795dklShQgU1bdpUQUFBXokCAAAAAACecUGDf47mzZs7/52RkaFjx465nV6kSJGLqwIA4BQ7RsRf8HnKPrPJCyUAAACXljwN/ocPH9bgwYM1a9Ys7d27N9fpWVlZFx0GAAAuDXl5UUbihRkAAPJLno7q//jjj2vJkiV64403FBwcrP/+978aPny4YmNjNW3aNE83AgAAAACAPMrTO/5z587VtGnT1KJFC/Xq1UvXXHONKleurHLlyum9995T165dPd0JAAAAAADyIE/v+O/bt08VKlSQdOLz/Pv27ZMkNWvWTF9//bXn6gAAAAAAwEXJ0+BfsWJFbd++XZJUs2ZNzZo1S9KJPQGKFi3qqTYAAAAAAHCR8jT49+zZU99//70kaciQIc5n/fv376/HH3/co4EAAAAAACDv8vQZ//79+zv/nZCQoJ9//llr165VpUqVVKdOHY/FAQCA0+NI+gDgPWxj4W/yNPifqmzZsipbtqwnLgoAAAAAAHhQnnb1f/TRRzV+/PhcyydOnKh+/fpdbBMAAAAAAPCQPL3j//HHH+uzzz7Ltbxp06Z68cUXNW7cuIvtuiSxSxAAAAAAwDZ5esd/7969ioiIyLW8SJEi2rNnz0VHAQAAAAAAz8jT4F+5cmXNnz8/1/IvvvhCFStWvOgoAAAAAADgGXna1X/AgAHq06eP/v33X7Vs2VKStHjxYo0ePfqy3c0fAAAAAAAb5Wnw79WrlzIzM/XCCy/oueeekySVL19ekyZN0j333OPRQAAAbMLxXAAAwKUmz1/n99BDD+mhhx7Sv//+q9DQUBUuXNiTXQAAAAAAwAPy9Bn/k5UsWTLPQ/+oUaN05ZVXKjw8XKVKldItt9yirVu3uq1jjFFiYqJiY2MVGhqqFi1aaMuWLW7rZGZmqm/fvipRooQKFSqkm2++Wbt27crzbQIAAAAAwF+c9+Bfv3597d+/X5JUr1491a9f/4w/5+urr77SI488otWrV2vhwoU6fvy42rZtq0OHDjnrvPzyyxozZowmTpyoNWvWKDo6Wm3atNHBgweddfr166fZs2drxowZWrFihdLT03XjjTcqKyvrvFsAAAAAAPBH572rf4cOHRQcHCxJuuWWWzxy5ad+M8CUKVNUqlQprVu3Ttdee62MMRo3bpyGDRumjh07SpKmTp2qqKgovf/++3rggQeUmpqqyZMna/r06WrdurUk6d1331VcXJwWLVqkdu3aeaQVAAAAAIBL0XkP/sWKFVOBAid2EOjZs6fKlCnj/O4pqampkqTIyEhJ0rZt25ScnKy2bds66wQHB6t58+ZatWqVHnjgAa1bt07Hjh1zWyc2Nla1atXSqlWrTjv4Z2ZmKjMz0/k9LS3No7cDAAAAAABbnPfkPmDAAGdArlChgvbs2ePREGOMBgwYoGbNmqlWrVqSpOTkZElSVFSU27pRUVHOacnJySpYsKCKFSt2xnVONWrUKEVERDg/cXFxHr0tAAAAAADY4rzf8Y+NjdXHH3+s66+/XsYY7dq1S0eOHDntumXLlr3gkD59+uiHH37QihUrcp3mcrncfjfG5Fp2qrOtM2TIEA0YMMD5PS0tjeEfAAAAAOCXznvwf+qpp9S3b1/16dNHLpdLV155Za51cobtCz2oXt++ffXZZ5/p66+/VpkyZZzl0dHRkk68qx8TE+MsT0lJcfYCiI6O1tGjR7V//363d/1TUlLUtGnT015fcHCwc7wCAAAAAAD82Xnv6n///fdrz549+v7772WM0cKFC7V+/Xq3nw0bNmj9+vXnfeXGGPXp00effPKJlixZogoVKridXqFCBUVHR2vhwoXOsqNHj+qrr75yhvoGDRooKCjIbZ3du3dr8+bNZxz8AQAAAAC4XJz3O/6SFB4erlq1amnKlCm6+uqrL/pd80ceeUTvv/++Pv30U4WHhzufyY+IiFBoaKhcLpf69eunkSNHqkqVKqpSpYpGjhypsLAwdenSxVm3d+/eGjhwoIoXL67IyEgNGjRI8fHxzlH+AQAAAAC4XF3Q4J+je/fuHrnySZMmSZJatGjhtnzKlCnq0aOHJGnw4MHKyMjQww8/rP3796tRo0ZasGCBwsPDnfXHjh2rwMBAderUSRkZGWrVqpWSkpIUEBDgkU4AAAAAAC5V5z34R0ZG6pdfflGJEiVUrFixsx5cb9++fed1mcaYc67jcrmUmJioxMTEM64TEhKiCRMmaMKECed1vQAAAAAAXC7Oe/AfO3as8y772LFjz3lUfQAAAAAA4HvnPfifvHt/zm74AAAAAPJmx4j4Cz5P2Wc2eaEEgL8776P6nywgIEApKSm5lu/du5fP1QMAAAAAYJE8Df5n+mx+ZmamChYseFFBAAAAAADAcy7oqP7jx4+XdOKAe//9739VuHBh57SsrCx9/fXXql69umcLAQAAAABQ3j4iI/ExmQsa/MeOHSvpxDv+b775pttu/QULFlT58uX15ptverYQAAAAAADk2QUN/tu2bZMkJSQk6JNPPlGxYsW8EgUAAAAAADzjggb/HEuXLnX+O+fz/ny9HwAAAAAA9snTwf0kadq0aYqPj1doaKhCQ0NVu3ZtTZ8+3ZNtAAAAAADgIuXpHf8xY8bo6aefVp8+fXT11VfLGKOVK1fqwQcf1J49e9S/f39PdwIAAAAAgDzI0+A/YcIETZo0Sffcc4+zrEOHDrriiiuUmJjI4A8AAAAAgCXyNPjv3r1bTZs2zbW8adOm2r1790VHwX/wdRsAAAAA4Ft5+ox/5cqVNWvWrFzLZ86cqSpVqlx0FAAAAAAA8Iw8veM/fPhwde7cWV9//bWuvvpquVwurVixQosXLz7tCwIAAAAA7MQemoD/y9M7/rfddpu+/fZbFS9eXHPmzNEnn3yiEiVK6LvvvtOtt97q6UYAAAAAAJBHeXrHX5IaNGig9957z5MtAAAAOI0Gj0/L0/nWvXLPuVcCAPi9Cxr8CxQoIJfLddZ1XC6Xjh8/flFRAAAAAADAMy5o8J89e/YZT1u1apUmTJggY8xFRwEAAAAAAM+4oMG/Q4cOuZb9/PPPGjJkiObOnauuXbvqueee81gcAAAAAAC4OHn+jP/ff/+tZ599VlOnTlW7du20ceNG1apVy5NtAAAAAC4TfLsA4D0XfFT/1NRUPfHEE6pcubK2bNmixYsXa+7cuQz9AAAAAABY6ILe8X/55Zf10ksvKTo6Wh988MFpd/0HAAAAAAD2uKDB/8knn1RoaKgqV66sqVOnaurUqadd75NPPvFIHAAAAPKOXacBANIFDv733HPPOb/ODwAAAAAA2OOCBv+kpCQvZQAAAAAAAG+44IP7AQAAAACAS0eev84PwKWNz30CAADgfPG346WNd/wBAAAAAPBjDP4AAAAAAPgxBn8AAAAAAPwYn/EHAADwMD4LCwCwCe/4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAMCPMfgDAAAAAODHAn0dAOSHHSPi83S+ss9s8nAJAAAAAOQv3vEHAAAAAMCPMfgDAAAAAODHfDr4f/3117rpppsUGxsrl8ulOXPmuJ3eo0cPuVwut5/GjRu7rZOZmam+ffuqRIkSKlSokG6++Wbt2rUrH28FAAAAAAD28uln/A8dOqQ6deqoZ8+euu222067znXXXacpU6Y4vxcsWNDt9H79+mnu3LmaMWOGihcvroEDB+rGG2/UunXrFBAQ4NV+AAAAXFo47g+Ay5FPB//27durffv2Z10nODhY0dHRpz0tNTVVkydP1vTp09W6dWtJ0rvvvqu4uDgtWrRI7dq183gzAAAAAACXEus/479s2TKVKlVKVatW1X333aeUlBTntHXr1unYsWNq27atsyw2Nla1atXSqlWrzniZmZmZSktLc/sBAAAAAMAfWT34t2/fXu+9956WLFmi0aNHa82aNWrZsqUyMzMlScnJySpYsKCKFSvmdr6oqCglJyef8XJHjRqliIgI5ycuLs6rtwMAAAAAAF/x6a7+59K5c2fnv2vVqqWGDRuqXLlymjdvnjp27HjG8xlj5HK5znj6kCFDNGDAAOf3tLQ0hn8AAAAAgF+y+h3/U8XExKhcuXL69ddfJUnR0dE6evSo9u/f77ZeSkqKoqKizng5wcHBKlKkiNsPAAAAAAD+6JIa/Pfu3audO3cqJiZGktSgQQMFBQVp4cKFzjq7d+/W5s2b1bRpU19lAgAAAABgDZ/u6p+enq7ffvvN+X3btm3auHGjIiMjFRkZqcTERN12222KiYnR9u3bNXToUJUoUUK33nqrJCkiIkK9e/fWwIEDVbx4cUVGRmrQoEGKj493jvIPAAAAAMDlzKeD/9q1a5WQkOD8nvO5++7du2vSpEnatGmTpk2bpgMHDigmJkYJCQmaOXOmwsPDnfOMHTtWgYGB6tSpkzIyMtSqVSslJSUpICAg328PAAAAAAC28eng36JFCxljznj6l19+ec7LCAkJ0YQJEzRhwgRPpgEAAAAA4BesPqo/AOSnHSPi83S+ss9s8nAJAAAA4DmX1MH9AAAAAADAhWHwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAMCPMfgDAAAAAODHGPwBAAAAAPBjDP4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/G4A8AAAAAgB9j8AcAAAAAwI8x+AMAAAAA4McY/AEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAMCPBfo6AN6xY0T8BZ+n7DObvFACAAAAAPAl3vEHAAAAAMCPMfgDAAAAAODHGPwBAAAAAPBjDP4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/m08H/66+/1k033aTY2Fi5XC7NmTPH7XRjjBITExUbG6vQ0FC1aNFCW7ZscVsnMzNTffv2VYkSJVSoUCHdfPPN2rVrVz7eCgAAAAAA7OXTwf/QoUOqU6eOJk6ceNrTX375ZY0ZM0YTJ07UmjVrFB0drTZt2ujgwYPOOv369dPs2bM1Y8YMrVixQunp6brxxhuVlZWVXzcDAAAAAABrBfryytu3b6/27duf9jRjjMaNG6dhw4apY8eOkqSpU6cqKipK77//vh544AGlpqZq8uTJmj59ulq3bi1JevfddxUXF6dFixapXbt2+XZbAAAAAACwkbWf8d+2bZuSk5PVtm1bZ1lwcLCaN2+uVatWSZLWrVunY8eOua0TGxurWrVqOeucTmZmptLS0tx+AAAAAADwR9YO/snJyZKkqKgot+VRUVHOacnJySpYsKCKFSt2xnVOZ9SoUYqIiHB+4uLiPFwPAAAAAIAdrB38c7hcLrffjTG5lp3qXOsMGTJEqampzs/OnTs90goAAAAAgG18+hn/s4mOjpZ04l39mJgYZ3lKSoqzF0B0dLSOHj2q/fv3u73rn5KSoqZNm57xsoODgxUcHOylcgAXaseI+Dydr+wzmzxcAgA4lwaPT8vT+WaHezgEAHDerH3Hv0KFCoqOjtbChQudZUePHtVXX33lDPUNGjRQUFCQ2zq7d+/W5s2bzzr4AwAAAABwufDpO/7p6en67bffnN+3bdumjRs3KjIyUmXLllW/fv00cuRIValSRVWqVNHIkSMVFhamLl26SJIiIiLUu3dvDRw4UMWLF1dkZKQGDRqk+Ph45yj/AAAAAABcznw6+K9du1YJCQnO7wMGDJAkde/eXUlJSRo8eLAyMjL08MMPa//+/WrUqJEWLFig8PD/21ds7NixCgwMVKdOnZSRkaFWrVopKSlJAQEB+X57AAAAAACwjU8H/xYtWsgYc8bTXS6XEhMTlZiYeMZ1QkJCNGHCBE2YMMELhQAAAAAAXNqs/Yw/AAAAAAC4eAz+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xuAPAAAAAIAfY/AHAAAAAMCPMfgDAAAAAODHGPwBAAAAAPBjDP4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/G4A8AAAAAgB9j8AcAAAAAwI8F+joAAJDbjhHxF3yess9s8kIJAAAALnW84w8AAAAAgB9j8AcAAAAAwI8x+AMAAAAA4McY/AEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAHwv0dQAAAICtGjw+LU/nmx3u4RAAAC4Cg/9p8D95AAAAAIC/YFd/AAAAAAD8GO/4AwAA6+Rl7zv2vAMA4PR4xx8AAAAAAD/G4A8AAAAAgB9j8AcAAAAAwI8x+AMAAAAA4McY/AEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwYwz+AAAAAAD4MQZ/AAAAAAD8mNWDf2Jiolwul9tPdHS0c7oxRomJiYqNjVVoaKhatGihLVu2+LAYAAAAAAC7WD34S9IVV1yh3bt3Oz+bNm1yTnv55Zc1ZswYTZw4UWvWrFF0dLTatGmjgwcP+rAYAAAAAAB7WD/4BwYGKjo62vkpWbKkpBPv9o8bN07Dhg1Tx44dVatWLU2dOlWHDx/W+++/7+NqAAAAAADsYP3g/+uvvyo2NlYVKlTQnXfeqT/++EOStG3bNiUnJ6tt27bOusHBwWrevLlWrVp11svMzMxUWlqa2w8AAAAAAP7I6sG/UaNGmjZtmr788ku9/fbbSk5OVtOmTbV3714lJydLkqKiotzOExUV5Zx2JqNGjVJERITzExcX57XbAAAAAACAL1k9+Ldv31633Xab4uPj1bp1a82bN0+SNHXqVGcdl8vldh5jTK5lpxoyZIhSU1Odn507d3o+HgAAAAAACwT6OuBCFCpUSPHx8fr11191yy23SJKSk5MVExPjrJOSkpJrL4BTBQcHKzg42JupAABccho8Pi1P55sd7uEQAADgUVa/43+qzMxM/fTTT4qJiVGFChUUHR2thQsXOqcfPXpUX331lZo2berDSgAAAAAA7GH1O/6DBg3STTfdpLJlyyolJUXPP/+80tLS1L17d7lcLvXr108jR45UlSpVVKVKFY0cOVJhYWHq0qWLr9MBAAAAALCC1YP/rl27dNddd2nPnj0qWbKkGjdurNWrV6tcuXKSpMGDBysjI0MPP/yw9u/fr0aNGmnBggUKD2efQwAAAH/GR1MA4PxZPfjPmDHjrKe7XC4lJiYqMTExf4IAAAAAALjEWD34g1ezAQAAAAAX55I6uB8AAAAAALgwDP4AAAAAAPgxBn8AAAAAAPwYgz8AAAAAAH6MwR8AAAAAAD/GUf0BAGe0Y0R8ns5X9plNHi4BAABAXvGOPwAAAAAAfozBHwAAAAAAP8au/rjkNHh82gWfZ3a4F0IAAAAA4BLA4A8AuCzl5UVEiRcSAQDApYdd/QEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8ZR/QHgMsAR7AEAAC5fDP4A/A5DLgAAAPB/2NUfAAAAAAA/xuAPAAAAAIAfY1d/wA/kZdd2dmsHAAAALg8M/gCAfMUxGAAAAPIXgz8Aj2GgA/KGvXYAAIA38Rl/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/xmf8gTzi8+wAAAAALgW84w8AAAAAgB9j8AcAAAAAwI8x+AMAAAAA4McY/AEAAAAA8GMc3A8AvIiDQAIA8gv/zwFwJrzjDwAAAACAH+MdfwAAAAAelZe9D9jzAPAeBn8AAAAAwGXrcviYDIM/AAAAACBfXQ7Dtk0Y/AEAAICLwAADwHYM/gAAAAD8Ei/KACcw+AMAAACAl9lywENeDLk88XV+AAAAAAD4MQZ/AAAAAAD8GIM/AAAAAAB+jMEfAAAAAAA/5jeD/xtvvKEKFSooJCREDRo00PLly32dBAAAAACAz/nF4D9z5kz169dPw4YN04YNG3TNNdeoffv22rFjh6/TAAAAAADwKb8Y/MeMGaPevXvr3nvvVY0aNTRu3DjFxcVp0qRJvk4DAAAAAMCnAn0dcLGOHj2qdevW6cknn3Rb3rZtW61ateq058nMzFRmZqbze2pqqiQpLS1NkpSVmZGnloNBWXk6X871nk5+ttjS4Y0WWzpsarGlwxsttnTkd4stHTa12NLhjRZbOmxqsaXDGy22dOR3iy0dNrXY0uGNFls6bGqxpcMbLbZ05HfLyR05/22MydP1XwiXyY9r8aK///5bpUuX1sqVK9W0aVNn+ciRIzV16lRt3bo113kSExM1fPjw/MwEAAAAACCXnTt3qkyZMl69jkv+Hf8cLpfL7XdjTK5lOYYMGaIBAwY4v2dnZ2vfvn0qXrz4Gc9zLmlpaYqLi9POnTtVpEiRPF2Gp9jSQoe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnTY1EKHvS22dNjUYkuHp1qMMTp48KBiY2M9XJfbJT/4lyhRQgEBAUpOTnZbnpKSoqioqNOeJzg4WMHBwW7LihYt6pGeIkWK+PxJmMOWFjpys6XFlg7JnhZbOiR7WmzpkOxpoSM3W1ps6ZDsabGlQ7KnxZYOyZ4WOnKzpcWWDsmeFls6pItviYiI8GDNmV3yB/crWLCgGjRooIULF7otX7hwoduu/wAAAAAAXI4u+Xf8JWnAgAHq1q2bGjZsqCZNmug///mPduzYoQcffNDXaQAAAAAA+JRfDP6dO3fW3r17NWLECO3evVu1atXS559/rnLlyuVbQ3BwsJ599tlcHyHwBVta6LC3xZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwreV8XPJH9QcAAAAAAGd2yX/GHwAAAAAAnBmDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAAAADAjzH4AwAAAADgxxj8AQAAAADwY4G+DsC5/f7770pLS1PJkiVVpkwZOizpsKnFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxWsdBlZ7+umnTYMGDUxoaKhp2rSpeemll+iwoMOmFls6bGqxpcOmFls6bGqhw94WWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDphZvdjD4W2z48OEmOjrafPHFF2b58uWmT58+5tprrzW7du2iw4cdNrXY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSYVMLHfa22NJhU4stHTa1eLuDwd9SX3/9talTp46ZN2+es+yvv/4y4eHh5v3336fDRx02tdjSYVOLLR02tdjSYVMLHfa22NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXkRwcH97NUenq6GjVqpPj4eElSdna2YmNj1aBBA2VmZjrL6MjfDptabOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWvKjg4P7WcQYI5fLJUlq2LChSpcurbi4OElSgQInXqMJCwtzHvwCBQroyJEjCgkJocOLHTa12NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02teR3B+/4W+Tw4cM6evSoMjIyVLJkSdWuXdvtdGOM9u3bp3379kmS9u3bp4SEBE2ePJkOL3bY1GJLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NSS3x0M/pYYM2aMunTpoquuukr9+/fX9u3bJZ14wHO4XC6FhYUpMjJSR44cUdOmTRUeHq7evXvT4aUOm1ps6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptafNHB4G+BIUOG6KWXXtJ1112n5s2b648//tDzzz+vzMxMZ/ePHNHR0frnn3/UuHFjlS1bVgsWLJDkmc+e0GFviy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4vPOi74cIDwqBkzZpjKlSubb775xlk2duxYU6VKFbN//363dbOyskxCQoJxuVzm5ptvdltOh2c7bGqxpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxq8WUH7/j70LFjx7Rz5061atVKtWrVUlZWliSpW7duOnbsmP766y9nXfP/D/5w5ZVX6uGHH9ann34q6cSrPTkHf6DDMx02tdjSYVOLLR02tdjSYVMLHfa22NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrX4vCNPLxfgomVnZxtjjPnyyy/N2rVr3Zb//fffpnjx4mbDhg3O8pxXdvbs2ZNrGR2e67CpxZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWGDgZ/Hzn1gct5MhhjzL59+0xsbKxZt26d83vHjh3NX3/9ddr16fBch00ttnTY1GJLh00ttnTY1EKHvS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLTZ0BF7U/gq4YBMnTtR3332ntLQ0tWzZUt27d1dERIRcLpezS0d4eLhCQ0MVFhamAwcO6Oqrr1Z0dLRiY2Odyzn1wA90XFyHTS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnRIHNU/Xw0dOlTDhw9X4cKFFRkZqcGDB+vuu+/W4sWLJZ14QLOzs5WamipJ2r59u1q3bq24uDgtWbJEkmeOJEmHvS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnQ4LnqfAZyXrVu3mipVqpgFCxY4y7Zs2WLq1Klj2rRpYxYuXOgsT05ONpGRkcblcpnrr7/eWe6Jz5fQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTiy0dJ2Pwzye///67KVOmjFm2bJkxxpijR48aY4z55ZdfTN26dU379u3NP//8Y4wxJj093TRo0MB07drVOb+nHng67G2xpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxqsaXjZAz++WTnzp2mePHiZty4ccaYEw/msWPHjDEnXhEKCwszI0eOdNZfvny589+efODpsLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZaOkzH456NXXnnFFClSxMybN88Yc+LojJmZmcYYY5588knTtGlTk56e7nYeTx7Vkg77W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1ps6cjBUf29ZOXKlUpLS1NGRoY6duwoSerQoYM2bdqkAQMGyOVyqX379ipYsKAkKTQ0VBERESpUqJDb5VzsERzpsLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZaOs/LaSwqXsSFDhpjq1aubihUrmmLFipmOHTs6p3377bemW7duJjIy0rz55ptmy5Yt5scffzRXXHGF6devHx1e7LCpxZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWWjnNh8PewkSNHmqioKLN69Wrz22+/maVLl5rSpUubqVOnOuv88ssv5rnnnjOFCxc2sbGxplKlSubWW291TvfELh502NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkvH+WDw96AtW7aY+vXrm9mzZzvLUlNTzdVXX21GjBiRa/3ffvvNfPPNN+bbb791lnniYA502NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkvH+eIz/h6yatUqVaxYUXXq1FGFChWc5UWKFFF8fLy2bdsmSTp69KgKFiwoY4wqVaqkSpUqOetmZ2erQIECdHiww6YWWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDphZbOmxqocPeFls6bGqxpcOmFls6LkT+XZMf27Bhg4YMGaLt27fr5ZdfVp06dSRJxhhJUkBAgLKysiRJBQsW1KFDh3To0KFcl3OxDzwd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSYVMLHfa22NJhU4stHTa12NJxoRj8PSA2NlYFChTQwoULVaJECUknXsHJzs6WJB07dsxZd//+/apUqZLGjx9Ph5c7bGqxpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxqsaXjgnnycwOXo5zPZSxdutQUK1bMLF68ONc6jzzyiOndu7c5cuSIqV69umnbtq3Hrj/nYBDHjx/3acepPb7usKnFlg6bWmzpsKnFlg6bWmzp8PV23hi29ZdCiy0dNrXY0mFTCx25+Xoba9v29eQmX7fY0mFTiy0decE7/nl05MgRSSd20cjOzlbz5s3Vq1cvzZ8/X0eOHHF29ZBOfNbj77//VqNGjVS6dGl9+eWXkuS8KnQxdu3aZUXHybKysqzocLlcVrTY0pHTYozxeYstHTktNvzbseV5kpWVZc3j4+sOW7bzEtv6s7Hl344tHTkttvwbtuX5asPjw/bVnS3bWBu3r5Id21gb/t3Y1mLDv528YvDPg7feektTp07VgQMHJJ3YULhcLjVu3Fhz587Vzp075XK5nN089u/fr/nz56tGjRpatGiRJM8czOH555/Xtddeqx07dsjlcvmsY/PmzdqyZYt++eUXn3ZI0qFDh3TkyBEdP35c0v89No0aNcrXltTUVGVkZDjX46uO03G5XD57fGzpyM7Odp4jku/+De/Zs0cHDx5Uenq6pBOfCfPVfbJgwQIZY5zPpfnq8Rk9erS2bt3q/O6rDlu28xLb+tNhW39uvvq3Y8v2VbJnG8v2NTdbtrG2bF8le7axtmxfJXu3sbb8LX3BvLo/gR8aNGiQKVmypPn000/N3r17jTHuX8PQrVs306pVK5OZmeksW7p0qRkwYIDzuye+tuHRRx81LpfLFCpUyCxbtswYY8yxY8fyvePpp582NWrUMOXKlTNly5Y1S5YscTs9vzqMMeaFF14wHTp0MLVq1TL3339/rl1v7r777nxpef75502bNm1MlSpVTM+ePc2iRYt80mGMMXPmzDHffffdGU/Pr8fHlg5jjJk4caLp2bOnadSokXnzzTfNzp07fdIyatQo07p1a1OxYkVz7733mq1bt/qkwxhjxowZY1wul7nnnnucXdiOHj2a7y0DBgwwLpfL/PLLL6e93PzqsGU7bwzb+tNhW5+bLdtYW7avxtizjWX7mpst21hbtq/G2LONtWX7aow921hbtq+ewOB/AWbMmGHi4uKc715MTU016enp5p9//nHW+f77783NN99s5s6d6yw7eSPiiQe+f//+plixYmbbtm3mlltuMU2bNs31+aQffvjB6x3PPvusiYqKMkuWLDHz5883t99+u3nooYfc1smP+8MYY5566ilTsmRJ88EHH5jnnnvOdOrUyQQGBpoZM2Y462zcuNHrLcOHDzfFixc3kydPNkOHDnU63n777XztMMaYESNGGJfLZe666y6zdu1at9NyriM/nie2dBhjzJNPPmliYmLM008/bTp27GiqVq1qxo8fb4z5vz/E8qPliSeeMKVKlTLTp083iYmJpk6dOs5zJOe68ut5YowxL730kmnUqJFp0aKF6dq1q3PZOffJpk2bzE033eTVln79+pmIiAizYcOGM66TH/eJLdt5Y9jWnw7b+txs2cbasn01xq5tLNtXd7ZsY23ZvhpjzzbWlu2rMfZsY23ZvnoKg/8FSExMNN27dzfGGPO///3PtG3b1tSsWdNUr17dJCUlGWOMOXz4sOnatavp1KmTc76cDYknPPbYY6Zw4cJm/fr1xhhjPvjgA1O1alWzcOFCY8z/PbkyMjJMt27dvNaxc+dO06RJEzNnzhxnWWJiohk0aJDZsGGD03f48GFz9913e63DGGN++eUXc+WVV5qlS5c6y77++mvjcrmMy+Uy77zzjjHGmEOHDnm1JS0tzTRv3ty89dZbzrJ//vnHDB8+3BQoUMD85z//cTq8+Rwx5sSrkzmv1jZu3NjcfffdZs2aNbmuz9vPE1s6jDEmKSnJlC9f3vljw5gT/+OvUqWK27sv3m6ZNGmSiYuLc/sfyO23327eeusts3fvXvPvv/8aY/LneZLjnXfeMe3atTNvvPGGqV27tunatasx5sT25MCBA+bIkSNevU+ef/5543K5zPbt240xJ/79vvDCC+amm24yr7zyivOcyY/7xIbtvDFs60+HbX1utmxjbdm+GmPfNpbtqzsbtrG2bF+NsWcba8v21Rh7trG2bF89icH/PORsALp27WqGDh1qUlJSTPHixc0rr7xiJk2aZIYNG2ZcLpeZMGGCMcaY3bt3m9KlS7s9YT1h7dq1pnnz5ub77793lu3Zs8dUqlTJ3H///bl6k5OTvdJhjDG//fabKVSokPn444+dZdWrVzeVK1c21apVMyEhIeaVV14xxhjz999/e63DmBOvghYrVswsX77cbXmHDh1Mz549TUhIiPnqq6+MMd69T1JSUkyJEiXMm2++6bY8MzPTjBgxwhQoUMDMmzfPGOO950iOefPmmV69epn09HTzySefmIYNG+baYOW8op2cnGxiY2O90mJLx8GDB82gQYPM008/bY4cOeL8Ibpu3TpTo0YNc+DAAWOM+78db7QcOnTIjB8/3kyaNMlpyMrKMhUrVjT16tUz5cqVMw0aNHBeNfb28yTHwoULzV133WWMMeb11183V111lbnllltMZGSk0+KtfzuHDx82jz/+uHG5XGbDhg3m66+/NjExMea2224zzZs3N02bNjU1atRw/hjx1n1iy3beGLb1Z8K2PjcbtrG2bF+NsXMby/b1BFu2sTZtX42xZxtry/bVGHu2sTZsXz2Nwf8CjB8/3lSqVMkMHDjQ3HfffW6njRkzxhQrVsxs2bLFGHPis2W9evUyKSkpHm3Yt2+fMebEK0k5G6Vp06aZkiVLmlWrVjnr5TwRvdVx6NAh07lzZxMdHW2GDRtmKlasaFq0aGG2bdtm/v77b/P222+boKAgZwPirQ5jjPnpp59Mw4YNzfjx401ycrIx5sSuOXFxcWb9+vUmISHBDBs2zFnfmy3dunUz7dq1M7t27XJbvmfPHtOtWzfTsWNH548gb3ZkZGS4NXz44Yen3WDltIwcOdIrLUeOHLGiw5gT70itXLnSbdmWLVtM8eLFzY4dO5xlOZ/R8lbLzp07zZ49e4wxJ/6wqF69urnmmmvMypUrzf/+9z9z7733mtq1a5s//vjDGOPd50mOf//91zRo0MD5rOVzzz1nQkJCTJkyZcyhQ4ec9by5Xcv5/GlkZKR5++23zcGDB40xxqxevdrcdNNNpnPnziY1NdWrHcYYM2HCBJ9v543x/bY+590KG7b1OS0//vgj2/pTZGZmWrGNnTp1qhXbV2OM+euvv6zaxvp6+3rgwAFrtq/G2PG39P79+40xvv9b2pgTL874ehtrjDE///yzNdtXY+zYxtr0N6ynBPr20IKXlmuvvVbz58/XjBkz1LZtW0n/d4TGa665RoULF3aO5ti6dWtlZWWpUKFCHm0oVqyYc50ul0uSVLduXUVEROjbb79VkyZNlJWVpYCAAK92hIWFadCgQapevboiIiJUtGhRTZgwQeXLl5cktWzZUtHR0dq7d69XOySpevXqatasmd566y298847KlGihJYvX66FCxeqXr16qlSpkpYuXSpjjFwul1dbEhIS9Nprr+m9997Tvffeq8jISElS8eLFVb9+fb3yyivKysqS5N37JCQkRLGxsc5tvv322yVJL730kl577TUNHDhQxYoVU5cuXTR9+nS1atVK2dnZHm8JDg5WbGys85z1VYckde/ePdeywMBAZWdnO4/JgQMH9OKLL2rw4MFq3bq1V1rKlCnj/LcxRnfccYcGDhyoiIgISSeOYDt79mznK1+8+TyRpOPHj8vlcmnfvn3KyMjQgQMHNG7cONWtW1dHjx7VQw89pClTpqhAgQJe3a4NGzZM4eHh2rt3r+644w6FhYVJkho1aqQ6depo8uTJ+fJv55prrtHnn3/u0+285Pttfc512rCtz2mpUaOGmjVrpjfffNMn2/qTj8jcunVrjRkzxmfb+pzHvmDBgipdurTPtvXHjx9XYGCg7rnnnlyn5ff2NaclNjbWWeaLbezJz5Ocx8UX29ec+yMiIkLPPPOMihQpoj179vhk+3ryfZKQkOCzv6WPHTumoKAgFS1aVNL/HZldyv+/pXNuc2hoqJ544gmfbWNzbme1atXUvHlzK/6Wluz4ezo4ONin21ev8NlLDpb77LPPzKuvvmomTpzo9pm1CRMmmBIlSpjixYu7HSRl69atpm7dus5ncYw58SqetzpONXDgQBMdHe28ynTyZ0s83fHNN9+4nfb777+bEiVKuH2e7ueffzY1atRwOwKnJzpObTn5ldmpU6eaZ555xjz++ONm27ZtzvJ+/frlelXZEy3vvPOOefDBB829995rpk2b5izv37+/qVSpknnllVfMX3/95Sz/8ssvTePGjc3ff//t0Y5TW9599123005+Lnz00UemUaNG5uabbzalSpUyrVq18mjLO++8Y/r27WsGDRrkdp8Y435wE293nNoydepUt9Ny7pO//vrLVKpUyaSnp5sDBw6YSpUqmQ4dOni05Uz3yakHe8l5Z+Hzzz83LVq0cHvueOM+mT59uttpjzzyiBk/fryJiooyPXv2NHv37jWTJk0yZcqUMZMmTfJoy5kem3379jmfQzXm/w6OM2HCBHPjjTe6Xbc3H5s33njDFC9ePN+286e2nPrYnMzb2/qz/bv57bff8nVbf3LLlClTnOXTp083Tz/9dL5t609+Dpx8wCZfbOtPbjl1G5Kf2/qTO3K2XafKj+3rqS0n3yendnl7G3u2x6Zv3775tn0902Ozd+9e8+effzq/e3v7eraW119/PV//lj7bY3Myb29fT205eXtiTP7+PX1yx8nH4Zg2bVq+/i1tzJlnjH79+uXrNvZsM1d+bl+9icH/NJ544glTtmxZ07JlS1O+fHnTunVr53Mtxpz4o7BGjRqmbNmyZuLEiWby5MkmPj7e3HnnnV7vWLFihds6ORuwTZs2mVq1apmJEyd6/OiRp+s4+TNAqamppm3btuaxxx4zy5cvN+vXrzd16tTx+P1xppacr2DJkfOPMysry/zzzz+mRo0a5oUXXnA77WI9/vjjpnTp0qZ3796mffv2pm7dum4bq759+5r4+HjTsWNH8/HHH5vPP//c1KhRw3Tr1s0j13+ullMPPnLy7R43bpxxuVymc+fOzjJPHam+ZMmSpkuXLiYhIcEUKVLE3HnnnW67PJ18Pd7qON8WY4z59ddfTaVKlcz69etNfHy8adeunXOaJ54r59Nx8vXs3r3b1KtXzzzyyCMXfd3n25JzJOX777/fuFwuc//99zu7n6anp+f6+hxvdHTu3Nk54NapkpOTTd26dc3gwYO93nHHHXc4u7u++eabpnr16l7fzp+p5Uz/dry9rT/dY5PzHElLSzNt2rTJt239qS233367s0ulMf93n3hzWz98+HBTsmRJM27cOGfZyV/Z9Nhjj+Xbtv50LWcb/r21jT2fDmO8v329kJYc3trGnqvjvvvuy5ft6+k6zvTCjDHe276eqeXkATO//pY+n+dIfmxfz9Ry8uOTX39Pn2u7Zkz+/C1tzLlnrvzaxp7PzJUf21dvY/A/xdixY02ZMmXM6tWrjTEnDnbRsGFDM3r0aLf1FixYYB566CFTqlQpk5CQ4PYqmCf+QZxvx8nXWa9ePfPkk09e9HXnpeOVV14xTZs2NUFBQaZu3bpuGylP/UM4V8vJ93t6erqZOXOmqVatmrnxxhs9cv05Ro4caeLi4pzh+scffzRVq1Y1mzdvdmt44403zG233WaCg4PNlVdeabp06eKc5qmN5tlaTpbzGPz4448mJibG3H777blOuxgbNmwwZcqUcf6IycjIMEuXLjVRUVGmXbt2zuBw8md1vdFxIS3GnHglPTQ01BQqVMi0bdvWoy0X0vHvv/+aBQsWmPj4eHPzzTc7yz31PDlbS5s2bUxaWpox5sRxEHI++3nqdXv7Pmnbtq3bfZKSkmK++OILU7NmTY/fJ2fraNWqlTNcfvHFF17dzp+r5eTnSc79761t/bk6cl6EePHFF72+rT/X8zXn86dZWVle3dZPnjzZxMXFmRYtWphmzZqd8Y/kt956y+vb+rO1nO5+99Y29kI6vLl9vdAWb25jz9aR845udna2mT59ule3rxdyf3hz+3qulpP/7Xj7b+kL/Xfjre3rhbR4++/ps3Wc+iKRN7evxpz/jOHtbeyFzlze/BvW2xj8T7Jr1y5z6623mtdee80Y839PpieeeMK0bdvWZGdn5/pHsXfvXnPkyBHnd0888OfTcbKc68x5p8pTLvT+2Lx5s1m6dKnb7jGe+odwoffJ/v37TVJSkunXr59HW3bv3m06duzofOWMMSf+KM35Y+K2224zTz31lNt5tm3bdsZ3vb3d8uyzz7qdZ8mSJV75A2z16tWmdOnSbrtdGXNi4xgVFWXuuOOOfOm40Jbff//dREREmJ49e3q85UI6FixYYHr06OH2LlR+3icdO3b02HVdTMfJ98nnn39uOnXq5PaHYH49NqfeH97Yzp9vy8n3Sc4Q4elt/fl0nHyfbNq0yWvb+vNpOfk+2bdvn1e29UeOHDEPPPCA6devn9m4caN54IEHTOPGjc/6Dpm3tvXn03LqdXljG3uhHX/88YfXtq8X2rJw4UKvbGPz8jzxhgu9P+bPn++17Wte7hNvbGMv9D7J+XvWG9vX82k5eW8Ib/09faH3ibf+ljbm/P6uP/WjEN7Yxl7ofGGMd/+G9TYG//9vyZIl5qeffjKPP/6487mXnAd79OjRplGjRqc938mDrydedfJEhyeegHntOJmnXjnOa8vJ/2Px1H2yZ88es379euezRllZWaZevXqmXr16JjEx0SQmJpoCBQrkGv5zePI+Od+WU4f/HJ64TxYvXmwOHTpktm3bZgoWLOj2IkTOc3LFihUmPDzc+RyjN97pyGuLMcbMnj3boy157cg5wrSnOi6mxdPy2vHLL784/53fj80bb7zhnHbyc9ZT/4Y98djk930yceLE016Gr+8TT///b9GiRebYsWPmzz//dD5ru337due7nM/0R7I3nicX0nIm+X2fnPpZWE92XEyLp7cnee3w9JCQ146ffvrJ4015/bdz8oDniX87ef134+ltyYW2nOljGb68Tzz9t7Qx9swYnui4lIZ+Yxj8TXZ2ttmxY4cJCwszX3zxhdtpOQ/mRx99ZNq0aeMsT01NNf/73//o8GLHxbTkfC+upztCQ0PdvmfVGGM++OADc8cddzhf02OMMY8++qhp0qSJSU9P9+jnoC62xZMbp+zsbLNz504TGhpqZsyYYYw58Rnx5s2bux1zISsryxw/ftx06tTJ9OrVy1nmSXltOdNn/PK743SXc7EupsWTz9m8dpzacLFNttwfNrXY0nGxLd7qmDlzptv1GuP+R3LOu0Nbt241Y8eO9duWvHbkfO/4qev7ouXVV1/NdTm+6LDlsfH0/XExLbbcJzb9Gx4zZoxfduS02DBj2NLhC5f94J/jlVdeMY0aNTK//fZbrtPee+8906RJE2PMie+PvOKKK0yPHj3oyIcOm1pyXv07+Z1ZY9x3zzLmxMH2Tv78kT+35HT8888/5ttvvzXXXHONue2228zXX3/ttl6fPn1y7e7vry22dNjUQoe9LbZ02NRyuu1rznC0bds2c//995urr77aDB061JQrV840btzY71ts6bCphQ57W2zpsKnFlg5j7Pm73paO/FTA118naIubbrpJZcqU0Zo1ayTJ+W5I6cR3z2ZlZWnPnj1KSEhQbGyspkyZQkc+dNjUcsMNN6hMmTL69ttvJcn5ntmgoCBnnb///ltLlixR7dq1vdJgW8sNN9yg2NhYLV26VFdddZUGDBigf/75R88995w++OADHT16VD///LMWL16s6tWre63DphZbOmxqocPeFls6bGo5dfualZUll8slY4zKly+vZ555RqVLl9aoUaN01VVX6ZtvvpF04jvb/bXFlg6bWuiwt8WWDptabOmQ7Pm73paOfJW/rzPYbejQoaZmzZpuXxFkjDEff/yxqVOnjqlUqZJp3bq1s763PtdBh70tZ+o4ePCg+fbbb03t2rXdvqfY07vE2tJy8ufQhg4daqpXr+5c/uLFi02vXr1MSEiIKVOmjClXrpxX7xNbWmzpsKmFDntbbOmwqeXUjpO3rydfz86dO03p0qVNp06dnGWe/n+OLS22dNjUQoe9LbZ02NRiS8e5WvLz73pbOnzhshz8v/rqK/PBBx+YFStWmP3797ud1rx5czNkyBC3ZR9//LFxuVwe/8dAh70tF9KRkZFhpk2bZtq0aeO2W70v7hNvtuzevdts3779tKc1b97cPPHEE87vaWlp5ueffzazZ882S5Ys8WiHTS22dNjUQoe9LbZ02NRyro5T/59z/Phx07lzZ9OqVSuPdtjUYkuHTS102NtiS4dNLbZ05KXFW3/X29Lha5fd4P/EE0+YihUrmrJly5qKFSuaCRMmGGP+79Wft99+23Tq1Mnta4Q2bNhgRo4c6fzuiQeeDntb8tLxxx9/5DoIlSfY0vLUU0+ZBg0amHLlypnatWubMWPGONeZlZXldOzatcsYY3J9BYunOmxqsaXDphY67G2xpcOmlvPtOHmZMe5f95Xf94m3W2zpsKmFDntbbOmwqcWWjry0GOOdv+tt6bDBZTX4v/rqqyYmJsasXLnSHDx40Nx///3mqquuctvVZdeuXaZatWrm2WefPe1leOKBp8PeFk90eGrXU1taXnrpJRMTE2M+/fRT88MPP5j777/fFC5c2HTq1Mn8/vvv59XhKba02NJhUwsd9rbY0mFTS147PP0Vvja12NJhUwsd9rbY0mFTiy0dF9NyMk/8XW9Lhy0ui8E/OzvbpKWlmTZt2pjx48c7y1etWmXuuecek5SUZObNm+c8Ab788ktTvXp1s2LFCjq82GFTiy0dNrVkZ2ebvXv3mmuvvdZMmzbN7bT4+HgTExNjbr/9dvPnn38aY4xZuHChqVGjhtfuExtabOmwqYUOe1ts6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWmzpsM1lcVR/l8ulgIAApaena9euXc4R0Hv37q1vv/1Wr776qoYPH66ePXtq+/btatq0qa699lqtXLlSkueOaEmHvS22dNjU4nK5dOzYMf31118KDQ2V9H9HPK1WrZpat26tX375RYsXL5YkxcfH65prrvHafWJDiy0dNrXQYW+LLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4stHdbJpxcYrNC3b19TuXJlk5CQYKpXr26aNWtm/v77b5OdnW0WLlxo6tata6ZMmWKMMebNN980cXFx5p9//qHDyx02tdjSYVPLNddcY1q2bGn27t1rsrKyzMiRI01cXJzZt2+fufvuu02jRo2cdf/zn/949T6xpcWWDpta6LC3xZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg5b+PXgP3PmTDN27Fjz0ksvmV9//dUYY8yHH35oPvzwQ3PVVVeZ2bNnO+seOXLEXHHFFeb55593lv33v/81KSkpdHi4w6YWWzpsasnpePHFF83PP/9sNm3aZOrWrWuKFCliatasaYoWLeocPHDOnDmmUqVKZs+ePR7vsKnFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZYOW/nt4P/444+byMhI0759e1OiRAkTHx9vHn/8cef0Zs2amc8++8z5fceOHaZOnTrmvffec5Z54mAOdNjbYkuHTS0ndxQvXtzUr1/f9O/f36SlpZlZs2aZpKQks3PnTmf9119/3bRq1cpkZmY6B4fxxn3iyxZbOmxqocPeFls6bGqxpcOmFls6bGqhw94WWzpsarGlw6YWWzps5peD/9dff23i4uLMypUrjTHGHDp0yLzwwgumdu3a5o477jDGGHPbbbeZGjVqmA8++MB8/PHHpl69eqZDhw50eLHDphZbOmxqOV3H888/b2rVqmW6devmtu6xY8fMjh07THx8vBk4cKBHO2xqsaXDphY67G2xpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw3Z+OfjPmjXLlClTxuzbt89ZdvDgQTN58mRzxRVXmMGDB5uDBw+ali1bmlKlSpl69eqZBx54wFnXU6/20GFviy0dNrWcraN27drmwQcfNMac+JjBrFmzTO3atc0NN9zgrOupr4CxqcWWDpta6LC3xZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg7b+eXgv3z5clO5cmXnMxw50tPTzSuvvGLi4+PN+vXrjTHG/Pzzz267fXhyoKPD3hZbOmxqOVdHvXr1zNdff22MMebTTz91+6rB/L5P8qvFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZYO2/nl4J+cnGxq1Khh7rzzTrN//3630zIyMkyFChXMk08+met8nn61hw57W2zpsKnlXB0VK1Y0Q4cOzXU+b2wwbWmxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxqsaXDdoG+/jpBb4iKitKUKVN07bXXqkSJEnrhhRdUpEgRSVJISIgaN26s48eP5zqfy+Wiw4sdNrXY0mFTy7k6GjVqpKNHj+Y6X4ECBTzaYVOLLR02tdBhb4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTiy0d1vP1Kw/e9Omnn5qCBQuarl27mu+++84cOXLE7Nixw1SsWNG8+uqrdPiow6YWWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDphZbOmxqocPeFls6bGqxpcOmFls6bOUyxhhfv/jgTatWrdLdd9+tsLAwZWRkKCgoSJUrV9b//vc/OnzYYVOLLR02tdjSYVOLLR02tdBhb4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTiy0dNvL7wV+S/vrrL23cuFHbtm1TdHS0br/9dklSdnZ2vu7iQYe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnTY1EKHvS22dNjUYkuHTS22dNjmshj8T8eWB56O3GxpsaVDsqfFlg7JnhZbOiR7WujIzZYWWzoke1ps6ZDsabGlQ7KnhY7cbGmxpUOyp8WWDsmeFls6fOmyHfwBAAAAALgcXN4vewAAAAAA4OcY/AEAAAAA8GMM/gAAAAAA+DEGfwAAAAAA/BiDPwAAAAAAfozBHwAAAAAAP8bgDwAAAACAH2PwBwAA6tGjh1wul1wul4KCghQVFaU2bdronXfeUXZ29nlfTlJSkooWLeq9UAAAcMEY/AEAgCTpuuuu0+7du7V9+3Z98cUXSkhI0GOPPaYbb7xRx48f93UeAADIIwZ/AAAgSQoODlZ0dLRKly6t+vXra+jQofr000/1xRdfKCkpSZI0ZswYxcfHq1ChQoqLi9PDDz+s9PR0SdKyZcvUs2dPpaamOnsPJCYmSpKOHj2qwYMHq3Tp0ipUqJAaNWqkZcuW+eaGAgBwmWHwBwAAZ9SyZUvVqVNHn3zyiSSpQIECGj9+vDZv3qypU6dqyZIlGjx4sCSpadOmGjdunIoUKaLdu3dr9+7dGjRokCSpZ8+eWrlypWbMmKEffvhBd9xxh6677jr9+uuvPrttAABcLlzGGOPrCAAA4Fs9evTQgQMHNGfOnFyn3Xnnnfrhhx/0448/5jrtww8/1EMPPaQ9e/ZIOvEZ/379+unAgQPOOr///ruqVKmiXbt2KTY21lneunVrXXXVVRo5cqTHbw8AAPg/gb4OAAAAdjPGyOVySZKWLl2qkSNH6scff1RaWpqOHz+uI0eO6NChQypUqNBpz79+/XoZY1S1alW35ZmZmSpevLjX+wEAuNwx+AMAgLP66aefVKFCBf3555+6/vrr9eCDD+q5555TZGSkVqxYod69e+vYsWNnPH92drYCAgK0bt06BQQEuJ1WuHBhb+cDAHDZY/AHAABntGTJEm3atEn9+/fX2rVrdfz4cY0ePfr/tXOHLM1FcRzHfygY7AaDsKRF0dXBugxdNQg3r+9FXBS2sBXbksW2douaDOa9CRWjcReesLQ38AjHzydeLodz4pdz+GdnZzMm6Onpaev/vb29tG279a3b7aZt23x9faXf7/+3vQMAG8IfAEiyeXr/8fGRtm3z+fmZpmlS13Wurq5SVVVWq1XW63Xm83mur6/z9vaWh4eHrTU6nU5+fn7y/Pyc8/Pz7O/v5/j4OLe3t6mqKpPJJN1uN9/f33l5ecnZ2VkGg8EvnRgA/gZT/QGAJEnTNDk8PEyn08nl5WVeX18zm82yXC6zu7ubi4uLTKfT3N3d5fT0NI+Pj6nremuNXq+X0WiUm5ubHBwc5P7+PkmyWCxSVVXG43FOTk4yHA7z/v6eo6Oj3zgqAPwppvoDAABAwdz4AwAAQMGEPwAAABRM+AMAAEDBhD8AAAAUTPgDAABAwYQ/AAAAFEz4AwAAQMGEPwAAABRM+AMAAEDBhD8AAAAUTPgDAABAwYQ/AAAAFOwf7gbv5rAER8AAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.barplot(data=data, x=\"Date\", y=\"Notifications\", hue=\"App\")\n",
+ "plt.title(\"Notifications Over Time with Apps\")\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "05857195",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/4AAAJWCAYAAADhpFz6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAaUlEQVR4nO3deZiN9f/H8ddhxphhjN3MMGNfM/ZsCWOnqBCirF+t1IRIhdFCKkuoVF97spRoUXZKJCJFiyhrSJYxxjLGzOf3h9+cr2NsM86Z83E8H9c11+Xc5z7nPM85M7d5z33OfRzGGCMAAAAAAOCTsng7AAAAAAAAeA6DPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/ANxCHA7HdX2tXr1a3bt3V7FixbydnCHr16/X/fffr7CwMGXLlk2hoaFq3769vvvuO2+nuV2xYsXUvXv361r36NGjGjx4sCpUqKCgoCDlypVLtWvX1ltvvaWkpCTPhqbDtGnTruv7NPX70+FwKDY21qvN7nDpc3ngwAHFxsZqy5Ytadbt3r27cubM6ZbbrVatmhwOh9544w23XB8AwD5+3g4AAGSeSwffl156SatWrdLKlStdlleoUEERERF66qmnMjPPLSZMmKCYmBjVrFlTr732mooWLaq9e/fqrbfeUr169fTmm2+qT58+3s7MdL///ruaNWumhIQE9e/fX3Xr1tWZM2f0xRdf6KmnntJHH32kL7/8UkFBQd5O1V133ZXme7VOnTpq3769+vfv71wWEBAg6cL3dZEiRTK10RMWLFigXLlyOU8fOHBAw4cPV7FixVSlShWP3OaWLVv0448/SpImT56sAQMGeOR2AADexeAPALeQ2rVru5wuUKCAsmTJkma5JJcB5Gaxdu1axcTEqFWrVlqwYIH8/P7331ynTp1033336amnnlLVqlV1xx13eLE0cyUnJ6tdu3aKj4/Xhg0bVKZMGed5rVq1UoMGDdSpUyf169dPkyZNyrQuY4zOnj2rwMBAl+UFChRQgQIF0qxfqFChy36vXm7Zzahq1aqZfpv//e9/JV34Y8uiRYu0bt061a1bN9M7AACexUv9AQCXdbmX+jscDvXp00dTp05V2bJlFRgYqBo1amj9+vUyxuj1119X8eLFlTNnTjVq1Eg7d+5Mc73Lly9X48aNlStXLgUFBemOO+7QihUrXNb5999/9fDDDysiIkIBAQEqUKCA7rjjDi1fvvyqzSNHjpTD4dA777zjMvRLkp+fn95++205HA69+uqrzuWxsbFyOBz68ccf1bZtW+XKlUshISF68MEH9e+//6a5jblz56pOnTrKkSOHcubMqebNmzv3mF782OXMmVM7d+5Uq1atlDNnTkVERKh///5KTEx0WffcuXN6+eWXVa5cOed97dGjR5rbTkpK0sCBAxUaGqqgoCDVq1dPGzZsuOrjkWrBggX69ddf9eyzz7oM/ak6duyoZs2aafLkyTp06JCSkpJUsGBBPfTQQ2nWjYuLU2BgoPr16+dcFh8frwEDBqh48eLKli2bChcurJiYGJ06dcrlsqnfP5MmTVL58uUVEBCg6dOnX9d9uJpLX+qf+laBlStXqnfv3sqXL59y5cqlrl276tSpUzp06JA6dOig3LlzKywsTAMGDEjzVofrfV4utWjRIjkcDm3cuNG5bP78+XI4HLrrrrtc1q1UqZLatWvnPH3xS/1Xr16t22+/XZLUo0cP59sbLn1Lw/V8j13J2bNn9eGHH6p69eoaO3asJGnKlClp1kvPz0ixYsV09913a8GCBapUqZKyZ8+uEiVKaPz48S7rpaSk6OWXX3ZuR3Lnzq1KlSrpzTffvK52AED6MPgDANLliy++0H//+1+9+uqrmj17tk6ePKm77rpL/fv319q1azVx4kS99957+vXXX9WuXTsZY5yX/eCDD9SsWTPlypVL06dP17x585Q3b141b97cZfh/6KGHtHDhQg0dOlRLly7Vf//7XzVp0kRHjx69YldycrJWrVqlGjVqXPFl3xEREapevbpWrlyp5ORkl/Puu+8+lSpVSh9//LFiY2O1cOFCNW/e3GUgHDFihB544AFVqFBB8+bN08yZM3Xy5Endeeed+vXXX12uLykpSW3atFHjxo316aefqmfPnho7dqxGjRrlXCclJUX33HOPXn31VXXu3FmLFi3Sq6++qmXLlqlhw4Y6c+aMc93evXvrjTfeUNeuXfXpp5+qXbt2atu2rY4fP36NZ0xatmyZJOnee++94jr33nuvzp8/r9WrV8vf318PPvig5s+fr/j4eJf1Zs+erbNnz6pHjx6SpNOnT6tBgwaaPn26nnzySX311VcaNGiQpk2bpjZt2rg8/5K0cOFCvfPOOxo6dKiWLFmiO++885r9GfWf//xHISEhmjNnjl544QV9+OGH6t27t+666y5VrlxZH3/8sbp166bRo0drwoQJzsul53m5VIMGDeTv7+/yR6rly5crMDBQX3/9tfP76fDhw9q2bZuaNGly2eupVq2apk6dKkl64YUX9N133+m7777Tf/7zH+c61/M9djWffPKJjh8/rp49e6p06dKqV6+e5s6dq4SEhMuufz0/I9KFtw/ExMTo6aef1oIFC1S3bl099dRTLscQeO211xQbG6sHHnhAixYt0ty5c9WrVy/FxcVdVzsAIJ0MAOCW1a1bN5MjR44rnle0aFGXZZJMaGioSUhIcC5buHChkWSqVKliUlJSnMvHjRtnJJmff/7ZGGPMqVOnTN68eU3r1q1drjM5OdlUrlzZ1KxZ07ksZ86cJiYmJl335dChQ0aS6dSp01XX69ixo5Fk/vnnH2OMMcOGDTOSzNNPP+2y3qxZs4wk88EHHxhjjNm7d6/x8/Mzffv2dVnv5MmTJjQ01HTo0MG5rFu3bkaSmTdvnsu6rVq1MmXLlnWenj17tpFk5s+f77Lexo0bjSTz9ttvG2OM+e23367a2K1bt6ve5xYtWhhJ5uzZs1dc56uvvjKSzKhRo4wxxvz8889Gknnvvfdc1qtZs6apXr268/TIkSNNlixZzMaNG13W+/jjj40k8+WXXzqXSTIhISHm2LFjV+29HEnmiSeeuOJ5w4YNc56eOnWqkZTmubr33nuNJDNmzBiX5VWqVDHVqlVznr7e5+VK6tWrZxo1auQ8XapUKfPMM8+YLFmymK+//toY87/n7o8//nCuV7RoUZfnMvX2pk6dmuY2rvd77GoaNWpksmfPbo4fP26M+d/jNnnyZJf1rvdnJPU+OBwOs2XLFpd1mzZtanLlymVOnTpljDHm7rvvNlWqVLmuTgDAjWOPPwAgXaKjo5UjRw7n6fLly0uSWrZsKYfDkWb5nj17JEnr1q3TsWPH1K1bN50/f975lZKSohYtWmjjxo3Ol4bXrFlT06ZN08svv6z169e79Yjz5v/3QF/cKkldunRxOd2hQwf5+flp1apVkqQlS5bo/Pnz6tq1q0t/9uzZ1aBBA61evdrl8g6HQ61bt3ZZVqlSJefjIV149UTu3LnVunVrl+usUqWKQkNDndeZ2nClRne49HGJiopS9erVnXudJem3337Thg0b1LNnT5f7ULFiRVWpUsXlPjRv3tz5CREXa9SokfLkyeOW5mu5++67XU6nfk9e+pL78uXLZ+h5uZLGjRtr7dq1OnPmjPbs2aOdO3eqU6dOqlKlivPVF8uXL1dkZKRKly6d4ft3Pd9jV7Jr1y6tWrVKbdu2Ve7cuSVJ999/v4KDgy/7cn/p2j8jqW677TZVrlzZZVnnzp0VHx+vzZs3S7rwM/7TTz/p8ccf15IlS9K8sgQA4F4M/gCAdMmbN6/L6WzZsl11+dmzZyVJ//zzjySpffv28vf3d/kaNWqUjDE6duyYpAvvo+/WrZv++9//qk6dOsqbN6+6du2qQ4cOXbErf/78CgoK0q5du67av3v3bgUFBaXpDQ0NdTnt5+enfPnyOd9ekNp/++23p+mfO3eujhw54nL5oKAgZc+e3WVZQECA8/FIvc64uDhly5YtzXUeOnTIeZ2pDVdqvJbIyEhJuupjs3v3bkkX3g6RqmfPnvruu+/0+++/S5KmTp2qgIAAPfDAAy734eeff07THxwcLGNMmsclLCzsmr3ukp7v1Yw8L1fSpEkTJSYm6ttvv9WyZcuUP39+Va1aVU2aNHG+BWDFihVXfJn/9bqe77ErmTJliowxat++veLi4hQXF+d868DatWudz/nFrvUzcqX1Ll6Wuu7gwYP1xhtvaP369WrZsqXy5cunxo0b64cffrhmOwAg/TiqPwAgU+TPn1/ShY/bu9JR2AsVKuRcd9y4cRo3bpz27t2rzz77TM8++6wOHz6sxYsXX/ayWbNmVXR0tBYvXqz9+/df9n3++/fv16ZNm9SyZUtlzZrV5bxDhw6pcOHCztPnz5/X0aNHnYN1av/HH3+sokWLpvPeX17+/PmVL1++K96n4OBgSXI2XKnxWpo2bar33ntPCxcu1LPPPnvZdRYuXCg/Pz81bNjQueyBBx5Qv379NG3aNL3yyiuaOXOm7r33Xpc99vnz51dgYOAV9xKnPm6pLn2lhY2u93m5klq1ailnzpxavny5du/ercaNG8vhcKhx48YaPXq0Nm7cqL17997w4J9RKSkpmjZtmiSpbdu2l11nypQpeu2111yWXetn5OL1LpW6LHVdPz8/9evXT/369VNcXJyWL1+u5557Ts2bN9e+ffus+FhJAPAlDP4AgExxxx13KHfu3Pr111/Vp0+f675cZGSk+vTpoxUrVmjt2rVXXXfw4MH66quv9Pjjj2vBggUuw31ycrIee+wxGWM0ePDgNJedNWuWqlev7jw9b948nT9/3jkIN2/eXH5+fvrzzz9djsR+I+6++27NmTNHycnJqlWr1hXXS224UuO13HfffapQoYJeffVVtW3bNs2R/efOnaulS5fq0UcfddlbmydPHt17772aMWOG6tSpo0OHDrm8zD/1PowYMUL58uVT8eLFr+duW+96n5cr8ff3V/369bVs2TLt27fP+SkSd955p/z8/PTCCy84/xBwNQEBAZJ01YMJZsSSJUu0f/9+PfHEE2rfvn2a8/v06aMZM2ZoxIgRLm8ludbPSKpffvlFP/30k8vL/T/88EMFBwerWrVqaW4vd+7cat++vf7++2/FxMRo9+7dqlChghvuKQAgFYM/ACBT5MyZUxMmTFC3bt107NgxtW/fXgULFtS///6rn376Sf/++6/eeecdnThxQtHR0ercubPKlSun4OBgbdy4UYsXL77i3slUd9xxh8aNG6eYmBjVq1dPffr0UWRkpPbu3au33npL33//vcaNG3fZzyn/5JNP5Ofnp6ZNm+qXX37RkCFDVLlyZXXo0EHShY8pe/HFF/X888/rr7/+UosWLZQnTx79888/2rBhg3LkyKHhw4en6zHp1KmTZs2apVatWumpp55SzZo15e/vr/3792vVqlW65557dN9996l8+fJ68MEHNW7cOPn7+6tJkybatm2b3njjDeXKleuat5M1a1bNnz9fTZs2VZ06ddS/f3/VqVNHiYmJ+vzzz/Xee++pQYMGGj16dJrL9uzZU3PnzlWfPn1UpEiRNHupY2JiNH/+fNWvX19PP/20KlWqpJSUFO3du1dLly5V//79MzQ8e9P1Pi9X07hxY/Xv31+SnI9ZYGCg6tatq6VLl6pSpUoqWLDgVa+jZMmSCgwM1KxZs1S+fHnlzJlT4eHhCg8Pv6H7N3nyZPn5+em555677HU98sgjevLJJ7Vo0SLdc889zuXX+hlJFR4erjZt2ig2NlZhYWH64IMPtGzZMo0aNcq5J79169aqWLGiatSooQIFCmjPnj0aN26cihYtekPHPQAAXB6DPwAg0zz44IOKjIzUa6+9pkceeUQnT55UwYIFVaVKFefnl2fPnl21atXSzJkztXv3biUlJSkyMlKDBg3SwIEDr3kbffv21e23367Ro0erf//+Onr0qPLmzat69erp22+/VZ06dS57uU8++USxsbF65513nAdNGzdunPN94dKFVxRUqFBBb775pmbPnq3ExESFhobq9ttv16OPPpruxyNr1qz67LPP9Oabb2rmzJkaOXKk/Pz8VKRIETVo0EBRUVHOdSdPnqxChQpp2rRpGj9+vKpUqaL58+erU6dO13Vb5cqV05YtW/TGG29o5syZeumll+Tn56cKFSpo3Lhxevjhh+Xv75/mck2aNFFERIT27dun559/XlmyuB4eKEeOHFqzZo1effVVvffee9q1a5cCAwMVGRmpJk2aqFixYul+XLwtPc/LlaQO+6VLl3Z5a0iTJk20atWq63qZf1BQkKZMmaLhw4erWbNmSkpK0rBhwxQbG5vh+3bkyBF9/vnnuvvuu6/4B4SHHnpIgwYN0uTJk9MM/tf6GZGkKlWqqEePHho2bJh27Nih8PBwjRkzRk8//bRznejoaM2fP1///e9/FR8fr9DQUDVt2lRDhgy57PchAODGOIy55AN2AQC4hcTGxmr48OH6999/07wfHUD6fkaKFSumihUr6osvvsikOgDA9eCo/gAAAAAA+DAGfwAAAAAAfBgv9QcAAAAAwIexxx8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIf5efPGR44cqU8++US///67AgMDVbduXY0aNUply5Z1rmOM0fDhw/Xee+/p+PHjqlWrlt566y3ddtttznUSExM1YMAAzZ49W2fOnFHjxo319ttvq0iRItfVkZKSogMHDig4OFgOh8Pt9xMAAAAAgIsZY3Ty5EmFh4crSxYP75M3XtS8eXMzdepUs23bNrNlyxZz1113mcjISJOQkOBc59VXXzXBwcFm/vz5ZuvWraZjx44mLCzMxMfHO9d59NFHTeHChc2yZcvM5s2bTXR0tKlcubI5f/78dXXs27fPSOKLL7744osvvvjiiy+++OKLr0z92rdvn9tn7UtZdVT/f//9VwULFtTXX3+t+vXryxij8PBwxcTEaNCgQZIu7N0vVKiQRo0apUceeUQnTpxQgQIFNHPmTHXs2FGSdODAAUVEROjLL79U8+bNr3m7J06cUO7cubVv3z7lypXLo/cRAAAAAID4+HhFREQoLi5OISEhHr0tr77U/1InTpyQJOXNm1eStGvXLh06dEjNmjVzrhMQEKAGDRpo3bp1euSRR7Rp0yYlJSW5rBMeHq6KFStq3bp11zX4p768P1euXAz+AAAAAIBMkxlvN7dm8DfGqF+/fqpXr54qVqwoSTp06JAkqVChQi7rFipUSHv27HGuky1bNuXJkyfNOqmXv1RiYqISExOdp+Pj4912PwAAAAAAsIk1R/Xv06ePfv75Z82ePTvNeZf+BcQYc82/ilxtnZEjRyokJMT5FRERkfFwAAAAAAAsZsXg37dvX3322WdatWqVy5H4Q0NDJSnNnvvDhw87XwUQGhqqc+fO6fjx41dc51KDBw/WiRMnnF/79u1z590BAAAAAMAaXn2pvzFGffv21YIFC7R69WoVL17c5fzixYsrNDRUy5YtU9WqVSVJ586d09dff61Ro0ZJkqpXry5/f38tW7ZMHTp0kCQdPHhQ27Zt02uvvXbZ2w0ICFBAQIAH7xkAAAAAXL/k5GQlJSV5OwNu5O/vr6xZs3o7Q5KXB/8nnnhCH374oT799FMFBwc79+yHhIQoMDBQDodDMTExGjFihEqXLq3SpUtrxIgRCgoKUufOnZ3r9urVS/3791e+fPmUN29eDRgwQFFRUWrSpIk37x4AAAAAXJUxRocOHVJcXJy3U+ABuXPnVmhoaKYcwO9qvDr4v/POO5Kkhg0buiyfOnWqunfvLkkaOHCgzpw5o8cff1zHjx9XrVq1tHTpUgUHBzvXHzt2rPz8/NShQwedOXNGjRs31rRp06z56woAAAAAXE7q0F+wYEEFBQV5fUCEexhjdPr0aR0+fFiSFBYW5tUehzHGeLXAAvHx8QoJCdGJEyf4OD8AAAAAmSI5OVl//PGHChYsqHz58nk7Bx5w9OhRHT58WGXKlEmzYzoz51ArDu4HAAAAALea1Pf0BwUFebkEnpL63Hr7+A0M/gAAAADgRby833fZ8twy+AMAAAAA4MMY/AEAAAAA8GEM/gAAAACAG7Ju3TplzZpVLVq08HYKLoPBHwAAAABwQ6ZMmaK+ffvq22+/1d69e72dg0sw+AMAAAAAMuzUqVOaN2+eHnvsMd19992aNm2a87zVq1fL4XBo0aJFqly5srJnz65atWpp69atznWmTZum3Llza+HChSpTpoyyZ8+upk2bat++fV64N76JwR8AAAAAkGFz585V2bJlVbZsWT344IOaOnWqjDEu6zzzzDN64403tHHjRhUsWFBt2rRx+Yi706dP65VXXtH06dO1du1axcfHq1OnTpl9V3wWgz8AAAAAIMMmT56sBx98UJLUokULJSQkaMWKFS7rDBs2TE2bNlVUVJSmT5+uf/75RwsWLHCen5SUpIkTJ6pOnTqqXr26pk+frnXr1mnDhg2Zel98FYM/AAAAACBDtm/frg0bNjj3zvv5+aljx46aMmWKy3p16tRx/jtv3rwqW7asfvvtN+cyPz8/1ahRw3m6XLlyyp07t8s6yDg/bwcAAAAAAG5OkydP1vnz51W4cGHnMmOM/P39dfz48ate1uFwXPX0lZYh/djjDwAAAABIt/Pnz2vGjBkaPXq0tmzZ4vz66aefVLRoUc2aNcu57vr1653/Pn78uP744w+VK1fO5bp++OEH5+nt27crLi7OZR1kHHv8AQCAT9j7YlSGLhc5dOu1VwIApPHFF1/o+PHj6tWrl0JCQlzOa9++vSZPnqyxY8dKkl588UXly5dPhQoV0vPPP6/8+fPr3nvvda7v7++vvn37avz48fL391efPn1Uu3Zt1axZMzPvks9ijz8AAAAAIN0mT56sJk2apBn6Jaldu3basmWLNm/eLEl69dVX9dRTT6l69eo6ePCgPvvsM2XLls25flBQkAYNGqTOnTurTp06CgwM1Jw5czLtvvg69vgDAAAAANLt888/v+J51apVkzFGq1evliTVq1dP27Ztu+r1tW3bVm3btnVnIv4fe/wBAAAAAPBhDP4AAAAAAPgwBn8AAAAAgEc0bNhQxhjlzp37iut0795dcXFxmdZ0K2LwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAf5uftAAAAAACAq+rPzMjU29v0etd0rd+9e3fFxcVp4cKFN3zbxYoVU0xMjGJiYm74unB57PEHAAAAANwSzp075+0Er2DwBwAAAABkWMOGDfXkk09q4MCByps3r0JDQxUbG+uyTmxsrCIjIxUQEKDw8HA9+eSTzsvu2bNHTz/9tBwOhxwOhyTp6NGjeuCBB1SkSBEFBQUpKipKs2fPdrnOkydPqkuXLsqRI4fCwsI0duxYNWzY0OWVA8WKFdPLL7+s7t27KyQkRL1795YkDRo0SGXKlFFQUJBKlCihIUOGKCkpyaW3SpUqmjJliiIjI5UzZ0499thjSk5O1muvvabQ0FAVLFhQr7zyigceUffjpf4AAAAAgBsyffp09evXT99//72+++47de/eXXfccYeaNm2qjz/+WGPHjtWcOXN022236dChQ/rpp58kSZ988okqV66shx9+2DmUS9LZs2dVvXp1DRo0SLly5dKiRYv00EMPqUSJEqpVq5YkqV+/flq7dq0+++wzFSpUSEOHDtXmzZtVpUoVl7bXX39dQ4YM0QsvvOBcFhwcrGnTpik8PFxbt25V7969FRwcrIEDBzrX+fPPP/XVV19p8eLF+vPPP9W+fXvt2rVLZcqU0ddff61169apZ8+eaty4sWrXru3BR/fGMfgDAAAAAG5IpUqVNGzYMElS6dKlNXHiRK1YsUJNmzbV3r17FRoaqiZNmsjf31+RkZGqWbOmJClv3rzKmjWrgoODFRoa6ry+woULa8CAAc7Tffv21eLFi/XRRx+pVq1aOnnypKZPn64PP/xQjRs3liRNnTpV4eHhadoaNWrkcl2SXP4IUKxYMfXv319z5851GfxTUlI0ZcoUBQcHq0KFCoqOjtb27dv15ZdfKkuWLCpbtqxGjRql1atXM/gDAAAAAHxbpUqVXE6HhYXp8OHDkqT7779f48aNU4kSJdSiRQu1atVKrVu3lp/flcfR5ORkvfrqq5o7d67+/vtvJSYmKjExUTly5JAk/fXXX0pKSnL+AUGSQkJCVLZs2TTXVaNGjTTLPv74Y40bN047d+5UQkKCzp8/r1y5crmsU6xYMQUHBztPFypUSFmzZlWWLFlclqXeT5vxHn8AAAAAwA3x9/d3Oe1wOJSSkiJJioiI0Pbt2/XWW28pMDBQjz/+uOrXr+/ynvpLjR49WmPHjtXAgQO1cuVKbdmyRc2bN3cenM8Y47ydi6Uuv1jqHwtSrV+/Xp06dVLLli31xRdf6Mcff9Tzzz+f5sB/l7tPV7ufNmPwBwAAAAB4VGBgoNq0aaPx48dr9erV+u6777R161ZJUrZs2ZScnOyy/po1a3TPPffowQcfVOXKlVWiRAnt2LHDeX7JkiXl7++vDRs2OJfFx8e7rHMla9euVdGiRfX888+rRo0aKl26tPbs2eOme2onXuoPAAAAAPCYadOmKTk5WbVq1VJQUJBmzpypwMBAFS1aVNKFl9R/88036tSpkwICApQ/f36VKlVK8+fP17p165QnTx6NGTNGhw4dUvny5SVdODhft27d9Mwzzyhv3rwqWLCghg0bpixZsqR5FcClSpUqpb1792rOnDm6/fbbtWjRIi1YsMDjj4M3sccfAAAAAOAxuXPn1vvvv6877rhDlSpV0ooVK/T5558rX758kqQXX3xRu3fvVsmSJVWgQAFJ0pAhQ1StWjU1b95cDRs2VGhoqO69916X6x0zZozq1Kmju+++W02aNNEdd9yh8uXLK3v27Fftueeee/T000+rT58+qlKlitatW6chQ4Z45L7bwmEu9yaIW0x8fLxCQkJ04sSJNAd0AAAAN4e9L0Zl6HKRQ7e6uQQArs/Zs2e1a9cuFS9e/JrDKq7t1KlTKly4sEaPHq1evXp5O0fS1Z/jzJxDeak/AAAAAOCm8+OPP+r3339XzZo1deLECb344ouSLuzRhysGfwAAAADATemNN97Q9u3blS1bNlWvXl1r1qxR/vz5vZ1lHQZ/AAAAAMBNp2rVqtq0aZO3M24KHNwPAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhDP4AAAAAAPgwBn8AAAAAgMc5HA4tXLjQ2xm3JD9vBwAAAAAAXO19MSpTby9y6NbrXnfSpEl65plndPz4cfn5XRgpExISlCdPHtWuXVtr1qxxrrtmzRrVr19f27dvd0tn9+7dFRcXxx8Q0smre/y/+eYbtW7dWuHh4Zf964/D4bjs1+uvv+5cp2HDhmnO79SpUybfEwAAAAC4NURHRyshIUE//PCDc9maNWsUGhqqjRs36vTp087lq1evVnh4uMqUKeONVPw/rw7+p06dUuXKlTVx4sTLnn/w4EGXrylTpsjhcKhdu3Yu6/Xu3dtlvXfffTcz8gEAAADgllO2bFmFh4dr9erVzmWrV6/WPffco5IlS2rdunUuy6Ojo52njxw5ovvuu09BQUEqXbq0PvvsM+d5ycnJ6tWrl4oXL67AwECVLVtWb775pvP82NhYTZ8+XZ9++qlzp+/q1at17tw59enTR2FhYcqePbuKFSumkSNHOi83ZswYRUVFKUeOHIqIiNDjjz+uhIQE5/nTpk1T7ty5tXDhQpUpU0bZs2dX06ZNtW/fPpfbrlKlit59911FREQoKChI999/v+Li4tz1sHqUVwf/li1b6uWXX1bbtm0ve35oaKjL16effqro6GiVKFHCZb2goCCX9UJCQjIjHwAAAABuSQ0bNtSqVaucp1etWqWGDRuqQYMGzuXnzp3Td9995zL4Dx8+XB06dNDPP/+sVq1aqUuXLjp27JgkKSUlRUWKFNG8efP066+/aujQoXruuec0b948SdKAAQPUoUMHtWjRwrnTt27duho/frw+++wzzZs3T9u3b9cHH3ygYsWKOW8zS5YsGj9+vLZt26bp06dr5cqVGjhwoMv9OX36tF555RVNnz5da9euVXx8fJpXku/cuVPz5s3T559/rsWLF2vLli164okn3Pq4espN8x7/f/75R4sWLdL06dPTnDdr1ix98MEHKlSokFq2bKlhw4YpODj4iteVmJioxMRE5+n4+HiPNAMAAACAL2rYsKGefvppnT9/XmfOnNGPP/6o+vXrKzk5WePHj5ckrV+/XmfOnHEZ/Lt3764HHnhAkjRixAhNmDBBGzZsUIsWLeTv76/hw4c71y1evLjWrVunefPmqUOHDsqZM6cCAwOVmJio0NBQ53p79+5V6dKlVa9ePTkcDhUtWtSlNSYmxuU6X3rpJT322GN6++23ncuTkpI0ceJE1apVS5I0ffp0lS9fXhs2bFDNmjUlSWfPntX06dNVpEgRSdKECRN01113afTo0S49Nrppjuo/ffp0BQcHp3l1QJcuXTR79mytXr1aQ4YM0fz586/4CoJUI0eOVEhIiPMrIiLCk+kAAAAA4FOio6N16tQpbdy4UWvWrFGZMmVUsGBBNWjQQBs3btSpU6e0evVqRUZGurxiu1KlSs5/58iRQ8HBwTp8+LBz2aRJk1SjRg0VKFBAOXPm1Pvvv6+9e/detaV79+7asmWLypYtqyeffFJLly51OX/VqlVq2rSpChcurODgYHXt2lVHjx7VqVOnnOv4+fmpRo0aztPlypVT7ty59dtvvzmXRUZGOod+SapTp45SUlLcduBCT7ppBv8pU6aoS5cuyp49u8vy3r17q0mTJqpYsaI6deqkjz/+WMuXL9fmzZuveF2DBw/WiRMnnF8Xv3cDAAAAAHB1pUqVUpEiRbRq1SqtWrVKDRo0kHTh7drFixfX2rVrtWrVKjVq1Mjlcv7+/i6nHQ6HUlJSJEnz5s3T008/rZ49e2rp0qXasmWLevTooXPnzl21pVq1atq1a5deeuklnTlzRh06dFD79u0lSXv27FGrVq1UsWJFzZ8/X5s2bdJbb70l6cJe/ktbLnW5ZZeed7V1bHFTvNR/zZo12r59u+bOnXvNdatVqyZ/f3/t2LFD1apVu+w6AQEBCggIcHcmAAAAANwyoqOjtXr1ah0/flzPPPOMc3mDBg20ZMkSrV+/Xj169Lju61uzZo3q1q2rxx9/3Lnszz//dFknW7ZsSk5OTnPZXLlyqWPHjurYsaPat2+vFi1a6NixY/rhhx90/vx5jR49WlmyXNjvnXrMgIudP39eP/zwg/Nl/du3b1dcXJzKlSvnXGfv3r06cOCAwsPDJUnfffedsmTJclN8YsFNscd/8uTJql69uipXrnzNdX/55RclJSUpLCwsE8oAAAAA4NYUHR2tb7/9Vlu2bHHu8ZcuDP7vv/++zp496/L+/mspVaqUfvjhBy1ZskR//PGHhgwZoo0bN7qsU6xYMf3888/avn27jhw5oqSkJI0dO1Zz5szR77//rj/++EMfffSRQkNDlTt3bpUsWVLnz5/XhAkT9Ndff2nmzJmaNGlSmtv29/dX37599f3332vz5s3q0aOHateu7fxDgCRlz55d3bp1008//aQ1a9boySefVIcOHax/f7/k5T3+CQkJ2rlzp/P0rl27tGXLFuXNm1eRkZGSLhx476OPPtLo0aPTXP7PP//UrFmz1KpVK+XPn1+//vqr+vfvr6pVq+qOO+7ItPsBAAAAAO4UOXSrtxOuKTo6WmfOnFG5cuVUqFAh5/IGDRro5MmTKlmyZLqOp/boo49qy5Yt6tixoxwOhx544AE9/vjj+uqrr5zr9O7dW6tXr1aNGjWUkJCgVatWKWfOnBo1apR27NihrFmz6vbbb9eXX36pLFmyqEqVKhozZoxGjRqlwYMHq379+ho5cqS6du3qcttBQUEaNGiQOnfurP3796tevXqaMmWKyzqlSpVS27Zt1apVKx07dkytWrVyOUCgzRzGGOOtG7/0Mx1TdevWTdOmTZMkvffee4qJidHBgwfTfEzfvn379OCDD2rbtm1KSEhQRESE7rrrLg0bNkx58+a97o74+HiFhIToxIkTypUr1w3dJwAA4B17X4zK0OVuhl+uAfims2fPateuXSpevHiaY5kh80ybNk0xMTGKi4u74jqxsbFauHChtmzZkq7rvtpznJlzqFf3+Dds2FDX+rvDww8/rIcffviy50VEROjrr7/2RBoAAAAAAD7hpji4HwAAAG5uGXlFBq/GAAD3uCkO7gcAAAAAgCd07979qi/zly681D+9L/O3CYM/AAAAAAA+jMEfAAAAALzIi8dbh4fZ8twy+AMAAACAF/j7+0uSTp8+7eUSeErqc5v6XHsLB/cDAAAAAC/ImjWrcufOrcOHD0u68FnyDofDy1VwB2OMTp8+rcOHDyt37tzKmjWrV3sY/AEAAADAS0JDQyXJOfzDt+TOndv5HHsTgz8AAAAAeInD4VBYWJgKFiyopKQkb+fAjfz9/b2+pz8Vgz8AAAAAeFnWrFmtGRLhezi4HwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhDP4AAAAAAPgwBn8AAAAAAHwYgz8AAAAAAD6MwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MMY/AEAAAAA8GEM/gAAAAAA+DAGfwAAAAAAfBiDPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDvDr4f/PNN2rdurXCw8PlcDi0cOFCl/O7d+8uh8Ph8lW7dm2XdRITE9W3b1/lz59fOXLkUJs2bbR///5MvBcAAAAAANjLq4P/qVOnVLlyZU2cOPGK67Ro0UIHDx50fn355Zcu58fExGjBggWaM2eOvv32WyUkJOjuu+9WcnKyp/MBAAAAALCenzdvvGXLlmrZsuVV1wkICFBoaOhlzztx4oQmT56smTNnqkmTJpKkDz74QBEREVq+fLmaN2/u9mYAAAAAAG4m1r/Hf/Xq1SpYsKDKlCmj3r176/Dhw87zNm3apKSkJDVr1sy5LDw8XBUrVtS6deuueJ2JiYmKj493+QIAAAAAwBdZPfi3bNlSs2bN0sqVKzV69Ght3LhRjRo1UmJioiTp0KFDypYtm/LkyeNyuUKFCunQoUNXvN6RI0cqJCTE+RUREeHR+wEAAAAAgLd49aX+19KxY0fnvytWrKgaNWqoaNGiWrRokdq2bXvFyxlj5HA4rnj+4MGD1a9fP+fp+Ph4hn8AAAAAgE+yeo//pcLCwlS0aFHt2LFDkhQaGqpz587p+PHjLusdPnxYhQoVuuL1BAQEKFeuXC5fAAAAAAD4optq8D969Kj27dunsLAwSVL16tXl7++vZcuWOdc5ePCgtm3bprp163orEwAAAAAAa3j1pf4JCQnauXOn8/SuXbu0ZcsW5c2bV3nz5lVsbKzatWunsLAw7d69W88995zy58+v++67T5IUEhKiXr16qX///sqXL5/y5s2rAQMGKCoqynmUfwAAAAAAbmVeHfx/+OEHRUdHO0+nvu++W7dueuedd7R161bNmDFDcXFxCgsLU3R0tObOnavg4GDnZcaOHSs/Pz916NBBZ86cUePGjTVt2jRlzZo10+8PAAAAAAC28erg37BhQxljrnj+kiVLrnkd2bNn14QJEzRhwgR3pgEAAAAA4BNuqvf4AwAAAACA9GHwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhDP4AAAAAAPgwBn8AAAAAAHwYgz8AAAAAAD6MwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MMY/AEAAAAA8GEM/gAAAAAA+DAGfwAAAAAAfBiDPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODD/LwdAAAAAABIa++LURm6XOTQrW4uwc2OPf4AAAAAAPgwBn8AAAAAAHwYgz8AAAAAAD6MwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MMY/AEAAAAA8GEM/gAAAAAA+DAGfwAAAAAAfJhXB/9vvvlGrVu3Vnh4uBwOhxYuXOg8LykpSYMGDVJUVJRy5Mih8PBwde3aVQcOHHC5joYNG8rhcLh8derUKZPvCQAAAAAAdvLq4H/q1ClVrlxZEydOTHPe6dOntXnzZg0ZMkSbN2/WJ598oj/++ENt2rRJs27v3r118OBB59e7776bGfkAAAAAAFjPz5s33rJlS7Vs2fKy54WEhGjZsmUuyyZMmKCaNWtq7969ioyMdC4PCgpSaGioR1sBAAAAALgZ3VTv8T9x4oQcDody587tsnzWrFnKnz+/brvtNg0YMEAnT570TiAAAAAAAJbx6h7/9Dh79qyeffZZde7cWbly5XIu79Kli4oXL67Q0FBt27ZNgwcP1k8//ZTm1QIXS0xMVGJiovN0fHy8R9sBAAAAAPCWm2LwT0pKUqdOnZSSkqK3337b5bzevXs7/12xYkWVLl1aNWrU0ObNm1WtWrXLXt/IkSM1fPhwjzYDAAAAAGAD61/qn5SUpA4dOmjXrl1atmyZy97+y6lWrZr8/f21Y8eOK64zePBgnThxwvm1b98+d2cDAAAAAGAFq/f4pw79O3bs0KpVq5QvX75rXuaXX35RUlKSwsLCrrhOQECAAgIC3JkKAAAAAICVvDr4JyQkaOfOnc7Tu3bt0pYtW5Q3b16Fh4erffv22rx5s7744gslJyfr0KFDkqS8efMqW7Zs+vPPPzVr1iy1atVK+fPn16+//qr+/furatWquuOOO7x1twAAAAAAsIZXB/8ffvhB0dHRztP9+vWTJHXr1k2xsbH67LPPJElVqlRxudyqVavUsGFDZcuWTStWrNCbb76phIQERURE6K677tKwYcOUNWvWTLsfAAAAAADYyquDf8OGDWWMueL5VztPkiIiIvT111+7OwsAAAAAAJ9h/cH9AAAAAABAxjH4AwAAAADgw67rpf6p77W/Hm3atMlwDAAAAAAAcK/rGvzvvfdel9MOh8Pl/fcOh8P57+TkZPeUAQBwkb0vRqX7MpFDt3qgBAAA4OZyXS/1T0lJcX4tXbpUVapU0VdffaW4uDidOHFCX375papVq6bFixd7uhcAAAAAAKRDuo/qHxMTo0mTJqlevXrOZc2bN1dQUJAefvhh/fbbb24NBAAAAIDMlJFXmUm80gz2SvfB/f7880+FhISkWR4SEqLdu3e7owkAAAAAALhJugf/22+/XTExMTp48KBz2aFDh9S/f3/VrFnTrXEAAAAAAODGpHvwnzJlig4fPqyiRYuqVKlSKlWqlCIjI3Xw4EFNnjzZE40AAAAAACCD0v0e/1KlSunnn3/WsmXL9Pvvv8sYowoVKqhJkyYuR/cHAAAAAADel+7BX7rw8X3NmjVT/fr1FRAQwMAPAAAAAICl0v1S/5SUFL300ksqXLiwcubMqV27dkmShgwZwkv9AQAAAACwTLoH/5dfflnTpk3Ta6+9pmzZsjmXR0VF6b///a9b4wAAAAAAwI1J9+A/Y8YMvffee+rSpYuyZs3qXF6pUiX9/vvvbo0DAAAAAAA3Jt2D/99//61SpUqlWZ6SkqKkpCS3RAEAAAAAAPdI9+B/2223ac2aNWmWf/TRR6patapbogAAAAAAgHuk+6j+w4YN00MPPaS///5bKSkp+uSTT7R9+3bNmDFDX3zxhScaAQAAAABABqV7j3/r1q01d+5cffnll3I4HBo6dKh+++03ff7552ratKknGgEAAAAAQAale4+/JDVv3lzNmzd3dwsAAAAAAHCzDA3+knTu3DkdPnxYKSkpLssjIyNvOAoAAAAAALhHugf/HTt2qGfPnlq3bp3LcmOMHA6HkpOT3RYHAAAAAABuTLoH/+7du8vPz09ffPGFwsLC5HA4PNEFAAAAAADcIN2D/5YtW7Rp0yaVK1fOEz0AAAAAAMCN0n1U/woVKujIkSOeaAEAAAAAAG6W7sF/1KhRGjhwoFavXq2jR48qPj7e5QsAAAAAANgj3S/1b9KkiSSpcePGLss5uB8AAAAAAPZJ9+C/atUqT3QAAAAAAAAPSPfg36BBA090AAAAAAAAD0j34C9Ja9as0bvvvqu//vpLH330kQoXLqyZM2eqePHiqlevnrsbAQCwxt4XozJ0ucihW91cAgAAcH3SfXC/+fPnq3nz5goMDNTmzZuVmJgoSTp58qRGjBjh9kAAAAAAAJBx6R78X375ZU2aNEnvv/++/P39ncvr1q2rzZs3uzUOAAAAAADcmHQP/tu3b1f9+vXTLM+VK5fi4uLc0QQAAAAAANwk3YN/WFiYdu7cmWb5t99+qxIlSrglCgAAAAAAuEe6B/9HHnlETz31lL7//ns5HA4dOHBAs2bN0oABA/T44497ohEAAAAAAGRQuo/qP3DgQJ04cULR0dE6e/as6tevr4CAAA0YMEB9+vTxRCMAAAAAAMigDH2c3yuvvKLnn39ev/76q1JSUlShQgXlzJnT3W0AAAAAAOAGZWjwl6SgoCAVKlRIDoeDoR8AAAAAAEul+z3+58+f15AhQxQSEqJixYqpaNGiCgkJ0QsvvKCkpCRPNAIAAAAAgAxK9x7/Pn36aMGCBXrttddUp04dSdJ3332n2NhYHTlyRJMmTXJ7JAAAAAAAyJh0D/6zZ8/WnDlz1LJlS+eySpUqKTIyUp06dbqlB/+9L0Zl6HKRQ7e6uQQAAAAA3IdZ5+aW7pf6Z8+eXcWKFUuzvFixYsqWLZs7mgAAAAAAgJuke/B/4okn9NJLLykxMdG5LDExUa+88gof5wcAAAAAgGXS/VL/H3/8UStWrFCRIkVUuXJlSdJPP/2kc+fOqXHjxmrbtq1z3U8++cR9pQAAAAAAIN3SPfjnzp1b7dq1c1kWERHhtiAAAAAAAOA+6R78p06d6okOAPA6DloDAAAAX5TuwT/Vv//+q+3bt8vhcKhMmTIqUKCAO7sAAAAAAIAbpHvwP3XqlPr27asZM2YoJSVFkpQ1a1Z17dpVEyZMUFBQkNsjAQAAYIfqz8zI0OUWBLs5BABw3dJ9VP9+/frp66+/1ueff664uDjFxcXp008/1ddff63+/fun67q++eYbtW7dWuHh4XI4HFq4cKHL+cYYxcbGKjw8XIGBgWrYsKF++eUXl3USExPVt29f5c+fXzly5FCbNm20f//+9N4tAAAAAAB8UroH//nz52vy5Mlq2bKlcuXKpVy5cqlVq1Z6//339fHHH6fruk6dOqXKlStr4sSJlz3/tdde05gxYzRx4kRt3LhRoaGhatq0qU6ePOlcJyYmRgsWLNCcOXP07bffKiEhQXfffbeSk5PTe9cAAAAAAPA56X6p/+nTp1WoUKE0ywsWLKjTp0+n67patmypli1bXvY8Y4zGjRun559/3vkRgdOnT1ehQoX04Ycf6pFHHtGJEyc0efJkzZw5U02aNJEkffDBB4qIiNDy5cvVvHnzdN47AAAAAAB8S7r3+NepU0fDhg3T2bNnncvOnDmj4cOHq06dOm4L27Vrlw4dOqRmzZo5lwUEBKhBgwZat26dJGnTpk1KSkpyWSc8PFwVK1Z0rnM5iYmJio+Pd/kCAAAAAMAXpXuP/5tvvqkWLVqoSJEiqly5shwOh7Zs2aLs2bNryZIlbgs7dOiQJKV5dUGhQoW0Z88e5zrZsmVTnjx50qyTevnLGTlypIYPH+62VgAAAAAAbJXuwb9ixYrasWOHPvjgA/3+++8yxqhTp07q0qWLAgMD3R7ocDhcThtj0iy71LXWGTx4sPr16+c8HR8fr4iIiBsLBQAAAADAQuke/CUpMDBQvXv3dneLi9DQUEkX9uqHhYU5lx8+fNj5KoDQ0FCdO3dOx48fd9nrf/jwYdWtW/eK1x0QEKCAgAAPlQMAAAAAYI90v8c/sxQvXlyhoaFatmyZc9m5c+f09ddfO4f66tWry9/f32WdgwcPatu2bVcd/AEAAAAAuFVkaI+/uyQkJGjnzp3O07t27dKWLVuUN29eRUZGKiYmRiNGjFDp0qVVunRpjRgxQkFBQercubMkKSQkRL169VL//v2VL18+5c2bVwMGDFBUVJTzKP8AAAAAANzKvDr4//DDD4qOjnaeTn3ffbdu3TRt2jQNHDhQZ86c0eOPP67jx4+rVq1aWrp0qYKDg52XGTt2rPz8/NShQwedOXNGjRs31rRp05Q1a9ZMvz8AAAAAANjGq4N/w4YNZYy54vkOh0OxsbGKjY294jrZs2fXhAkTNGHCBA8UAgAAAABwc0v3e/z37dun/fv3O09v2LBBMTExeu+999waBgAAAAAAbly6B//OnTtr1apVki4ccb9p06basGGDnnvuOb344otuDwQAAAAAABmX7sF/27ZtqlmzpiRp3rx5qlixotatW6cPP/xQ06ZNc3cfAAAAAAC4Aeke/JOSkhQQECBJWr58udq0aSNJKleunA4ePOjeOgAAAAAAcEPSfXC/2267TZMmTdJdd92lZcuW6aWXXpIkHThwQPny5XN7IAAAwK2u+jMzMnS5Ta93dXMJAOBmlO49/qNGjdK7776rhg0b6oEHHlDlypUlSZ999pnzLQAAAAAAAMAO6d7j37BhQx05ckTx8fHKkyePc/nDDz+soKAgt8YBAAAAAIAbk+49/pJkjNGmTZv07rvv6uTJk5KkbNmyMfgDAAAAAGCZdO/x37Nnj1q0aKG9e/cqMTFRTZs2VXBwsF577TWdPXtWkyZN8kQnAAAAAADIgHTv8X/qqadUo0YNHT9+XIGBgc7l9913n1asWOHWOAAAAAAAcGPSvcf/22+/1dq1a5UtWzaX5UWLFtXff//ttjAAAAAAAHDj0j34p6SkKDk5Oc3y/fv3Kzg42C1RAAAAuHF7X4zK0OUih251cwkAwJvS/VL/pk2baty4cc7TDodDCQkJGjZsmFq1auXONgAAAAAAcIPSvcd/7Nixio6OVoUKFXT27Fl17txZO3bsUP78+TV79mxPNAIAAAAAgAxK9+AfHh6uLVu2aPbs2dq8ebNSUlLUq1cvdenSxeVgfwAAAIBtePuDvXhuAM9J9+AvSYGBgerZs6d69uzp7h4AAAAAAOBGGRr8//77b61du1aHDx9WSkqKy3lPPvmkW8IAAAAAAMCNS/fgP3XqVD366KPKli2b8uXLJ4fD4TzP4XAw+AMAAAAAYJF0D/5Dhw7V0KFDNXjwYGXJku4PBQAAAAAAAJko3ZP76dOn1alTJ4Z+AAAAAABuAume3nv16qWPPvrIEy0AAAAAAMDN0v1S/5EjR+ruu+/W4sWLFRUVJX9/f5fzx4wZ47Y4AAAAAABwY9I9+I8YMUJLlixR2bJlJSnNwf0AAAAAAIA90j34jxkzRlOmTFH37t09kAP4vr0vRmXocpFDt7q5BAAAAMCtIN3v8Q8ICNAdd9zhiRYAAAAAAOBm6d7j/9RTT2nChAkaP368J3rgY9i7DQAAAADele7Bf8OGDVq5cqW++OIL3XbbbWkO7vfJJ5+4LQ4AAAAAANyYdA/+uXPnVtu2bT3RAgAAAAAA3Czdg//UqVM90QEAAAAAADwg3Qf3AwAAAAAAN4/r2uNfrVo1rVixQnny5FHVqlXlcDiuuO7mzZvdFgcAAAAAAG7MdQ3+99xzjwICAiRJ9957ryd7AAAAAACAG13X4D9s2DD17NlTb775poYNG+bpJgAAcA18XCoAALhe1/0e/+nTp+vMmTOebAEAAAAAAG523Uf1N8Z4sgMAANykePUBAAB2S9dR/a92UD8AAAAAAGCf697jL0llypS55vB/7NixGwoCAAAAAADuk67Bf/jw4QoJCfFUCwAAAAAAcLN0Df6dOnVSwYIFPdUCAAAAAADc7Lrf48/7+wEAAAAAuPlc9+DPUf0BAAAAALj5XPdL/VNSUjzZAQAA4DP4iEMAgE3S9XF+AAAAAADg5pKug/sBAAAAAOAtvKIqY9jjDwAAAACAD2PwBwAAAADAh1n/Uv9ixYppz549aZY//vjjeuutt9S9e3dNnz7d5bxatWpp/fr1mZUI3JR4mRQAAABwa7B+8N+4caOSk5Odp7dt26amTZvq/vvvdy5r0aKFpk6d6jydLVu2TG0EAAAAAMBW1g/+BQoUcDn96quvqmTJkmrQoIFzWUBAgEJDQzM7DQAAAAAA691U7/E/d+6cPvjgA/Xs2VMOh8O5fPXq1SpYsKDKlCmj3r176/Dhw1e9nsTERMXHx7t8AQAAAADgi26qwX/hwoWKi4tT9+7dnctatmypWbNmaeXKlRo9erQ2btyoRo0aKTEx8YrXM3LkSIWEhDi/IiIiMqEeAAAAAIDMZ/1L/S82efJktWzZUuHh4c5lHTt2dP67YsWKqlGjhooWLapFixapbdu2l72ewYMHq1+/fs7T8fHxDP8AAAAAAJ900wz+e/bs0fLly/XJJ59cdb2wsDAVLVpUO3bsuOI6AQEBCggIcHciLMYR7AEAAADcqm6al/pPnTpVBQsW1F133XXV9Y4ePap9+/YpLCwsk8oAAAAAALDXTTH4p6SkaOrUqerWrZv8/P73IoWEhAQNGDBA3333nXbv3q3Vq1erdevWyp8/v+677z4vFgMAAAAAYIeb4qX+y5cv1969e9WzZ0+X5VmzZtXWrVs1Y8YMxcXFKSwsTNHR0Zo7d66Cg4O9VAsAAAAAgD1uisG/WbNmMsakWR4YGKglS5Z4oQgAAAAAgJvDTfFSfwAAAAAAkDEM/gAAAAAA+DAGfwAAAAAAfBiDPwAAAAAAPozBHwAAAAAAH3ZTHNUfAADcWqo/MyPdl1nggU/yzUiH5JkWAAAyij3+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jPf4+6i9L0al+zKRQ7d6oAQAAAAAfM/NNHOxxx8AAAAAAB/G4A8AAAAAgA/jpf4AAACAF9xMLxMGcHNjjz8AAAAAAD6MwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MMY/AEAAAAA8GEM/gAAAAAA+DAGfwAAAAAAfBiDPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAP8/N2AAAAAADv2ftiVIYuFzl0q5tLAHgKe/wBAAAAAPBh7PEH4DbVn5mRoctter2rm0sAAAAApGKPPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAh3FwP1yXjB60bUGwm0MAAAAAAOnCHn8AAAAAAHwYgz8AAAAAAD6MwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MOsHvxjY2PlcDhcvkJDQ53nG2MUGxur8PBwBQYGqmHDhvrll1+8WAwAAAAAgF2sHvwl6bbbbtPBgwedX1u3bnWe99prr2nMmDGaOHGiNm7cqNDQUDVt2lQnT570YjEAAAAAAPbw83bAtfj5+bns5U9ljNG4ceP0/PPPq23btpKk6dOnq1ChQvrwww/1yCOPZHYqAOA6VH9mRoYutyDYzSEAAAC3COv3+O/YsUPh4eEqXry4OnXqpL/++kuStGvXLh06dEjNmjVzrhsQEKAGDRpo3bp1V73OxMRExcfHu3wBAAAAAOCLrB78a9WqpRkzZmjJkiV6//33dejQIdWtW1dHjx7VoUOHJEmFChVyuUyhQoWc513JyJEjFRIS4vyKiIjw2H0AAAAAAMCbrB78W7ZsqXbt2ikqKkpNmjTRokWLJF14SX8qh8PhchljTJpllxo8eLBOnDjh/Nq3b5/74wEAAAAAsIDVg/+lcuTIoaioKO3YscP5vv9L9+4fPnw4zasALhUQEKBcuXK5fAEAAAAA4IusP7jfxRITE/Xbb7/pzjvvVPHixRUaGqply5apatWqkqRz587p66+/1qhRo27odjjwFAAAAADAV1g9+A8YMECtW7dWZGSkDh8+rJdfflnx8fHq1q2bHA6HYmJiNGLECJUuXVqlS5fWiBEjFBQUpM6dO3s7HQAAAAAAK1g9+O/fv18PPPCAjhw5ogIFCqh27dpav369ihYtKkkaOHCgzpw5o8cff1zHjx9XrVq1tHTpUgUH+86ud159AAAAAAC4EVYP/nPmzLnq+Q6HQ7GxsYqNjc2cIAAAAAAAbjJWD/4Abg17X4zK0OUih251cwkAAADge26qo/oDAAAAAID0YfAHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhDP4AAAAAAPgwBn8AAAAAAHwYgz8AAAAAAD6MwR8AAAAAAB/G4A8AAAAAgA/z83YAAACwQ/VnZmTocguC3RwCAADcij3+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhft4OAAAAANKr+jMzMnS5BcFuDgGAmwB7/AEAAAAA8GEM/gAAAAAA+DAGfwAAAAAAfBiDPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+zM/bAQAAe+19MSpDl4scutXNJQAAAMgo9vgDAAAAAODDGPwBAAAAAPBhDP4AAAAAAPgwBn8AAAAAAHwYgz8AAAAAAD6MwR8AAAAAAB/Gx/kBwC2g+jMzMnS5BcFuDgEAAECmY48/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhDP4AAAAAAPgwqwf/kSNH6vbbb1dwcLAKFiyoe++9V9u3b3dZp3v37nI4HC5ftWvX9lIxAAAAAAB2sXrw//rrr/XEE09o/fr1WrZsmc6fP69mzZrp1KlTLuu1aNFCBw8edH59+eWXXioGAAAAAMAuft4OuJrFixe7nJ46daoKFiyoTZs2qX79+s7lAQEBCg0Nzew8AAAAAACsZ/Ue/0udOHFCkpQ3b16X5atXr1bBggVVpkwZ9e7dW4cPH77q9SQmJio+Pt7lCwAAAAAAX2T1Hv+LGWPUr18/1atXTxUrVnQub9mype6//34VLVpUu3bt0pAhQ9SoUSNt2rRJAQEBl72ukSNHavjw4ZmVDuAWVv2ZGRm63KbXu7q5BJfK6HOzINjNIQAAAB520wz+ffr00c8//6xvv/3WZXnHjh2d/65YsaJq1KihokWLatGiRWrbtu1lr2vw4MHq16+f83R8fLwiIiI8Ew4AAAAAgBfdFIN/37599dlnn+mbb75RkSJFrrpuWFiYihYtqh07dlxxnYCAgCu+GgAAAAAAAF9i9eBvjFHfvn21YMECrV69WsWLF7/mZY4ePap9+/YpLCwsEwoBAAAAALCb1YP/E088oQ8//FCffvqpgoODdejQIUlSSEiIAgMDlZCQoNjYWLVr105hYWHavXu3nnvuOeXPn1/33Xefl+vhKRl5Xy7vyQUAAABwq7J68H/nnXckSQ0bNnRZPnXqVHXv3l1Zs2bV1q1bNWPGDMXFxSksLEzR0dGaO3eugoOZ9AAAAAAAsHrwN8Zc9fzAwEAtWbIkk2oAAAAAALj5WD34A0BG8DFtAAAAwP9k8XYAAAAAAADwHAZ/AAAAAAB8GIM/AAAAAAA+jPf4Az6AjzgEAAAAcCXs8QcAAAAAwIcx+AMAAAAA4MN4qT8AAF7G23UAAIAnsccfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhHNUfACy098WodF8mcuhWD5QAAADgZscefwAAAAAAfBiDPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD2PwBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jMEfAAAAAAAfxuAPAAAAAIAPY/AHAAAAAMCHMfgDAAAAAODDGPwBAAAAAPBhDP4AAAAAAPgwBn8AAAAAAHwYgz8AAAAAAD7Mz9sBAAAAAAB4S/VnZmTocguC3RziQezxBwAAAADAhzH4AwAAAADgwxj8AQAAAADwYQz+AAAAAAD4MAZ/AAAAAAB8GIM/AAAAAAA+jI/zAzLoVvjYDwAAgIzIyO9Jvv47Eo+JK36Xzlzs8QcAAAAAwIexxx8AAADwAexBBXAl7PEHAAAAAMCHsccfAAAAgE/iVRBp8ZjcmtjjDwAAAACAD2OPPwAAAHAD2IMKwHY+s8f/7bffVvHixZU9e3ZVr15da9as8XYSAAAAAABe5xOD/9y5cxUTE6Pnn39eP/74o+688061bNlSe/fu9XYaAAAAAABe5ROD/5gxY9SrVy/95z//Ufny5TVu3DhFRETonXfe8XYaAAAAAABeddO/x//cuXPatGmTnn32WZflzZo107p16y57mcTERCUmJjpPnzhxQpIUHx8vSUpOPJOhlpP+yRm6XOrtXk5mttjS4YkWWzpsarGlwxMttnRkdostHTa12NLhiRZbOmxqsaXDEy22dGR2iy0dNrXY0uGJFls6bGqxpcMTLbZ0ZHbLxR2p/zbGZOj208NhMuNWPOjAgQMqXLiw1q5dq7p16zqXjxgxQtOnT9f27dvTXCY2NlbDhw/PzEwAAAAAANLYt2+fihQp4tHbuOn3+KdyOBwup40xaZalGjx4sPr16+c8nZKSomPHjilfvnxXvMy1xMfHKyIiQvv27VOuXLkydB3uYksLHfa22NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR3uajHG6OTJkwoPD3dzXVo3/eCfP39+Zc2aVYcOHXJZfvjwYRUqVOiylwkICFBAQIDLsty5c7ulJ1euXF7/JkxlSwsdadnSYkuHZE+LLR2SPS22dEj2tNCRli0ttnRI9rTY0iHZ02JLh2RPCx1p2dJiS4dkT4stHdKNt4SEhLix5spu+oP7ZcuWTdWrV9eyZctcli9btszlpf8AAAAAANyKbvo9/pLUr18/PfTQQ6pRo4bq1Kmj9957T3v37tWjjz7q7TQAAAAAALzKJwb/jh076ujRo3rxxRd18OBBVaxYUV9++aWKFi2aaQ0BAQEaNmxYmrcQeIMtLXTY22JLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NZyPW76o/oDAAAAAIAru+nf4w8AAAAAAK6MwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MMY/AEAAAAA8GEM/gAAAAAA+DA/bwfg2v7880/Fx8erQIECKlKkCB2WdNjUYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1OKxDgOrDRkyxFSvXt0EBgaaunXrmlGjRtFhQYdNLbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnTY1EKHvS22dNjUYkuHTS2e7GDwt9jw4cNNaGio+eqrr8yaNWtMnz59TP369c3+/fvp8GKHTS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00tnu5g8LfUN998YypXrmwWLVrkXPb333+b4OBg8+GHH9LhpQ6bWmzpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1oyo4OD+1kqISFBtWrVUlRUlCQpJSVF4eHhql69uhITE53L6MjcDptabOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWjKjg4P7WcQYI4fDIUmqUaOGChcurIiICElSliwX/kYTFBTkfPKzZMmis2fPKnv27HR4sMOmFls6bGqxpcOmFls6bGqhw94WWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDppbM7mCPv0VOnz6tc+fO6cyZMypQoIAqVarkcr4xRseOHdOxY8ckSceOHVN0dLQmT55Mhwc7bGqxpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxqyewOBn9LjBkzRp07d1bNmjX19NNPa/fu3ZIuPOGpHA6HgoKClDdvXp09e1Z169ZVcHCwevXqRYeHOmxqsaXDphZbOmxqsaXDphY67G2xpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsavFGB4O/BQYPHqxRo0apRYsWatCggf766y+9/PLLSkxMdL78I1VoaKj++ecf1a5dW5GRkVq6dKkk97z3hA57W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1q81pHuwwHCrebMmWNKlSplvvvuO+eysWPHmtKlS5vjx4+7rJucnGyio6ONw+Ewbdq0cVlOh3s7bGqxpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxq8WYHe/y9KCkpSfv27VPjxo1VsWJFJScnS5IeeughJSUl6e+//3aua/7/4A+33367Hn/8cX366aeSLvy1J/XgD3S4p8OmFls6bGqxpcOmFls6bGqhw94WWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDphavd2TozwW4YSkpKcYYY5YsWWJ++OEHl+UHDhww+fLlMz/++KNzeepfdo4cOZJmGR3u67CpxZYOm1ps6bCpxZYOm1rosLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWGDgZ/L7n0iUv9ZjDGmGPHjpnw8HCzadMm5+m2bduav//++7Lr0+G+DptabOmwqcWWDptabOmwqYUOe1ts6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWmzo8Luh1ysg3SZOnKgNGzYoPj5ejRo1Urdu3RQSEiKHw+F8SUdwcLACAwMVFBSkuLg43XHHHQoNDVV4eLjzei498AMdN9ZhU4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR0SR/XPVM8995yGDx+unDlzKm/evBo4cKAefPBBrVixQtKFJzQlJUUnTpyQJO3evVtNmjRRRESEVq5cKck9R5Kkw94WWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDphZbOmxqocPeFls6bGqxpcOmFls6nG74NQO4Ltu3bzelS5c2S5cudS775ZdfTOXKlU3Tpk3NsmXLnMsPHTpk8ubNaxwOh2nVqpVzuTveX0KHvS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnRcjME/k/z555+mSJEiZvXq1cYYY86dO2eMMeaPP/4wVapUMS1btjT//POPMcaYhIQEU716ddOlSxfn5d31xNNhb4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTiy0dNrXQYW+LLR02tdjSYVOLLR0XY/DPJPv27TP58uUz48aNM8ZceDKTkpKMMRf+IhQUFGRGjBjhXH/NmjXOf7vziafD3hZbOmxqsaXDphZbOmxqocPeFls6bGqxpcOmFls6bGqhw94WWzpsarGlw6YWWzouxuCfiV5//XWTK1cus2jRImPMhaMzJiYmGmOMefbZZ03dunVNQkKCy2XceVRLOuxvsaXDphZbOmxqsaXDphY67G2xpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlIxVH9feQtWvXKj4+XmfOnFHbtm0lSffcc4+2bt2qfv36yeFwqGXLlsqWLZskKTAwUCEhIcqRI4fL9dzoERzpsLfFlg6bWmzpsKnFlg6bWuiwt8WWDptabOmwqcWWDpta6LC3xZYOm1ps6bCpxZaOq/LYnxRuYYMHDzblypUzJUqUMHny5DFt27Z1nvf999+bhx56yOTNm9dMmjTJ/PLLL+bXX381t912m4mJiaHDgx02tdjSYVOLLR02tdjSYVMLHfa22NJhU4stHTa12NJhUwsd9rbY0mFTiy0dNrXY0nEtDP5uNmLECFOoUCGzfv16s3PnTrNq1SpTuHBhM336dOc6f/zxh3nppZdMzpw5TXh4uClZsqS57777nOe74yUedNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1GJLx/Vg8HejX375xVSrVs0sWLDAuezEiRPmjjvuMC+++GKa9Xfu3Gm+++478/333zuXueNgDnTY22JLh00ttnTY1GJLh00tdNjbYkuHTS22dNjUYkuHTS102NtiS4dNLbZ02NRiS8f14j3+brJu3TqVKFFClStXVvHixZ3Lc+XKpaioKO3atUuSdO7cOWXLlk3GGJUsWVIlS5Z0rpuSkqIsWbLQ4cYOm1ps6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOlIj8y7JR/2448/avDgwdq9e7dee+01Va5cWZJkjJEkZc2aVcnJyZKkbNmy6dSpUzp16lSa67nRJ54Oe1ts6bCpxZYOm1ps6bCphQ57W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOlILwZ/NwgPD1eWLFm0bNky5c+fX9KFv+CkpKRIkpKSkpzrHj9+XCVLltT48ePp8HCHTS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLbZ02NRCh70ttnTY1GJLh00ttnSkmzvfN3ArSn1fxqpVq0yePHnMihUr0qzzxBNPmF69epmzZ8+acuXKmWbNmrnt9lMPBnH+/Hmvdlza4+0Om1ps6bCpxZYOm1ps6bCpxZYOb2/njWFbfzO02NJhU4stHTa10JGWt7extm1fL27ydostHTa12NKREezxz6CzZ89KuvASjZSUFDVo0EA9e/bU4sWLdfbsWedLPaQL7/U4cOCAatWqpcKFC2vJkiWS5Pyr0I3Yv3+/FR0XS05OtqLD4XBY0WJLR2qLMcbrLbZ0pLbY8LNjy/dJcnKyNc+Ptzts2c5LbOuvxpafHVs6Ults+Rm25fvVhueH7asrW7axNm5fJTu2sTb83NjWYsPPTkYx+GfAu+++q+nTpysuLk7ShQ2Fw+FQ7dq19fnnn2vfvn1yOBzOl3kcP35cixcvVvny5bV8+XJJ7jmYw8svv6z69etr7969cjgcXuvYtm2bfvnlF/3xxx9e7ZCkU6dO6ezZszp//ryk/z03tWrVytSWEydO6MyZM87b8VbH5TgcDq89P7Z0pKSkOL9HJO/9DB85ckQnT55UQkKCpAvvCfPWY7J06VIZY5zvS/PW8zN69Ght377dedpbHbZs5yW29ZfDtv7avPWzY8v2VbJnG8v2NS1btrG2bF8le7axtmxfJXu3sbb8Lp1uHn09gQ8aMGCAKVCggPn000/N0aNHjTGuH8Pw0EMPmcaNG5vExETnslWrVpl+/fo5T7vjYxuefPJJ43A4TI4cOczq1auNMcYkJSVleseQIUNM+fLlTdGiRU1kZKRZuXKly/mZ1WGMMa+88oq55557TMWKFc3DDz+c5qU3Dz74YKa0vPzyy6Zp06amdOnSpkePHmb58uVe6TDGmIULF5oNGzZc8fzMen5s6TDGmIkTJ5oePXqYWrVqmUmTJpl9+/Z5pWXkyJGmSZMmpkSJEuY///mP2b59u1c6jDFmzJgxxuFwmK5duzpfwnbu3LlMb+nXr59xOBzmjz/+uOz1ZlaHLdt5Y9jWXw7b+rRs2cbasn01xp5tLNvXtGzZxtqyfTXGnm2sLdtXY+zZxtqyfXUHBv90mDNnjomIiHB+9uKJEydMQkKC+eeff5zr/PTTT6ZNmzbm888/dy67eCPijif+6aefNnny5DG7du0y9957r6lbt26a9yf9/PPPHu8YNmyYKVSokFm5cqVZvHixad++vXnsscdc1smMx8MYY1544QVToEABM3v2bPPSSy+ZDh06GD8/PzNnzhznOlu2bPF4y/Dhw02+fPnM5MmTzXPPPefseP/99zO1wxhjXnzxReNwOMwDDzxgfvjhB5fzUm8jM75PbOkwxphnn33WhIWFmSFDhpi2bduaMmXKmPHjxxtj/veLWGa0DBo0yBQsWNDMnDnTxMbGmsqVKzu/R1JvK7O+T4wxZtSoUaZWrVqmYcOGpkuXLs7rTn1Mtm7dalq3bu3RlpiYGBMSEmJ+/PHHK66TGY+JLdt5Y9jWXw7b+rRs2cbasn01xq5tLNtXV7ZsY23ZvhpjzzbWlu2rMfZsY23ZvroLg386xMbGmm7duhljjPniiy9Ms2bNTIUKFUy5cuXMtGnTjDHGnD592nTp0sV06NDBebnUDYk7PPXUUyZnzpxm8+bNxhhjZs+ebcqUKWOWLVtmjPnfN9eZM2fMQw895LGOffv2mTp16piFCxc6l8XGxpoBAwaYH3/80dl3+vRp8+CDD3qswxhj/vjjD3P77bebVatWOZd98803xuFwGIfDYaZMmWKMMebUqVMebYmPjzcNGjQw7777rnPZP//8Y4YPH26yZMli3nvvPWeHJ79HjLnw18nUv9bWrl3bPPjgg2bjxo1pbs/T3ye2dBhjzLRp00yxYsWcv2wYc+E//tKlS7vsffF0yzvvvGMiIiJc/gNp3769effdd83Ro0fNv//+a4zJnO+TVFOmTDHNmzc3b7/9tqlUqZLp0qWLMebC9iQuLs6cPXvWo4/Jyy+/bBwOh9m9e7cx5sLP7yuvvGJat25tXn/9def3TGY8JjZs541hW385bOvTsmUba8v21Rj7trFsX13ZsI21ZftqjD3bWFu2r8bYs421ZfvqTgz+1yF1A9ClSxfz3HPPmcOHD5t8+fKZ119/3bzzzjvm+eefNw6Hw0yYMMEYY8zBgwdN4cKFXb5h3eGHH34wDRo0MD/99JNz2ZEjR0zJkiXNww8/nKb30KFDHukwxpidO3eaHDlymPnz5zuXlStXzpQqVcqULVvWZM+e3bz++uvGGGMOHDjgsQ5jLvwVNE+ePGbNmjUuy++55x7To0cPkz17dvP1118bYzz7mBw+fNjkz5/fTJo0yWV5YmKiefHFF02WLFnMokWLjDGe+x5JtWjRItOzZ0+TkJBgPvnkE1OjRo00G6zUv2gfOnTIhIeHe6TFlo6TJ0+aAQMGmCFDhpizZ886fxHdtGmTKV++vImLizPGuP7seKLl1KlTZvz48eadd95xNiQnJ5sSJUqYqlWrmqJFi5rq1as7/2rs6e+TVMuWLTMPPPCAMcaYt956y9SsWdPce++9Jm/evM4WT/3snD592jzzzDPG4XCYH3/80XzzzTcmLCzMtGvXzjRo0MDUrVvXlC9f3vnLiKceE1u288awrb8StvVp2bCNtWX7aoyd21i2rxfYso21aftqjD3bWFu2r8bYs421Yfvqbgz+6TB+/HhTsmRJ079/f9O7d2+X88aMGWPy5MljfvnlF2PMhfeW9ezZ0xw+fNitDceOHTPGXPhLUupGacaMGaZAgQJm3bp1zvVSvxE91XHq1CnTsWNHExoaap5//nlTokQJ07BhQ7Nr1y5z4MAB8/777xt/f3/nBsRTHcYY89tvv5kaNWqY8ePHm0OHDhljLrw0JyIiwmzevNlER0eb559/3rm+J1seeugh07x5c7N//36X5UeOHDEPPfSQadu2rfOXIE92nDlzxqXho48+uuwGK7VlxIgRHmk5e/asFR3GXNgjtXbtWpdlv/zyi8mXL5/Zu3evc1nqe7Q81bJv3z5z5MgRY8yFXyzKlStn7rzzTrN27VrzxRdfmP/85z+mUqVK5q+//jLGePb7JNW///5rqlev7nyv5UsvvWSyZ89uihQpYk6dOuVcz5PbtdT3n+bNm9e8//775uTJk8YYY9avX29at25tOnbsaE6cOOHRDmOMmTBhgte388Z4f1ufurfChm19asuvv/7Ktv4SiYmJVmxjp0+fbsX21Rhj/v77b6u2sd7evsbFxVmzfTXGjt+ljx8/bozx/u/Sxlz444y3t7HGGPP7779bs301xo5trE2/w7qLn3cPLXhzqV+/vhYvXqw5c+aoWbNmkv53hMY777xTOXPmdB7NsUmTJkpOTlaOHDnc2pAnTx7nbTocDklSlSpVFBISou+//1516tRRcnKysmbN6tGOoKAgDRgwQOXKlVNISIhy586tCRMmqFixYpKkRo0aKTQ0VEePHvVohySVK1dO9erV07vvvqspU6Yof/78WrNmjZYtW6aqVauqZMmSWrVqlYwxcjgcHm2Jjo7Wm2++qVmzZuk///mP8ubNK0nKly+fqlWrptdff13JycmSPPuYZM+eXeHh4c773L59e0nSqFGj9Oabb6p///7KkyePOnfurJkzZ6px48ZKSUlxe0tAQIDCw8Od37Pe6pCkbt26pVnm5+enlJQU53MSFxenV199VQMHDlSTJk080lKkSBHnv40xuv/++9W/f3+FhIRIunAE2wULFjg/8sWT3yeSdP78eTkcDh07dkxnzpxRXFycxo0bpypVqujcuXN67LHHNHXqVGXJksWj27Xnn39ewcHBOnr0qO6//34FBQVJkmrVqqXKlStr8uTJmfKzc+edd+rLL7/06nZe8v62PvU2bdjWp7aUL19e9erV06RJk7yyrb/4iMxNmjTRmDFjvLatT33us2XLpsKFC3ttW3/+/Hn5+fmpa9euac7L7O1rakt4eLhzmTe2sRd/n6Q+L97YvqY+HiEhIRo6dKhy5cqlI0eOeGX7evFjEh0d7bXfpZOSkuTv76/cuXNL+t+R2aXM/1069T4HBgZq0KBBXtvGpt7PsmXLqkGDBlb8Li3Z8ft0QECAV7evHuG1PzlY7rPPPjNvvPGGmThxost71iZMmGDy589v8uXL53KQlO3bt5sqVao434tjzIW/4nmq41L9+/c3oaGhzr8yXfzeEnd3fPfddy7n/fnnnyZ//vwu76f7/fffTfny5V2OwOmOjktbLv7L7PTp083QoUPNM888Y3bt2uVcHhMTk+avyu5omTJlinn00UfNf/7zHzNjxgzn8qefftqULFnSvP766+bvv/92Ll+yZImpXbu2OXDggFs7Lm354IMPXM67+Hvh448/NrVq1TJt2rQxBQsWNI0bN3Zry5QpU0zfvn3NgAEDXB4TY1wPbuLpjktbpk+f7nJe6mPy999/m5IlS5qEhAQTFxdnSpYsae655x63tlzpMbn0YC+pexa+/PJL07BhQ5fvHU88JjNnznQ574knnjDjx483hQoVMj169DBHjx4177zzjilSpIh555133Npypefm2LFjzvehGvO/g+NMmDDB3H333S637cnn5u233zb58uXLtO38pS2XPjcX8/S2/mo/Nzt37szUbf3FLVOnTnUunzlzphkyZEimbesv/h64+IBN3tjWX9xy6TYkM7f1F3ekbrsulRnb10tbLn5MLu3y9Db2as9N3759M237eqXn5ujRo2bPnj3O057evl6t5a233srU36Wv9txczNPb10tbLt6eGJO5v09f3HHxcThmzJiRqb9LG3PlGSMmJiZTt7FXm7kyc/vqSQz+lzFo0CATGRlpGjVqZIoVK2aaNGnifF+LMRd+KSxfvryJjIw0EydONJMnTzZRUVGmU6dOHu/49ttvXdZJ3YBt3brVVKxY0UycONHtR4+8XMfF7wE6ceKEadasmXnqqafMmjVrzObNm03lypXd/nhcqSX1I1hSpf5wJicnm3/++ceUL1/evPLKKy7n3ahnnnnGFC5c2PTq1cu0bNnSVKlSxWVj1bdvXxMVFWXatm1r5s+fb7788ktTvnx589BDD7nl9q/VcunBRy6+3+PGjTMOh8N07NjRucxdR6ovUKCA6dy5s4mOjja5cuUynTp1cnnJ08W346mO620xxpgdO3aYkiVLms2bN5uoqCjTvHlz53nu+F65no6Lb+fgwYOmatWq5oknnrjh277eltQjKT/88MPG4XCYhx9+2Pny04SEhDQfn+OJjo4dOzoPuHWpQ4cOmSpVqpiBAwd6vOP+++93vtx10qRJply5ch7fzl+p5Uo/O57e1l/uuUn9HomPjzdNmzbNtG39pS3t27d3vqTSmP89Jp7c1g8fPtwUKFDAjBs3zrns4o9seuqppzJtW3+5lqsN/57axl5PhzGe376mpyWVp7ax1+ro3bt3pmxfL9dxpT/MGOO57euVWi4eMDPrd+nr+R7JjO3rlVoufn4y6/fpa23XjMmc36WNufbMlVnb2OuZuTJj++ppDP6XGDt2rClSpIhZv369MebCwS5q1KhhRo8e7bLe0qVLzWOPPWYKFixooqOjXf4K5o4fiOvtuPg2q1atap599tkbvu2MdLz++uumbt26xt/f31SpUsVlI+WuH4RrtVz8uCckJJi5c+easmXLmrvvvtstt59qxIgRJiIiwjlc//rrr6ZMmTJm27ZtLg1vv/22adeunQkICDC333676dy5s/M8d200r9ZysdTn4NdffzVhYWGmffv2ac67ET/++KMpUqSI85eYM2fOmFWrVplChQqZ5s2bOweHi9+r64mO9LQYc+Ev6YGBgSZHjhymWbNmbm1JT8e///5rli5daqKiokybNm2cy931fXK1lqZNm5r4+HhjzIXjIKS+9/PS2/b0Y9KsWTOXx+Tw4cPmq6++MhUqVHD7Y3K1jsaNGzuHy6+++sqj2/lrtVz8fZL6+HtqW3+tjtQ/Qrz66qse39Zf6/s19f2nycnJHt3WT5482URERJiGDRuaevXqXfGX5Hfffdfj2/qrtVzucffUNjY9HZ7cvqa3xZPb2Kt1pO7RTUlJMTNnzvTo9jU9j4cnt6/Xarn4Z8fTv0un9+fGU9vX9LR4+vfpq3Vc+kciT25fjbn+GcPT29j0zlye/B3W0xj8L7J//35z3333mTfffNMY879vpkGDBplmzZqZlJSUND8UR48eNWfPnnWedscTfz0dF0u9zdQ9Ve6S3sdj27ZtZtWqVS4vj3HXD0J6H5Pjx4+badOmmZiYGLe2HDx40LRt29b5kTPGXPilNPWXiXbt2pkXXnjB5TK7du264l5vT7cMGzbM5TIrV670yC9g69evN4ULF3Z52ZUxFzaOhQoVMvfff3+mdKS35c8//zQhISGmR48ebm9JT8fSpUtN9+7dXfZCZeZj0rZtW7fd1o10XPyYfPnll6ZDhw4uvwhm1nNz6ePhie389bZc/JikDhHu3tZfT8fFj8nWrVs9tq2/npaLH5Njx455ZFt/9uxZ88gjj5iYmBizZcsW88gjj5jatWtfdQ+Zp7b119Ny6W15Yhub3o6//vrLY9vX9LYsW7bMI9vYjHyfeEJ6H4/Fixd7bPuakcfEE9vY9D4mqb/PemL7ej0tF78awlO/T6f3MfHU79LGXN/v9Ze+FcIT29j0zhfGePZ3WE9j8P9/K1euNL/99pt55plnnO97SX2yR48ebWrVqnXZy108+Lrjr07u6HDHN2BGOy7mrr8cZ7Tl4v9Y3PWYHDlyxGzevNn5XqPk5GRTtWpVU7VqVRMbG2tiY2NNlixZ0gz/qdz5mFxvy6XDfyp3PCYrVqwwp06dMrt27TLZsmVz+SNE6vfkt99+a4KDg53vY/TEno6MthhjzIIFC9zaktGO1CNMu6vjRlrcLaMdf/zxh/Pfmf3cvP32287zLv6eddfPsDuem8x+TCZOnHjZ6/D2Y+Lu//+WL19ukpKSzJ49e5zvtd29e7fzs5yv9EuyJ75P0tNyJZn9mFz6Xlh3dtxIi7u3JxntcPeQkNGO3377ze1NGf3ZuXjAc8fPTkZ/bty9LUlvy5XeluHNx8Tdv0sbY8+M4Y6Om2noN4bB36SkpJi9e/eaoKAg89VXX7mcl/pkfvzxx6Zp06bO5SdOnDBffPEFHR7suJGW1M/FdXdHYGCgy+esGmPM7Nmzzf333+/8mB5jjHnyySdNnTp1TEJCglvfB3WjLe7cOKWkpJh9+/aZwMBAM2fOHGPMhfeIN2jQwOWYC8nJyeb8+fOmQ4cOpmfPns5l7pTRliu9xy+zOy53PTfqRlrc+T2b0Y5LG260yZbHw6YWWzputMVTHXPnznW5XWNcf0lO3Tu0fft2M3bsWJ9tyWhH6ueOX7q+N1reeOONNNfjjQ5bnht3Px430mLLY2LTz/CYMWN8siO1xYYZw5YOb7jlB/9Ur7/+uqlVq5bZuXNnmvNmzZpl6tSpY4y58PmRt912m+nevTsdmdBhU0vqX/8u3jNrjOvLs4y5cLC9i99/5MstqR3//POP+f77782dd95p2rVrZ7755huX9fr06ZPm5f6+2mJLh00tdNjbYkuHTS2X276mDke7du0yDz/8sLnjjjvMc889Z4oWLWpq167t8y22dNjUQoe9LbZ02NRiS4cx9vxeb0tHZsri7Y8TtEXr1q1VpEgRbdy4UZKcnw0pXfjs2eTkZB05ckTR0dEKDw/X1KlT6ciEDpta7rrrLhUpUkTff/+9JDk/Z9bf39+5zoEDB7Ry5UpVqlTJIw22tdx1110KDw/XqlWrVLNmTfXr10///POPXnrpJc2ePVvnzp3T77//rhUrVqhcuXIe67CpxZYOm1rosLfFlg6bWi7dviYnJ8vhcMgYo2LFimno0KEqXLiwRo4cqZo1a+q7776TdOEz2321xZYOm1rosLfFlg6bWmzpkOz5vd6WjkyVuX9nsNtzzz1nKlSo4PIRQcYYM3/+fFO5cmVTsmRJ06RJE+f6nnpfBx32tlyp4+TJk+b77783lSpVcvmcYne/JNaWlovfh/bcc8+ZcuXKOa9/xYoVpmfPniZ79uymSJEipmjRoh59TGxpsaXDphY67G2xpcOmlks7Lt6+Xnw7+/btM4ULFzYdOnRwLnP3/zm2tNjSYVMLHfa22NJhU4stHddqyczf623p8IZbcvD/+uuvzezZs823335rjh8/7nJegwYNzODBg12WzZ8/3zgcDrf/MNBhb0t6Os6cOWNmzJhhmjZt6vKyem88Jp5sOXjwoNm9e/dlz2vQoIEZNGiQ83R8fLz5/fffzYIFC8zKlSvd2mFTiy0dNrXQYW+LLR02tVyr49L/c86fP286duxoGjdu7NYOm1ps6bCphQ57W2zpsKnFlo6MtHjq93pbOrztlhv8Bw0aZEqUKGEiIyNNiRIlzIQJE4wx//vrz/vvv286dOjg8jFCP/74oxkxYoTztDueeDrsbclIx19//ZXmIFTuYEvLCy+8YKpXr26KFi1qKlWqZMaMGeO8zeTkZGfH/v37jTEmzUewuKvDphZbOmxqocPeFls6bGq53o6Llxnj+nFfmf2YeLrFlg6bWuiwt8WWDptabOnISIsxnvm93pYOG9xSg/8bb7xhwsLCzNq1a83JkyfNww8/bGrWrOnyUpf9+/ebsmXLmmHDhl32OtzxxNNhb4s7Otz10lNbWkaNGmXCwsLMp59+an7++Wfz8MMPm5w5c5oOHTqYP//887o63MWWFls6bGqhw94WWzpsasloh7s/wtemFls6bGqhw94WWzpsarGl40ZaLuaO3+tt6bDFLTH4p6SkmPj4eNO0aVMzfvx45/J169aZrl27mmnTpplFixY5vwGWLFliypUrZ7799ls6PNhhU4stHTa1pKSkmKNHj5r69eubGTNmuJwXFRVlwsLCTPv27c2ePXuMMcYsW7bMlC9f3mOPiQ0ttnTY1EKHvS22dNjUYkuHTS22dNjUQoe9LbZ02NRiS4dNLbZ02OaWOKq/w+FQ1qxZlZCQoP379zuPgN6rVy99//33euONNzR8+HD16NFDu3fvVt26dVW/fn2tXbtWkvuOaEmHvS22dNjU4nA4lJSUpL///luBgYGS/nfE07Jly6pJkyb6448/tGLFCklSVFSU7rzzTo89Jja02NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSYZ1M+gODFfr27WtKlSploqOjTbly5Uy9evXMgQMHTEpKilm2bJmpUqWKmTp1qjHGmEmTJpmIiAjzzz//0OHhDptabOmwqeXOO+80jRo1MkePHjXJyclmxIgRJiIiwhw7dsw8+OCDplatWs5133vvPY8+Jra02NJhUwsd9rbY0mFTiy0dNrXY0mFTCx32ttjSYVOLLR02tdjSYQufHvznzp1rxo4da0aNGmV27NhhjDHmo48+Mh999JGpWbOmWbBggXPds2fPmttuu828/PLLzmX//e9/zeHDh+lwc4dNLbZ02NSS2vHqq6+a33//3WzdutVUqVLF5MqVy1SoUMHkzp3befDAhQsXmpIlS5ojR464vcOmFls6bGqhw94WWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDphZbOmzls4P/M888Y/LmzWtatmxp8ufPb6KioswzzzzjPL9evXrms88+c57eu3evqVy5spk1a5ZzmTsO5kCHvS22dNjUcnFHvnz5TLVq1czTTz9t4uPjzbx588y0adPMvn37nOu/9dZbpnHjxiYxMdF5cBhPPCbebLGlw6YWOuxtsaXDphZbOmxqsaXDphY67G2xpcOmFls6bGqxpcNmPjn4f/PNNyYiIsKsXbvWGGPMqVOnzCuvvGIqVapk7r//fmOMMe3atTPly5c3s2fPNvPnzzdVq1Y199xzDx0e7LCpxZYOm1ou1/Hyyy+bihUrmoceeshl3aSkJLN3714TFRVl+vfv79YOm1ps6bCphQ57W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOmwnU8O/vPmzTNFihQxx44dcy47efKkmTx5srntttvMwIEDzcmTJ02jRo1MwYIFTdWqVc0jjzziXNddf+2hw94WWzpsarlaR6VKlcyjjz5qjLnwNoN58+aZSpUqmbvuusu5rrs+AsamFls6bGqhw94WWzpsarGlw6YWWzpsaqHD3hZbOmxqsaXDphZbOmznk4P/mjVrTKlSpZzv4UiVkJBgXn/9dRMVFWU2b95sjDHm999/d3nZhzsHOjrsbbGlw6aWa3VUrVrVfPPNN8YYYz799FOXjxrM7Mcks1ps6bCphQ57W2zpsKnFlg6bWmzpsKmFDntbbOmwqcWWDptabOmwnU8O/ocOHTLly5c3nTp1MsePH3c578yZM6Z48eLm2WefTXM5d/+1hw57W2zpsKnlWh0lSpQwzz33XJrLeWKDaUuLLR02tdBhb4stHTa12NJhU4stHTa10GFviy0dNrXY0mFTiy0dtvPz9scJekKhQoU0depU1a9fX/nz59crr7yiXLlySZKyZ8+u2rVr6/z582ku53A46PBgh00ttnTY1HKtjlq1auncuXNpLpclSxa3dtjUYkuHTS102NtiS4dNLbZ02NRiS4dNLXTY22JLh00ttnTY1GJLh/W8/ZcHT/r0009NtmzZTJcuXcyGDRvM2bNnzd69e02JEiXMG2+8QYeXOmxqsaXDphZbOmxqsaXDphY67G2xpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw1YOY4zx9h8fPGndunV68MEHFRQUpDNnzsjf31+lSpXSF198QYcXO2xqsaXDphZbOmxqsaXDphY67G2xpcOmFls6bGqxpcOmFjrsbbGlw6YWWzpsarGlw0Y+P/hL0t9//60tW7Zo165dCg0NVfv27SVJKSkpmfoSDzrsbbGlw6YWWzpsarGlw6YWOuxtsaXDphZbOmxqsaXDphY67G2xpcOmFls6bGqxpcM2t8Tgfzm2PPF0pGVLiy0dkj0ttnRI9rTY0iHZ00JHWra02NIh2dNiS4dkT4stHZI9LXSkZUuLLR2SPS22dEj2tNjS4U237OAPAAAAAMCt4Nb+swcAAAAAAD6OwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MMY/AEAAAAA8GEM/gAAAAAA+DAGfwAAoO7du8vhcMjhcMjf31+FChVS06ZNNWXKFKWkpFz39UybNk25c+f2XCgAAEg3Bn8AACBJatGihQ4ePKjdu3frq6++UnR0tJ566indfffdOn/+vLfzAABABjH4AwAASVJAQIBCQ0NVuHBhVatWTc8995w+/fRTffXVV5o2bZokacyYMYqKilKOHDkUERGhxx9/XAkJCZKk1atXq0ePHjpx4oTz1QOxsbGSpHPnzmngwIEqXLiwcuTIoVq1amn16tXeuaMAANxiGPwBAMAVNWrUSJUrV9Ynn3wiScqSJYvGjx+vbdu2afr06Vq5cqUGDhwoSapbt67GjRunXLly6eDBgzp48KAGDBggSerRo4fWrl2rOXPm6Oeff9b999+vFi1aaMeOHV67bwAA3Cocxhjj7QgAAOBd3bt3V1xcnBYuXJjmvE6dOunnn3/Wr7/+mua8jz76SI899piOHDki6cJ7/GNiYhQXF+dc588//1Tp0qW1f/9+hYeHO5c3adJENWvW1IgRI9x+fwAAwP/4eTsAAADYzRgjh8MhSVq1apVGjBihX3/9VfHx8Tp//rzOnj2rU6dOKUeOHJe9/ObNm2WMUZkyZVyWJyYmKl++fB7vBwDgVsfgDwAAruq3335T8eLFtWfPHrVq1UqPPvqoXnrpJeXNm1fffvutevXqpaSkpCtePiUlRVmzZtWmTZuUNWtWl/Ny5szp6XwAAG55DP4AAOCKVq5cqa1bt+rpp5/WDz/8oPPnz2v06NHKkuXCYYLmzZvnsn62bNmUnJzssqxq1apKTk7W4cOHdeedd2ZaOwAAuIDBHwAASLrw0vtDhw4pOTlZ//zzjxYvXqyRI0fq7rvvVteuXbV161adP39eEyZMUOvWrbV27VpNmjTJ5TqKFSumhIQErVixQpUrV1ZQUJDKlCmjLl26qGvXrho9erSqVq2qI0eOaOXKlYqKilKrVq28dI8BALg1cFR/AAAgSVq8eLHCwsJUrFgxtWjRQqtWrdL48eP16aefKmvWrKpSpYrGjBmjUaNGqWLFipo1a5ZGjhzpch1169bVo48+qo4dO6pAgQJ67bXXJElTp05V165d1b9/f5UtW1Zt2rTR999/r4iICG/cVQAAbikc1R8AAAAAAB/GHn8AAAAAAHwYgz8AAAAAAD6MwR8AAAAAAB/G4A8AAAAAgA9j8AcAAAAAwIcx+AMAAAAA4MMY/AEAAAAA8GEM/gAAAAAA+DAGfwAAAAAAfBiDPwAAAAAAPozBHwAAAAAAH8bgDwAAAACAD/s/b9iJL6TkiG0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.barplot(data=data, x=\"Date\", y=\"Times opened\", hue=\"App\")\n",
+ "plt.title(\"Times Opened Over Time with Apps\")\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a89c5473",
+ "metadata": {},
+ "source": [
+ "# relations btw notif and usage it shud be as notif is high, usage should be high\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "17cf7e36",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIhCAYAAABE54vcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACffklEQVR4nOzdeXiM1/vH8fdMlskyWSREIkFSlCqqulBdUEspSumCLuim1dp177f4dvu1VRRFV7Sq1RbdS23VhbaWLlSrlKhECEEkkX2e3x/PN0MkSMhkZpLP67pyXZkzzzxzz5nJZO4559zHYhiGgYiIiIiIiJSZ1d0BiIiIiIiIeBslUiIiIiIiIuWkREpERERERKSclEiJiIiIiIiUkxIpERERERGRclIiJSIiIiIiUk5KpERERERERMpJiZSIiIiIiEg5KZESEREREREpJyVSIi4yZ84cLBaL88fX15eYmBj69evHtm3bzuic33zzDRaLhW+++abct92yZQvjx48nMTGxxHWDBg0iPj7+jGKqSIMGDcJut5fpWIvFwvjx4yvsvk98viwWC7Vq1aJ9+/Z8/vnnZ3zeGTNmMGfOnAqL09MUvSYtFgtr164tcX15ntOKlpiYiMViYeLEiW65//I6ePAg/fr1IyoqCovFQu/evU96bPv27bFYLHTt2rXEdWfzuPfs2cP48eP59ddfS1w3fvx4LBZLsba8vDzuvfdeYmJi8PHxoWXLlgDEx8czaNCgct9/WZ3s76rosVflv7myKGs/FL3vrV+/vtTre/To4RH/G0Q8la+7AxCp6mbPnk2TJk3Iycnhhx9+4JlnnmHVqlX89ddf1KhRo9Li2LJlCxMmTKB9+/Yl/jH+5z//YcSIEZUWS0VYu3YtcXFxFX7eoufLMAz27t3L9OnT6dmzJ59++ik9e/Ys9/lmzJhBzZo1Xfqh0lM89NBDfPfdd+4Ow2s99dRTLF68mLfeeosGDRoQERFx2tssXbqUlStXcvXVV1dIDHv27GHChAnEx8c7k6Iid911V4nEbebMmbz66qtMmzaNiy66yJk0L168mNDQ0AqJqTQn+7uKiYlh7dq1NGjQwGX3LSJSRImUiIs1a9aMiy++GDC/RS4sLGTcuHF8/PHHDB482M3RmbzxQ0ebNm1cct7jny+Arl27UqNGDd57770zSqSqi65du7JkyRI+++yzatdP+fn5zlHns7F582YaNGjALbfcUqbjzz33XAoKCnjooYdYt25didGiihYXF1fiy4vNmzcTGBjIAw88UKz9wgsvdGksJ2Oz2Vz23iAiciJN7ROpZEUf0vft21esff369Vx33XVEREQQEBDAhRdeyAcffHDa861fv55+/foRHx9PYGAg8fHx9O/fn127djmPmTNnDjfeeCMAHTp0cE7FKpr2UdrUvpycHB599FESEhLw9/cnNjaW+++/n8OHDxc7Lj4+nh49erBkyRJatWpFYGAgTZo04a233ip23NGjRxk7diwJCQkEBAQQERHBxRdfzHvvvVfiMW3fvp1rr70Wu91O3bp1GTNmDLm5ucWOOXFqX9EUlWXLljF48GAiIiIIDg6mZ8+e7Nix47T9eDIBAQH4+/vj5+dXrD0vL4+nn36aJk2aYLPZqFWrFoMHD2b//v3F+uaPP/5g9erVzj6Pj4/HMAxq167N/fff7zy2sLCQGjVqYLVai702Jk2ahK+vb7F+L+trZe/evQwZMoS4uDj8/f1JSEhgwoQJFBQUOI85fhrYpEmTSEhIwG63c9lll/Hjjz+WuZ8GDRpE06ZNefTRRyksLDzlsSeblnnidLCi53TlypXcfffdREZGEhoayu23305WVhZ79+7lpptuIjw8nJiYGMaOHUt+fn6J8zocDp555hnq1atHQEAAF198MStWrChx3LZt2xgwYABRUVHYbDbOO+88XnnllWLHFE1lfOeddxgzZgyxsbHYbDa2b99+0sd78OBBhg4dSmxsLP7+/pxzzjk8/vjjztd00XOwfPly/vzzT+dr5XRTeP38/HjmmWfYsGEDCxYsOOWxYCY9vXr1okaNGgQEBNCyZUvmzp1b7LFdcsklAAwePNgZR9FzdeLUPovFwhtvvEF2dnaJ95TSpvYdPnyYMWPGcM4552Cz2YiKiuLaa6/lr7/+ch4zYcIEWrduTUREBKGhobRq1Yo333wTwzCcx5zs7+r4vjxxStv3339Px44dCQkJISgoiLZt2/LFF18UO6bo9bZq1Sruu+8+atasSWRkJH369GHPnj3Fjl25ciXt27cnMjKSwMBA6tWrR9++fTl69Ogpn4MFCxbQpUsXYmJiCAwM5LzzzuORRx4hKyur2HFFU2LL8l64Z88ebrrpJkJCQggLC+Pmm29m7969p4zjbMycOZMLLrgAu91OSEgITZo04bHHHnNev3//foYOHUrTpk2x2+1ERUVx9dVXlzpanZSUxA033EBISAjh4eHccsstzi8FTnwOz/R/pIgraURKpJLt3LkTML9NLrJq1Sq6du1K69atmTVrFmFhYbz//vvcfPPNHD169JTTwhITE2ncuDH9+vUjIiKClJQUZs6cySWXXMKWLVuoWbMm3bt359lnn+Wxxx7jlVdeoVWrVsDJR6IMw6B3796sWLGCRx99lCuvvJLff/+dcePGsXbtWtauXYvNZnMe/9tvvzFmzBgeeeQRateuzRtvvMGdd95Jw4YNueqqqwAYPXo077zzDk8//TQXXnghWVlZbN68mbS0tGL3nZ+fz3XXXcedd97JmDFj+Pbbb3nqqacICwvjySefPG3/3nnnnXTu3Jn58+eze/dunnjiCdq3b8/vv/9OeHj4aW9fWFhIQUEBhmGwb98+XnzxRbKyshgwYIDzGIfDQa9evfjuu+946KGHaNu2Lbt27WLcuHG0b9+e9evXExgYyOLFi7nhhhsICwtjxowZgPmNucVi4eqrr2b58uXOc65fv57Dhw8TGBjIihUrnPe3fPlyLrroImfsZX2t7N27l0svvRSr1cqTTz5JgwYNWLt2LU8//TSJiYnMnj272ON+5ZVXaNKkCVOmTAHM6Z7XXnstO3fuJCws7LT95uPjw3PPPUevXr2YO3cud9xxx2lvU1Z33XUXffr04f333+eXX37hscceo6CggK1bt9KnTx/uueceli9fzvPPP0+dOnUYPXp0sdtPnz6d+vXrM2XKFBwOBy+88ALdunVj9erVXHbZZYA59bVt27bUq1ePl156iejoaJYuXcrw4cM5cOAA48aNK3bORx99lMsuu4xZs2ZhtVqJiooqNfacnBw6dOjAP//8w4QJE2jRogXfffcdzz33HL/++itffPGFczra0KFDSU9P59133wWgadOmp+2bm2++mYkTJ/LEE0/Qt2/fEgl/ka1bt9K2bVuioqKYOnUqkZGRzJs3j0GDBrFv3z4eeughWrVqxezZsxk8eDBPPPEE3bt3BzjpFNq1a9fy1FNPsWrVKlauXAmc/D0lIyODK664gsTERB5++GFat25NZmYm3377LSkpKTRp0gQw38+GDBlCvXr1APjxxx8ZNmwYycnJzr//k/1dnczq1avp3LkzLVq04M0338RmszFjxgx69uzJe++9x80331zs+Lvuuovu3bs730MefPBBbr31VudjTExMpHv37lx55ZW89dZbhIeHk5yczJIlS8jLyyMoKOiksWzbto1rr72WkSNHEhwczF9//cXzzz/Pzz//7Dx/kbK8F2ZnZ9OpUyf27NnDc889x7nnnssXX3xR4jFVlPfff5+hQ4cybNgwJk6ciNVqZfv27WzZssV5zMGDBwEYN24c0dHRZGZmsnjxYtq3b8+KFSto3749AFlZWXTo0IGDBw/y/PPP07BhQ5YsWVJq7GfzP1LEpQwRcYnZs2cbgPHjjz8a+fn5RkZGhrFkyRIjOjrauOqqq4z8/HznsU2aNDEuvPDCYm2GYRg9evQwYmJijMLCQsMwDGPVqlUGYKxateqk91tQUGBkZmYawcHBxssvv+xs//DDD09624EDBxr169d3Xl6yZIkBGC+88EKx4xYsWGAAxmuvveZsq1+/vhEQEGDs2rXL2ZadnW1EREQYQ4YMcbY1a9bM6N2790njLooDMD744INi7ddee63RuHHjYm2AMW7cOOflov6+/vrrix33ww8/GIDx9NNPn/K+i25/4o/NZjNmzJhR7Nj33nvPAIyFCxcWa1+3bp0BFDv+/PPPN9q1a1fi/t544w0DMP7991/DMAzj6aefNpo0aWJcd911xuDBgw3DMIy8vDwjODjYeOyxx5y3K+trZciQIYbdbi/2vBiGYUycONEAjD/++MMwDMPYuXOnARjNmzc3CgoKnMf9/PPPBmC89957p+y3otfkhx9+aBiGYVxxxRVGXFyckZ2dbRiG+ZwGBwcXu82Jz12R+vXrGwMHDnReLnpOhg0bVuy43r17G4AxadKkYu0tW7Y0WrVq5bxc9Njq1KnjjMcwDOPIkSNGRESE0alTJ2fbNddcY8TFxRnp6enFzvnAAw8YAQEBxsGDB4s93quuuuqU/VJk1qxZpb6mn3/+eQMwvv76a2dbu3btjPPPP79M5z3+2OXLlxuAMW3atGKP+8UXX3Qe369fP8Nmszlfb0W6detmBAUFGYcPHzYM49hrePbs2SXuc9y4ccaJHxtKe34No+Rz+d///tcAjGXLlpXp8RmGYRQWFhr5+fnGf//7XyMyMtJwOBzO6072d1X02I+Pv02bNkZUVJSRkZHhbCsoKDCaNWtmxMXFOc9b9HobOnRosXO+8MILBmCkpKQYhmEYH330kQEYv/76a5kfS2kcDoeRn59vrF692gCM3377zXldWd8LZ86caQDGJ598Uuy4u++++6TP4/GKHvO6detKvb579+7F/jc88MADRnh4eBkfoamgoMDIz883OnbsWOz9+ZVXXjEA46uvvip2/JAhQ0rEXtb3PZHKpql9Ii7Wpk0b/Pz8CAkJca63+eSTT5zrKbZv385ff/3lXBdRUFDg/Ln22mtJSUlh69atJz1/ZmYmDz/8MA0bNsTX1xdfX1/sdjtZWVn8+eefZxRz0TejJ37Ld+ONNxIcHFxiWlTLli2d3yCDOR3u3HPPLTa98NJLL+Wrr77ikUce4ZtvviE7O7vU+7ZYLCXW2LRo0aLYuU7lxPUlbdu2pX79+qxatapMt3/77bdZt24d69at46uvvmLgwIHcf//9TJ8+3XnM559/Tnh4OD179iz2fLVs2ZLo6OgyVVXs1KkTgHNUatmyZXTu3JlOnTqxbNkywPzGPysry3lseV4rn3/+OR06dKBOnTrFjuvWrRtgfkt/vO7du+Pj4+O83KJFC4Ay93uR559/nqSkJF5++eVy3e5UevToUezyeeedB+AcMTm+vbR4+/TpQ0BAgPNySEgIPXv25Ntvv6WwsJCcnBxWrFjB9ddfT1BQUIl+zcnJKTHNsW/fvmWKfeXKlQQHB3PDDTcUay/62yptimF5dezYkS5duvDf//6XjIyMk8bRsWNH6tatWyKOo0ePllpxsSJ99dVXnHvuuc7X8smsXLmSTp06ERYWho+PD35+fjz55JOkpaWRmppa7vvNysrip59+4oYbbihWPdLHx4fbbruNpKSkEu+v1113XbHLJ/4ttGzZEn9/f+655x7mzp1brqnDO3bsYMCAAURHRzsfX7t27QBKvF+X5b1w1apVhISElIj5+BH0inTppZdy+PBh+vfvzyeffMKBAwdKPW7WrFm0atWKgIAAfH198fPzY8WKFcUe4+rVq53/F4/Xv3//YpfP9n+kiCspkRJxsaIP5itXrmTIkCH8+eefxf5RFK2HGTt2LH5+fsV+hg4dCnDSf1Zg/sOcPn06d911F0uXLuXnn39m3bp11KpV66TJyumkpaXh6+tLrVq1irVbLBaio6NLTMeLjIwscQ6bzVbs/qdOncrDDz/Mxx9/TIcOHYiIiKB3794lSsEHBQUV+9BbdK6cnJwyxR4dHV1q24kxn8x5553HxRdfzMUXX0zXrl159dVX6dKlCw899JBzndK+ffs4fPiwc+3U8T979+495fNVpH79+jRo0IDly5c7P8gWJVJFH+6WL19OYGAgbdu2dd4vlO21sm/fPj777LMSx51//vnFjity4nNYNFWqvK+htm3b0rt3b/7v//6PQ4cOleu2J3Ni9Tp/f/+Ttpf2OjnZayIvL4/MzEzS0tIoKChg2rRpJfrr2muvBUr2V0xMTJliT0tLIzo6ukQhiKioKHx9fcv8ujyd559/ngMHDpy05HlaWlqpMdepU8d5vSvt37//tFU2f/75Z7p06QLA66+/zg8//MC6det4/PHHgfK/FgEOHTqEYRjleuyn+1so+ruNiori/vvvp0GDBjRo0OC0Xx5kZmZy5ZVX8tNPP/H000/zzTffsG7dOhYtWlTq4yvLe2FaWhq1a9cucV+lveZLU/SF3snWNRYUFBSbLnrbbbfx1ltvsWvXLvr27UtUVBStW7d2fvkD5rrO++67j9atW7Nw4UJ+/PFH1q1bR9euXYs9xpPFfmLb2f6PFHElrZEScbGiD+ZgFnooLCzkjTfe4KOPPuKGG26gZs2agLnmok+fPqWeo3HjxqW2p6en8/nnnzNu3DgeeeQRZ3tubq5znvqZiIyMpKCggP379xdLpoz/lQQvWpBeHsHBwUyYMIEJEyawb98+5+hUz549iy02P1ulLbLeu3cvDRs2PONztmjRgqVLl/L3339z6aWXOhehL1mypNTjQ0JCynTejh078sknn7B69WocDgft27cnJCSEOnXqsGzZMpYvX86VV17p/CBXntdKzZo1adGiBc8880ypxxV9iHSF5557jmbNmvHss8+Wer3NZiuxYB5c92H+ZK8Jf39/7HY7fn5+zhGK4wuAHC8hIaHY5bJWyIuMjOSnn37CMIxit0lNTaWgoMD5nJ6tli1b0r9/fyZNmuRM/k6MIyUlpUR7URGFiorjZGrVqkVSUtIpj3n//ffx8/Pj888/L5ZAfPzxx2d8v0UFXCr6sV955ZVceeWVFBYWsn79eqZNm8bIkSOpXbs2/fr1K/U2K1euZM+ePXzzzTfOUSigRAGf8oiMjOTnn38u0V7WYhNFSUtycnKp1ycnJ5dIbAYPHszgwYPJysri22+/Zdy4cfTo0YO///6b+vXrM2/ePNq3b8/MmTOL3e7E0dKyxn42/yNFXE0jUiKV7IUXXqBGjRo8+eSTOBwOGjduTKNGjfjtt9+cIyEn/pzsg7nFYsEwjBILrd94440S3zCWZ4ShY8eOAMybN69Y+8KFC8nKynJef6Zq167NoEGD6N+/P1u3bj1tpavyKFqoX2TNmjXs2rXLucD5TBRtTlqUVPbo0YO0tDQKCwtLfb6O/6d+4sjc8Tp16sS+ffuYMmUKbdq0cT7PHTt2ZPHixaxbt67YVKjyvFZ69OjhLKdd2nGuTKSaNGnCHXfcwbRp0/j3339LXB8fH8/vv/9erG3lypVkZma6JJ5FixYV+xY/IyODzz77jCuvvBIfHx+CgoLo0KEDv/zyCy1atCi1v0obdS2Ljh07kpmZWSIZePvtt53XV5Snn36avLw8JkyYUGocRR/kT4wjKCjIWTL8TEciT6dbt278/fffJQoqHK+ohPzxU0yzs7N55513Shx7qr+r4wUHB9O6dWsWLVpU7HiHw8G8efOIi4srVvinvHx8fGjdurWzuuPGjRtPemxRIn3i+/Wrr756xvffoUMHMjIy+PTTT4u1z58/v0y3b9OmDXa7vdSqj1u2bOGPP/446XTM4OBgunXrxuOPP05eXh5//PEHYD7OEx/j77//XmL6aLt27cjIyOCrr74q1v7+++8Xu3w2/yNFXE0jUiKVrEaNGjz66KM89NBDzJ8/n1tvvZVXX32Vbt26cc011zBo0CBiY2M5ePAgf/75Jxs3buTDDz8s9VyhoaFcddVVvPjii9SsWZP4+HhWr17Nm2++WaJCXbNmzQB47bXXCAkJISAggISEhFI/IHbu3JlrrrmGhx9+mCNHjnD55Zc7q/ZdeOGF3HbbbeV+3K1bt6ZHjx60aNGCGjVq8Oeff/LOO+9w2WWXnbLKVXmtX7+eu+66ixtvvJHdu3fz+OOPExsb65wCcjqbN292lgdPS0tj0aJFLFu2jOuvv945KtGvXz/effddrr32WkaMGMGll16Kn58fSUlJrFq1il69enH99dcD0Lx5c95//30WLFjAOeecQ0BAAM2bNwfg6quvxmKx8PXXXxf78NupUycGDhzo/P14ZX2t/Pe//2XZsmW0bduW4cOH07hxY3JyckhMTOTLL79k1qxZLtnQuMj48eN59913WbVqFcHBwcWuu+222/jPf/7Dk08+Sbt27diyZQvTp08vU3XAM+Hj40Pnzp0ZPXo0DoeD559/niNHjhTr85dffpkrrriCK6+8kvvuu4/4+HgyMjLYvn07n3322SkTgFO5/fbbeeWVVxg4cCCJiYk0b96c77//nmeffZZrr732tGuGyiMhIYH77ruv1Clm48aNc66be/LJJ4mIiODdd9/liy++4IUXXnD2fYMGDQgMDOTdd9/lvPPOw263U6dOnbNOvEeOHMmCBQvo1asXjzzyCJdeeinZ2dmsXr2aHj160KFDB7p3786kSZMYMGAA99xzD2lpaUycOLHUinyn+rs60XPPPUfnzp3p0KEDY8eOxd/fnxkzZrB582bee++9cu+/NWvWLFauXEn37t2pV68eOTk5zu0eTvV8tm3blho1anDvvfcybtw4/Pz8ePfdd/ntt9/Kdf/Hu/3225k8eTK33347zzzzDI0aNeLLL79k6dKlZbp9SEgIEyZMYMyYMTgcDm6++WZq1KjBpk2bePbZZ6lfvz7Dhw93Hn/33XcTGBjI5ZdfTkxMDHv37uW5554jLCzMOVOhR48ePPXUU4wbN4527dqxdetW/vvf/5KQkFBs64WBAwcyefJkbr31Vp5++mkaNmzIV1995Yzdaj32Xf+Z/o8UcTn31roQqbpOVQ0pOzvbqFevntGoUSNnpbTffvvNuOmmm4yoqCjDz8/PiI6ONq6++mpj1qxZztuVVrUvKSnJ6Nu3r1GjRg0jJCTE6Nq1q7F58+YSVbMMwzCmTJliJCQkGD4+PsWqIp1Yta8oxocfftioX7++4efnZ8TExBj33XefcejQoWLH1a9f3+jevXuJx9iuXbtiVbUeeeQR4+KLLzZq1Khh2Gw245xzzjFGjRplHDhwwHnMySqAlVYtjJNU7fv666+N2267zQgPDzcCAwONa6+91ti2bVuJc56otKp9YWFhRsuWLY1JkyYZOTk5xY7Pz883Jk6caFxwwQVGQECAYbfbjSZNmhhDhgwpdn+JiYlGly5djJCQEAMo0c8XXnihARg//PCDsy05OdkASlQqK1KW14phGMb+/fuN4cOHGwkJCYafn58RERFhXHTRRcbjjz9uZGZmGoZReoW3k/VxaU6s2ne8xx57zABKPKe5ubnGQw89ZNStW9cIDAw02rVrZ/z6668nrdp34t9Q0eth//79xdpPfP0UPbbnn3/emDBhghEXF2f4+/sbF154obF06dIS8e7cudO44447jNjYWMPPz8+oVauW0bZt22IVH0/1eE8mLS3NuPfee42YmBjD19fXqF+/vvHoo4+WeE2dadW+4+3fv98IDQ0t9TndtGmT0bNnTyMsLMzw9/c3LrjgglKrur333ntGkyZNDD8/v2KvgbOp2mcYhnHo0CFjxIgRRr169Qw/Pz8jKirK6N69u/HXX385j3nrrbeMxo0bO98jnnvuOePNN980AGPnzp3O4072d1Va1T7DMIzvvvvOuPrqq43g4GAjMDDQaNOmjfHZZ58VO+Zkr7cT33fXrl1rXH/99Ub9+vUNm81mREZGGu3atTM+/fTTEv1wojVr1hiXXXaZERQUZNSqVcu46667jI0bN5aIuTzvhUX/A+x2uxESEmL07dvXWLNmTZmq9hX54IMPjCuuuMIICQkxfH19jXr16hn33XefsXfv3mLHzZ071+jQoYNRu3Ztw9/f36hTp45x0003Gb///rvzmNzcXGPs2LFGbGysERAQYLRq1cr4+OOPS/0/8++//xp9+vQpFvuXX35ZaiXCsr7viVQmi2Ect8udiIiXmjNnDoMHD2bdunXONWkiIuJdnn32WZ544gn+/fdfl46ai1QETe0TERERkUpXtK1EkyZNyM/PZ+XKlUydOpVbb71VSZR4BSVSIiIiIlLpgoKCmDx5MomJieTm5lKvXj0efvhhnnjiCXeHJlImmtonIiIiIiJSTip/LiIiIiIiUk5KpERERERERMpJiZSIiIiIiEg5qdgE5g7ne/bsISQkpNwb84mIiIiISNVhGAYZGRnUqVOn2ObQJ1IiBezZs4e6deu6OwwREREREfEQu3fvPmUpfiVSQEhICGB2VmhoaIWcMz8/n6+//pouXbrg5+dXIeeU4tTHrqX+dT31seupj11Pfexa6l/XUx+7nrf18ZEjR6hbt64zRzgZJVLgnM4XGhpaoYlUUFAQoaGhXvGC8UbqY9dS/7qe+tj11Meupz52LfWv66mPXc9b+/h0S35UbEJERERERKSclEiJiIiIiIiUkxIpERERERGRcnLrGqnnnnuORYsW8ddffxEYGEjbtm15/vnnady4sfOYQYMGMXfu3GK3a926NT/++KPzcm5uLmPHjuW9994jOzubjh07MmPGjFNW2RARERERORuFhYXk5+e7OwyPl5+fj6+vLzk5ORQWFro7HHx8fPD19T3rbY/cmkitXr2a+++/n0suuYSCggIef/xxunTpwpYtWwgODnYe17VrV2bPnu287O/vX+w8I0eO5LPPPuP9998nMjKSMWPG0KNHDzZs2ICPj0+lPR4RERERqR4yMzNJSkrCMAx3h+LxDMMgOjqa3bt3e8yerUFBQcTExJTIK8rDrYnUkiVLil2ePXs2UVFRbNiwgauuusrZbrPZiI6OLvUc6enpvPnmm7zzzjt06tQJgHnz5lG3bl2WL1/ONddc47oHICIiIiLVTmFhIUlJSQQFBVGrVi2PSQ48lcPhIDMzE7vdfsoNbiuDYRjk5eWxf/9+du7cSaNGjc44Jo8qf56eng5AREREsfZvvvmGqKgowsPDadeuHc888wxRUVEAbNiwgfz8fLp06eI8vk6dOjRr1ow1a9aUmkjl5uaSm5vrvHzkyBHAHHasqOHZovNouNd11Meupf51PfWx66mPXU997FrqX9c7kz7Ozc3F4XAQGRmJzWZzVWhVRlHyYrPZPCLptNls+Pj48O+//3L06NESz2FZXwsWw0PGIw3DoFevXhw6dIjvvvvO2b5gwQLsdjv169dn586d/Oc//6GgoIANGzZgs9mYP38+gwcPLpYYAXTp0oWEhAReffXVEvc1fvx4JkyYUKJ9/vz5BAUFVfyDExEREZEqw9fXl+joaOrWrXtWU8PEffLy8ti9ezd79+6loKCg2HVHjx5lwIABpKenn3KPWY8ZkXrggQf4/fff+f7774u133zzzc7fmzVrxsUXX0z9+vX54osv6NOnz0nPZxjGSTPeRx99lNGjRzsvF+1e3KVLlwrdkHfZsmV07tzZqzYe8ybqY9dS/7qe+tj11Meupz52LfWv651JH+fk5LB7927sdjsBAQEujtD7GYZBRkYGISEhHjEiBeZzGBgYyFVXXVXiOSyarXY6HpFIDRs2jE8//ZRvv/32tJX2YmJiqF+/Ptu2bQMgOjqavLw8Dh06RI0aNZzHpaam0rZt21LPYbPZSh2G9fPzq/A3KVecU4pTH7uW+tf11Meupz52PfWxa6l/Xa88fVxYWIjFYsFqtbp9zY83cDgcAM4+8wRWqxWLxVLq817W14FbH4lhGDzwwAMsWrSIlStXkpCQcNrbpKWlsXv3bmJiYgC46KKL8PPzY9myZc5jUlJS2Lx580kTKRERERERkbPh1kTq/vvvZ968ecyfP5+QkBD27t3L3r17yc7OBsyykmPHjmXt2rUkJibyzTff0LNnT2rWrMn1118PQFhYGHfeeSdjxoxhxYoV/PLLL9x66600b97cWcVPRERERETMPVotFotzNKZ27dp07tyZt956yzlyVBZz5swhPDzcdYF6AbcmUjNnziQ9PZ327dsTExPj/FmwYAFgbpa1adMmevXqxbnnnsvAgQM599xzWbt2LSEhIc7zTJ48md69e3PTTTdx+eWXExQUxGeffaY9pERERETEYzkcBjv2Z/Lb7sPs2J+Jw1E5NeC6du1KSkoKiYmJfPXVV3To0IERI0bQo0ePEoUX5OTcukbqdAUDAwMDWbp06WnPExAQwLRp05g2bVpFhSYiIiLikRwOg8S0LDJyCggJ8CU+Mhir1TMW8EvZbU5OZ+HGJLanZpKb78DmZ6VhlJ2+reJoFhvm0vs+fo/W2NhYWrVqRZs2bejYsSNz5szhrrvuYtKkScyePZsdO3YQERFBz549eeGFF7Db7XzzzTcMHjwYwFk8Yty4cYwfP5558+YxZcoUtm7dSnBwMFdffTWTJk2qkkU5PGO1l4iIiIic1ubkdJ76YgvjPv2DZ774k3Gf/sFTX2xhc3K6u0OTcticnM7UFdvYlJROeKA/8TWDCQ/0Z1OS2e6O5/Pqq6/mggsuYNGiRYBZjGHq1Kls3ryZuXPnsnLlSh566CEA2rZty5QpUwgNDSUlJYWUlBTGjh0LmGXFn3rqKX777Tc+/vhjdu7c6Uy6qhqPqNonIiIiIqdW9OH7YFYeMWGBBIb5kJ1XyKakdJIPZTO8YyOXj2TI2XM4DBZuTOJgVh4No+zOER17gC8NbXa2p2ayaGMyTWNCK32ksUmTJvz+++8AjBw50tmekJDAU089xX333ceMGTPw9/cnLCwMi8XiHNkqcscddzh/P+ecc5g6dSqXXnopmZmZFbbNkKfQiJSIiIiIhzvxw7c9wBcfq8X88B1l52BWHos2JlfaGhs5c4lpWWxPzSQmLLDEnkoWi4WYsEC2pWaQmJZV6bEdvw/rqlWr6Ny5M7GxsYSEhHD77beTlpZGVtap4/rll1/o1asX9evXJyQkhPbt2wOQlJTk6vArnRIpEREREQ/378GjHvvhW8onI6eA3HwHgf6lF0UL9PchN99BRk7lF334888/SUhIYNeuXVx77bU0a9aMhQsXsmHDBl555RXA3MD4ZLKysujSpQt2u5158+axbt06Fi9efNrbeStN7RMRERHxcJm5//vwHXbyD9/7jrjnw7eUT0iALzY/K9l5hdgDSn4Uz84rxOZnJaSU61xp5cqVbNq0iVGjRrF+/XoKCgp46aWXnBvofvDBB8WO9/f3p7CwsFjbX3/9xYEDB/i///s/6tatC8D69esr5wG4gUakRERERDyc3Xbsw3dp3PXhW8ovPjKYhlF2UtKzS1SwNgyDlPRsGkWFEB8Z7LIYcnNz2bt3L8nJyWzcuJFnn32WXr160aNHD26//XYaNGhAQUEB06ZNY8eOHbzzzjvMmjWr+OOIjyczM5MVK1Zw4MABjh49Sr169fD393fe7tNPP+Wpp55y2eNwNyVSIiIiIh6uXkSQ2z98S8WwWi30bRVHRLA/21MzycwpoNBhkJlTwPbUTCKC/enTKtalhSaWLFlCTEwM8fHxdO3alVWrVjF16lQ++eQTfHx8aNmyJZMmTeL555+nWbNmvPvuuzz33HPFztG2bVvuvfdebr75ZmrVqsULL7xArVq1mDNnDh9++CFNmzbl//7v/5g4caLLHoe76WsLEREREQ9X9OE7+VC2c61UoL9ZtS8lPbtSPnxLxWkWG8bwjo2c+0jtO2LuI9UiLpw+rWJdWn1xzpw5zJkz57THjRo1ilGjRhVru+2224pdnjlzJjNnzizW1r9/f/r371+srbCwkCNHjpxZwB5MiZSIiIiIF3Dnh2+peM1iw2gaE6rNlb2YEikRERERL6EP31WL1WrhnFp2d4chZ0iJlIiIiIgX0YdvEc+gYhMiIiIiIiLlpERKRERERESknJRIiYiIiIiIlJMSKRERERERkXJSIiUiIiIiIlJOSqRERERERETKSYmUiIiIiIhUmjlz5hAeHu68PH78eFq2bOm8PGjQIHr37l3pcZWX9pESEREREaniLJZTb9o8cOBA5syZUznBnMbLL7+MYRjuDuO0lEiJiIiIiFRxKSkpzt8XLFjAk08+ydatW51tgYGBxY7Pz8/Hz8+v0uI7XlhYmFvut7w0tU9ERERE5GwYBmRlueenjCM30dHRzp+wsDAsFovzck5ODuHh4XzwwQe0b9+egIAA5s2bB8Ds2bM577zzCAgIoEmTJsyYMcN5zsTERCwWC4sWLaJDhw4EBQVxwQUXsHbt2mL3PWfOHJo1a4bdbuf6668nLS3tlLGeOLWvffv2DB8+nIceeoiIiAiio6MZP358sdukp6dzzz33EBUVRWhoKFdffTW//fZbmfrmTGlESkRERETkbBw9Cna7e+47MxOCgyvkVA8//DAvvfQSs2fPxmaz8frrrzNu3DimT5/OhRdeyC+//MLdd99NcHAwAwcOdN7u8ccfZ+LEiTRq1IjHH3+c/v37s337dnx9ffnpp5+46667+M9//kP//v35+uuvGTduXLljmzt3LqNHj+ann35i7dq1DBo0iMsvv5zOnTtjGAbdu3cnIiKCL7/8krCwMF599VU6duzI33//TURERIX0z4mUSImIiIiICCNHjqRPnz7Oy0899RQvvfSSsy0hIYEtW7bw6quvFkukxo4dS/fu3QGYMGEC559/Ptu3b6dJkya8/PLLdOnShVGjRhEaGkqTJk1Ys2YNS5YsKVdsLVq0cCZgjRo1Yvr06axYsYLOnTuzatUqNm3aRGpqKjabDYCJEyfy8ccf89FHH3HPPfecVb+cjBIpEREREZGzERRkjgy5674ryMUXX+z8ff/+/ezevZs777yTu+++29leUFBQYg1TixYtnL/HxMQAkJqaSpMmTfjzzz9LVOC77LLLziiROl5MTAypqakAbNiwgczMTCIjI4sdk52dzT///FOu+ykPJVIiIiIiImfDYqmw6XXuFHzcY3A4HAC8/vrrtG7duthxPj4+xS4fX5SiqDpg0e0rqvreiYUvLBaL8z4cDgcxMTF88803JW53fJn1iqZESkREREREiqlduzaxsbHs2LGDW2655YzP07RpU3788UdGjBjhbPvxxx8rIkSnVq1asXfvXnx9fYmPj6/Qc5+KEikRERERESlh/PjxDB8+nNDQULp160Zubi7r16/n0KFDjB49ukznGD58OG3btuXll1/m5ptvZvny5eWe1nc6nTp14rLLLqN37948//zzNG7cmD179vDll1/Su3fvYlMWK5LKn4uIiIiISAl33XUXb7zxBnPmzKF58+a0a9eOOXPmkJCQUOZztGnThtdee43XXnuNVq1a8fXXX/PEE09UaJwWi4Uvv/ySq666ijvuuINzzz2Xfv36kZiYSO3atSv0vo6nESkRERERkWpk0KBBDBo0yHk5Pj7+pGuZBgwYwIABA0q9rrTbhYeHl2i74447uOGGGwgNDcVqNcdxxowZ47x+/PjxxfaFmjNnTrHbl7b26eOPPy52OSQkhKlTpzJ16tRSY3UFjUiJiIiIiIiUkxIpERERERGRclIiJSIiIiIiUk5KpERERERERMpJiZSIiIiIyBmoqM1mpfJVxHOnREpEREREpBx8fHwAyMvLc3MkcqaOHj0KgJ+f3xmfQ+XPRURERETKwdfXl6CgIPbv34+fn5+zpLeUzuFwkJeXR05Ojtv7yjAMjh49SmpqKuHh4c6k+EwokRIRERERKQeLxUJMTAw7d+5k165d7g7H4xmGQXZ2NoGBgVgsFneHA5j7XUVHR5/VOZRIiYiIiIiUk7+/P40aNdL0vjLIz8/n22+/5aqrrjqrqXQVxc/P76xGooookRIREREROQNWq5WAgAB3h+HxfHx8KCgoICAgwCMSqYqiCZ0iIiIiIiLlpERKRERERESknJRIiYiIiIiIlJMSKRERERERkXJSIiUiIiIiIlJOSqRERERERETKSYmUiIiIiIhIOSmREhERERERKSclUiIiIiIiIuWkREpERERERKSclEiJiIiIiIiUkxIpERERERGRclIiJSIiIiIiUk5KpERERERERMpJiZSIiIiIiEg5+bo7ABEREW/hcBgkpmWRkVNASIAv8ZHBWK0Wd4clIiJuoERKRESkDDYnp7NwYxLbUzPJzXdg87PSMMpO31ZxNIsNc3d4IiJSyZRIiYiInMbm5HSmrtjGwaw8YsICCQzzITuvkE1J6SQfymZ4x0ZKpkREqhmtkRIRETkFh8Ng4cYkDmbl0TDKjj3AFx+rBXuALw2j7BzMymPRxmQcDsPdoYqISCVSIiUiInIKiWlZbE/NJCYsEIul+Hooi8VCTFgg21IzSEzLclOEIiLiDkqkRERETiEjp4DcfAeB/j6lXh/o70NuvoOMnIJKjkxERNxJiZSIiMgphAT4YvOzkp1XWOr12XmF2PyshARo2bGISHWiREpEROQU4iODaRhlJyU9G8Movg7KMAxS0rNpFBVCfGSwmyIUERF3UCIlIiJyClarhb6t4ogI9md7aiaZOQUUOgwycwrYnppJRLA/fVrFaj8pEZFqRomUiIjIaTSLDWN4x0Y0jwvjcHYeiQeyOJydR4u4cJU+FxGppjShW0REpAyaxYbRNCaUxLQsMnIKCAnwJT4yWCNRIiLVlBIpERGRMrJaLZxTy+7uMERExANoap+IiIiIiEg5KZESEREREREpJyVSIiIiIiIi5aRESkREREREpJxUbEJERErlcBiqUCciInISSqRERKSEzcnpLNyYxPbUTHLzHdj8rDSMstO3VZz2TBIREUGJlIiInGBzcjpTV2zjYFYeMWGBBIb5kJ1XyKakdJIPZWsDWhEREbRGSkREjuNwGCzcmMTBrDwaRtmxB/jiY7VgD/ClYZSdg1l5LNqYjMNhuDtUERERt1IiJSIiTolpWWxPzSQmLBCLpfh6KIvFQkxYINtSM0hMy3JThCIiIp5BiZSIiDhl5BSQm+8g0N+n1OsD/X3IzXeQkVNQyZGJiIh4FrcmUs899xyXXHIJISEhREVF0bt3b7Zu3VrsGMMwGD9+PHXq1CEwMJD27dvzxx9/FDsmNzeXYcOGUbNmTYKDg7nuuutISkqqzIciIlIlhAT4YvOzkp1XWOr12XmF2PyshARoia2IiFRvbk2kVq9ezf3338+PP/7IsmXLKCgooEuXLmRlHZsy8sILLzBp0iSmT5/OunXriI6OpnPnzmRkZDiPGTlyJIsXL+b999/n+++/JzMzkx49elBYWPoHARERKV18ZDANo+ykpGdjGMXXQRmGQUp6No2iQoiPDHZThCIiIp7BrV8pLlmypNjl2bNnExUVxYYNG7jqqqswDIMpU6bw+OOP06dPHwDmzp1L7dq1mT9/PkOGDCE9PZ0333yTd955h06dOgEwb9486taty/Lly7nmmmsq/XGJiHgrq9VC31ZxJB/Kdq6VCvQ3q/alpGcTEexPn1ax2k9KRESqPY+am5Geng5AREQEADt37mTv3r106dLFeYzNZqNdu3asWbOGIUOGsGHDBvLz84sdU6dOHZo1a8aaNWtKTaRyc3PJzc11Xj5y5AgA+fn55OfnV8hjKTpPRZ1PSlIfu5b61/U8tY8bRwXxQPsEPvl1DzsOZJKWYe4j1TI2hOta1qFxVJDHxXwyntrHVYn62LXUv66nPnY9b+vjssZpMU6cu+EmhmHQq1cvDh06xHfffQfAmjVruPzyy0lOTqZOnTrOY++55x527drF0qVLmT9/PoMHDy6WGAF06dKFhIQEXn311RL3NX78eCZMmFCiff78+QQFBVXwIxMRERERkVMJ27GDApuNrNhYd4fC0aNHGTBgAOnp6YSGhp70OI8ZkXrggQf4/fff+f7770tcd2IJXsMwSrSd6FTHPProo4wePdp5+ciRI9StW5cuXbqcsrPKIz8/n2XLltG5c2f8/Pwq5JxSnPrYtdS/rqc+dj31seupj11L/et66mPXO2kfGwaWr7/GOnky1pUrcfTrR+Hbb7sv0P8pmq12Oh6RSA0bNoxPP/2Ub7/9lri4OGd7dHQ0AHv37iUmJsbZnpqaSu3atZ3H5OXlcejQIWrUqFHsmLZt25Z6fzabDZvNVqLdz8+vwv+AXHFOKU597FrqX9dTH7ue+tj11Meupf51PfWx6zn7ODcX3nsPXnoJNm82r/Txwernh9XHB6zu3aGprK8Dt0ZpGAYPPPAAixYtYuXKlSQkJBS7PiEhgejoaJYtW+Zsy8vLY/Xq1c4k6aKLLsLPz6/YMSkpKWzevPmkiZSIiIiIiFSyQ4fg//4PEhJg8GAzibLbYdQo+OcfePtttydR5eHWEan777+f+fPn88knnxASEsLevXsBCAsLIzAwEIvFwsiRI3n22Wdp1KgRjRo14tlnnyUoKIgBAwY4j73zzjsZM2YMkZGRREREMHbsWJo3b+6s4iciIiIiIm6SmEizN97A95ZboGibozp1YMQIuOceCA93a3hnyq2J1MyZMwFo3759sfbZs2czaNAgAB566CGys7MZOnQohw4donXr1nz99deEhIQ4j588eTK+vr7cdNNNZGdn07FjR+bMmYOPj09lPRQRERERETne+vXw0kv4fvghDYr2d23eHMaOhX79wN/fvfGdJbcmUmUpGGixWBg/fjzjx48/6TEBAQFMmzaNadOmVWB0IiIiIiJSLg4HfPUVTJwI33wDgAVIveACIp59Ft9u3eA0ReO8hUcUmxARERERES+WkwPvvmsWkPjzT7PN1xf69SN/xAjWJidzbefOVSaJAiVSIiIiIiJyptLSYNYsmDYN9u0z20JCYMgQGD4c6taF/HxITnZvnC6gREpERERERMpnxw6YPBneeguOHjXb4uJg5Ei46y4IC3NreJVBiZSIiIiIiJTNTz+Z658WLTLXQwG0bGkWkLjpJqhGe3EpkRIRERERkZNzOODzz80E6rvvjrV37WomUFdfXaXWPpWVEikRERERESkpOxveeccsIPH332abnx/ccguMHm2WMq/GlEiJiIiIiMgxBw7AjBkwfTrs32+2hYXBfffBsGHmZrqiREpERERERIBt28wCEnPmmKNRAPXrw6hRcMcdZjU+cVIiJSIiIiJSna1ZY65/+vhjMAyz7aKL4MEHoW9fcz8oKUG9IiIiIiJS3RQWwiefmAnU2rXH2rt3NwtItGtXLQtIlIcSKRERERGR6uLoUXPq3qRJ8M8/Zpu/P9x2m1lAomlTt4bnTZRIiYiIiIhUdampZvGIGTMgLc1sq1EDhg6FBx6A6Gj3xueFlEiJiIiIiFRVW7eao09z50JurtmWkGCOPg0eDMHB7o3PiymREhERERGpSgwDvv/eXP/06afH2i+91Cwgcf314OPjvviqCCVSIiIiIiJVQUEBLF5sJlA//3ys/brrzATq8stVQKICKZESEREREfFmmZkwe7a5B9TOnWabzQYDB5pT+Bo3dm98VZQSKRERERERb5SSYhaQmDkTDh0y2yIj4f77zZ+oKPfGV8UpkRIRERER8SZbtsBLL8G8eZCXZ7Y1bGiOPg0cCEFB7o2vmlAiJSIiIiLi6QwDVq821z998cWx9rZtzQ10r7tOBSQqmRIpERERkQrmcBgkpmWRkVNASIAv8ZHBWK1a5C9noKAAPvrITKA2bDDbLBaz8t6YMWYiJW6hREpERESkAm1OTmfhxiS2p2aSm+/A5melYZSdvq3iaBYb5u7wxFtkZMCbb5oFJP7912wLDDT3fho1ypzKJ26lREpERESkgmxOTmfqim0czMojJiyQwDAfsvMK2ZSUTvKhbIZ3bKRkSk4tORmmTYNZsyA93WyrVQuGDYP77oOaNd0bnzgpkRIRERGpAA6HwcKNSRzMyqNhlB3L//brsQf40tBmZ3tqJos2JtM0JlTT/KSkTZvMAhLz50N+vtnWuLE5fe/WW83RKPEoSqREREREKkBiWhbbUzOJCQt0JlFFLBYLMWGBbEvNIDEti3Nq2d0UpXgUw4AVK8z1T0uXHmu/8kqzgESPHmC1ui8+OSUlUiIiIiIVICOngNx8B4FhpVdOC/T3Yd8RBxk5BZUcmXic/HxYsMBMoH77zWyzWqFvX3MEqnVr98YnZaJESkRERKQChAT4YvOzkp1XiD2g5Ees7LxCbH5WQkq5TqqJ9HR4/XV4+WVISjLbgoLgzjth5Eg45xy3hiflo79kERERkQoQHxlMwyg7m5LSaWizF5veZxgGKenZtIgLJz4y2I1Rilvs3g1Tp8Krr5rV+ABq14bhw+HeeyEiwr3xyRlRIiUiIiJSAaxWC31bxZF8KNu5VirQ36zal5KeTUSwP31axarQRHXy669mAYn33zf3gwI47zxz/dOAARAQ4Nbw5OwokRIRERGpIM1iwxjesZFzH6l9R8x9pFrEhdOnVaxKn1cHhgFff22uf1q+/Fh7+/bw4IPQtasKSFQRSqREREREKlCz2DCaxoSSmJZFRk4BIQG+xEcGaySqqsvLg/feM0egNm0y23x84MYbzQISF1/s3vikwimREhEREalgVqtFJc6ri8OHzbVPU6fCnj1mW3Aw3H03jBgB8fHujE5cSImUiIiIiEh57doFU6bAG29AZqbZFhNjJk/33AM1arg1PHE9JVIiIiIiImW1YYM5fe+DD6Cw0Gxr1swsING/P/j7uzc+qTRKpERERERETsXhgCVLzAISq1Yda+/UyUygunQBi9bAVTdKpERERERESpObC+++a45Abdlitvn6Qr9+ZgGJli3dGp64lxIpEREREZHjHTwIs2bBtGmwd6/ZFhJirn0aMQLq1nVvfOIRlEiJiIiIiADs2GEWkHjzTTh61GyLi4ORI+GuuyBM+4DJMUqkRERERKRaC//7b3zeeQcWLzbXQwFccIG5/unmm8HPz70BikdSIiUiIiIi1Y/DAZ9/js+LL9Lu+++PtV9zjZlAdeyoAhJySkqkRERERKT6yM6Gd96BSZNg61asgMPXF/r3xzp2LLRo4e4IxUsokRIRERGRqu/AAZg50ywgsX+/2RYWRuHdd7P8vPO4+rbbsGoKn5SDEikRERERqbq2b4fJk2H2bHM0CqBePRg1Cu68E0dAADlffuneGMUrKZESERERkapn7VpzA93Fi8EwzLZWrcz1TzfeaO4HBZCf774YxaspkRIRERGRqqGwED791Eyg1qw51n7ttWYC1b69CkhIhVEiJSIiIiLe7ehRmDvXLCCxfbvZ5u8Pt94Ko0fD+ee7Nz6pkpRIiYiIiIh3Sk2FV14xf9LSzLYaNeC+++CBByAmxr3xSZWmREpEREREvMvWrWYBiblzISfHbIuPN0efBg8Gu92t4Un1oERKRERERDyfYcAPP5jrnz799FgBiUsugQcfhOuvP1ZAQqQS6NUmIiIiIp6rsNCsvDdxIvz007H2nj3NBOqKK1RAQtxCiZSIiIiIeJ6sLHPvp8mTYccOs81mg9tvN6fwNWni3vik2lMiJSIiIiKeY+9emD4dZsyAQ4fMtogIuP9+86d2bffGJ/I/SqRERERExP3+/BNeegneeQfy8sy2Bg3M0adBgyAoyK3hiZxIiZSIiIiIuIdhwLffmuufPv/8WHubNub6p169wMfHffGJnIISKRERERGpXAUFsHChmUCtX2+2WSzQuzeMHQtt27o1PJGyUCIlIiIiIpUjIwPeesssILFrl9kWEGDu/TRqFDRq5N74RMpBiZSIiIiIuNaePTBtGsyaBYcPm221asEDD8B995m/i3gZJVIiIiIi4hqbN5sFJN59F/LzzbZGjWDMGLOMeWCge+MTOQtKpERERMrI4TBITMsiI6eAkABf4iODsVq1EahIMYYBK1ea65+WLDnWfsUV5vqnnj3BanVffCIVRImUiIhIGWxOTmfhxiS2p2aSm+/A5melYZSdvq3iaBYb5u7wRNwvPx8++MBMoH791WyzWqFPH3MEqk0bt4YnUtGUSImIiJzG5uR0pq7YxsGsPGLCAgkM8yE7r5BNSekkH8pmeMdGSqak+jpyBF5/HaZMgaQksy0oCO64A0aONPeCEqmClEiJiIicgsNhsHBjEgez8mgYZcdiMafy2QN8aWizsz01k0Ubk2kaE6ppflK9JCXB1Knw6qtmMgVQuzYMGwb33guRke6NT8TFlEiJiIicQmJaFttTM4kJC3QmUUUsFgsxYYFsS80gMS2Lc2rZ3RSlSCX67TezgMR775n7QQE0aWKuf7rlFrOcuUg1oERKRETkFDJyCsjNdxAY5lPq9YH+Puw74iAjp6CSIxOpRIYBy5aZ65+WLTvW3q4dPPggdOumAhJS7SiREhEROYWQAF9sflay8wqxB5T8t5mdV4jNz0pIKdeJeL28PHj/fTOB2rTJbLNa4cYbzQISl1zi3vhE3Ejv+iIiIqcQHxlMwyg7m5LSaWizF5veZxgGKenZtIgLJz4y2I1RilSww4fhtdfg5ZfNzXQBgoPhrrvMAhLx8W4MTsQzKJESERE5BavVQt9WcSQfynaulQr0N6v2paRnExHsT59WsSo0IVXDrl1m8vT665CZabbFxMDw4TBkCNSo4d74RDyIEikREZHTaBYbxvCOjZz7SO07Yu4j1SIunD6tYlX6XLzfxo1mAYkFC6Cw0Gw7/3yzgET//mCzuTc+EQ+kREpERKQMmsWG0TQmlMS0LDJyCggJ8CU+MlgjUeK9DAOWLDHXP61ceay9Y0czgbrmGrDo9S1yMkqkREREyshqtajEuXi/3FyYP99MoLZsMdt8fKBfP7OAxIUXujc+ES+hREpERESkOjh0CGbNMjfR3bvXbAsJgXvuMddA1avn3vhEvIwSKREREZGqbOdOmDIF3nwTsrLMtthYGDHCTKLCtMZP5EwokRIRERGpitatM6fvffQROBxmW4sW5vqnm28Gf3/3xifi5ZRIiYiIiFQVDgd88YWZQH377bH2Ll3MBKpTJxWQEKkgSqREREREvF1ODrzzjlnCfOtWs83XFwYMMAtItGjh3vhEqiAlUiIiIiLeKi0NZsyA6dMhNdVsCw2Fe++FYcMgLs698YlUYVZ33vm3335Lz549qVOnDhaLhY8//rjY9YMGDcJisRT7adOmTbFjcnNzGTZsGDVr1iQ4OJjrrruOpKSkSnwUIiIiIpXsn3/ggQegbl148kkziapbFyZNgt274fnnlUSJuJhbE6msrCwuuOACpk+fftJjunbtSkpKivPnyy+/LHb9yJEjWbx4Me+//z7ff/89mZmZ9OjRg8KiXblFREREqooff4QbboBGjeCVVyA729z3af58M7kaNcockRIRl3Pr1L5u3brRrVu3Ux5js9mIjo4u9br09HTefPNN3nnnHTp16gTAvHnzqFu3LsuXL+eaa66p8JhFREREKlVhIZZPPjFLmP/ww7H2bt3MAhIdOqiAhIgbePwaqW+++YaoqCjCw8Np164dzzzzDFFRUQBs2LCB/Px8unTp4jy+Tp06NGvWjDVr1pw0kcrNzSU3N9d5+ciRIwDk5+eTn59fIXEXnaeiziclqY9dS/3reupj11Mfu5762IWyszHmzKHj88/ju2cPAIafH8aAARSOGAHNmpnHFRS4MUjvp9ew63lbH5c1TothGIaLYykTi8XC4sWL6d27t7NtwYIF2O126tevz86dO/nPf/5DQUEBGzZswGazMX/+fAYPHlwsKQLo0qULCQkJvPrqq6Xe1/jx45kwYUKJ9vnz5xMUFFShj0tERESkPPzT00n48ksSvvoK2/++7M0LDiaxa1d2dO9ObkSEmyMUqdqOHj3KgAEDSE9PJ/QUU2U9ekTq5ptvdv7erFkzLr74YurXr88XX3xBnz59Tno7wzCwnGKI+9FHH2X06NHOy0eOHKFu3bp06dLllJ1VHvn5+SxbtozOnTvj5+dXIeeU4tTHrqX+dT31seupj11PfVyB/v4b69SpWN9+G0tODgCO+vX5o3NnGjzzDAk1apDg5hCrIr2GXc/b+rhottrpeHQidaKYmBjq16/Ptm3bAIiOjiYvL49Dhw5Ro0YN53Gpqam0bdv2pOex2WzYbLYS7X5+fhX+5LrinFKc+ti11L+upz52PfWx66mPz5BhwJo15ga6n3xiXga4+GJ48EEKe/Zkx9df06RGDfWvi+k17Hre0sdljdGtVfvKKy0tjd27dxMTEwPARRddhJ+fH8uWLXMek5KSwubNm0+ZSImIiIi4VWEhLFwIbdvCFVfAxx+bSVTPnrB6Nfz8M9x0k7mproh4JLf+dWZmZrJ9+3bn5Z07d/Lrr78SERFBREQE48ePp2/fvsTExJCYmMhjjz1GzZo1uf766wEICwvjzjvvZMyYMURGRhIREcHYsWNp3ry5s4qfiIiIiMfIyoI5c8z9nnbsMNtsNrj9drN0+XnnuTU8ESk7tyZS69evp0OHDs7LReuWBg4cyMyZM9m0aRNvv/02hw8fJiYmhg4dOrBgwQJCQkKct5k8eTK+vr7cdNNNZGdn07FjR+bMmYOPj0+lPx4RERGRUu3bB9Onw4wZcPCg2RYRAUOHmhvr1q7t3vhEpNzcmki1b9+eUxUNXLp06WnPERAQwLRp05g2bVpFhiYiIiJy9v780xx9eucdKKoyfM45MHo0DBoEwcFuDU9Ezpwm3oqIiIhUJMOAb781C0h8/vmx9tat4cEHoXdv0MwZEa+nREpERESkIhQUmAUkJk6E9evNNosFevWCsWPNwhKn2J5FRLyLEikRERGRs5GZCW+9BZMnQ2Ki2RYQYE7dGzUKzj3XndGJiIsokRIRERE5EykpMG0azJwJhw+bbTVrmsUjhg6FWrXcGp6IuJYSKREREZHy+OMPeOklmDcP8vPNtkaNzAISAwdCYKB74xORSqFESkREROR0DANWrTLXP3311bH2yy831z/17KkCEiLVjBIpERERkZPJz4cPPzQTqF9+MdssFujTB8aMgcsuc298IuI2SqRERERETpSRAa+/DlOmwO7dZltgINxxh1lAokEDt4YnIu6nREpERESkSHIyTJ0Kr74K6elmW1QUDBsG990HkZHujU9EPIYSKREREZHffzcLSMyfb+4HBdC4sbn+6dZbzXLmIiLHUSIlIiIi1ZNhwPLl5vqnr78+1n7VVWYC1b07WK3ui09EPJoSKREREale8vJgwQIzgfr9d7PNaoUbbjALSFx6qXvjExGvoERKREREqof0dHjtNXj5ZXMtFEBwMNx5J4wcCQkJbg1PRLyLEikRERGp2v7910yeXn/drMYHEB0Nw4fDkCEQEeHe+ETEKymREhERkarpl1/M6XsLFkBhodnWtKm5/mnAALDZ3BufiHg1JVIiIiJSdRgGLFliJlArVx5rv/pqM4Hq2tXcUFdE5CwpkRIRERHvl5sL771nJlB//GG2+fjAzTebBSRatXJvfCJS5SiREhEREe916JC5ee7UqZCSYrbZ7XDPPTBiBNSr5974RKTKUiIlIiIi3icxEaZMgTfegKwss61OHTN5uuceCA93Y3AiUh0okRIRERHvsX69OX3vww/B4TDbmjc31z/16wf+/u6NT0SqDSVSIiIi4tkcDvjySzOBWr36WHvnzmYC1bmzCkiISKVTIiUiIiKeKScH5s2Dl16Cv/4y23x9oX9/s4DEBRe4Nz4RqdaUSImIiIhnSUuDWbNg2jTYt89sCw01N88dPhzi4twbn4gIZ5FI/fPPP8yePZt//vmHl19+maioKJYsWULdunU5//zzKzJGERHxYg6HQWJaFhk5BYQE+BIfGYzVqmlYUop//jELSLz1Fhw9arbVrQsjR8Jdd5nJlIiIhzijRGr16tV069aNyy+/nG+//ZZnnnmGqKgofv/9d9544w0++uijio5TRES80ObkdBZuTGJ7aia5+Q5sflYaRtnp2yqOZrFh7g5PPMVPP5nrnxYtOlZAomVLc/3TTTeBn59bwxMRKY31TG70yCOP8PTTT7Ns2TL8j6uO06FDB9auXVthwYmIiPfanJzO1BXb2JSUTnigP/E1gwkP9GdTktm+OTnd3SGKOzkc8MkncOWV0KYNfPSR2da1KyxfDhs3wi23KIkSEY91RiNSmzZtYv78+SXaa9WqRVpa2lkHJSIi3s3hMFi4MYmDWXk0jLJj+V9FNXuALw1tdranZrJoYzJNY0I1zc/DVfjUzOxsePttmDQJ/v7bbPPzM5OmMWOgWbOKCVxExMXOKJEKDw8nJSWFhISEYu2//PILsbGxFRKYiIh4r8S0LLanZhITFuhMoopYLBZiwgLZlppBYloW59SyuylKOZ0KnZq5fz/MmAHTp8OBA2ZbWBjcdx8MG2Zupisi4kXOKJEaMGAADz/8MB9++CEWiwWHw8EPP/zA2LFjuf322ys6RhER8TIZOQXk5jsIDPMp9fpAfx/2HXGQkVNQyZFJWRVNzTyYlUdMWCCBYT5k5xWyKSmd5EPZDO/YqGzJ1LZtMHkyzJ5tljMHqF8fRo2CO+6AkBDXPhARERc5ozVSzzzzDPXq1SM2NpbMzEyaNm3KVVddRdu2bXniiScqOkYREfEyIQG+2PysZOcVlnp9dl4hNj8rIQHahcMTnTg10x7gi4/VYk7NjLJzMCuPRRuTcTiMk59kzRro0wcaN4aZM80k6qKL4P33Yft2GDFCSZSIeLUz+g/m5+fHu+++y3//+19++eUXHA4HF154IY0aNaro+ERExAvFRwbTMMrOpqR0Gtrsxab3GYZBSno2LeLCiY8MdmOUruXNZd/LMzWzbrjt2JWFhWYBiYkT4fjiUz16mBX4rroKLN7RByIip3NWXwU2aNCABg0aVFQsIiJSRVitFvq2iiP5ULbzA3mgvzk1LCU9m4hgf/q0ivWaxKK8vL3se/mmZtrwyc3FOmsWvPyyuRcUgL8/3H47jB4N551XecGLiFSSM0qkRo8eXWq7xWIhICCAhg0b0qtXLyIiIs4qOBER8V7NYsMY3rGRM6HYd8RMKFrEhdOnVaxXJBRnosLWFrnR8VMz7aVMvyyamhl+5CDWWS/Sedo0fDIyzCtr1IChQ+GBByA6upIjFxGpPGeUSP3yyy9s3LiRwsJCGjdujGEYbNu2DR8fH5o0acKMGTMYM2YM33//PU2bNq3omEVExEs0iw2jaUyo105xK6+qUvb9dFMzLVv/YuSPi6h3/2dYcnPxAYyEBCyjR8PgwRBcdadsiogUOaNEqmi0afbs2YSGhgJw5MgR7rzzTq644gruvvtuBgwYwKhRo1i6dGmFBiwiIt7FarVUmxLnVaXse6lTM/2s1Pl9HZd/ModLNv3gPNZxySWs79CBCydMwC8gwI1Ri4hUrjNKpF588UWWLVvmTKIAQkNDGT9+PF26dGHEiBE8+eSTdOnSpcICFRER8XRVqex70dTMResSqbHkc7oteZeGu/4EwLBYsFx3HYwdS+Gll5Ly1Vdc6FP6YxYRqarOKJFKT08nNTW1xLS9/fv3c+TIEcDctDcvL+/sIxQREfESZV1b5BVl3zMzabZwLudPnowlMREAh82GZeBAcwpf48bmcfn57otRRMSNznhq3x133MFLL73EJZdcgsVi4eeff2bs2LH07t0bgJ9//plzzz23ImMVERHxaFWi7HtKCkyfbu79dOgQFoDISLj/fqz33w9RUe6OUETEI5xRIvXqq68yatQo+vXrR0GBOT3B19eXgQMHMnnyZACaNGnCG2+8UXGRioiIeDivLvu+ZQu89BLMmwdFM0oaNjTLlw8cCEFB7o1PRMTDnFEiZbfbef3115k8eTI7duzAMAwaNGiA3X5s4WzLli0rKkYRERGv4VVl3w0DvvnG3ED3yy+Ptbdta26ge911oLVPIiKlOqtJ2na7nRYtWlRULCIiIlWCx5d9z8+Hjz4yE6iNG802iwWuvx7GjDETKREROaUzTqTWrVvHhx9+yL///luiqMSiRYvOOjARERFv5pFl3zMy4I03YMoU+Pdfsy0w0Nz7adQocyqfiIiUifVMbvT+++9z+eWXs2XLFhYvXkx+fj5btmxh5cqVhIV50JQFERERgeRkeOQRqFvXXPP0779Qqxb897/m76+8oiRKRNzG4TDYsT+T33YfZsf+TBwOw90hlckZjUg9++yzTJ48mfvvv5+QkBBefvllEhISGDJkCDExMRUdo4iIiJyJTZvMAhLz5x8rU964sTl979ZbzdEoERE32pyc7lxTmptvriltGGWnb6s4z1pTWoozGpH6559/6N69OwA2m42srCwsFgujRo3itddeq9AARUREpBwMA5Yvh65doUULmDvXTKKuugo+/dSsznf33UqiRMTtNienM3XFNjYlpRMe6E98zWDCA/3ZlGS2b05Od3eIp3RGiVRERAQZGRkAxMbGsnnzZgAOHz7M0aNHKy46ERERKZv8fLN0+YUXQufOsHQpWK1w003w00+wejX07Gm2iYi4mcNhsHBjEgez8mgYZcce4IuP1YI9wJeGUXYOZuWxaGOyR0/zO6OpfVdeeSXLli2jefPm3HTTTYwYMYKVK1eybNkyOnbsWNExioiIyMmkp8Prr8PLL0NSktkWFAR33gkjR8I557g1PBGR0iSmZTn32zt+83IAi8VCTFgg21IzSEzL8rzCPf9zRonU9OnTycnJAeDRRx/Fz8+P77//nj59+vCf//ynQgMUERGRUuzebSZPr71mVuMDqF0bhg+He++FiAj3xicicgoZOQXk5jsIDCt9r7pAfx/2HXGQkVNQyZGV3RklUhHHvTlbrVYeeughHnrooQoLSkRERE7il1/MAhILFkDB/z5gnHeeuYHuLbeAzebe+EREyiAkwBebn5XsvELsASVTkuy8Qmx+VkJKuc5TnNFE6Y0bN7Jp0ybn5U8++YTevXvz2GOPldhTSkRERM6SYcCSJdCpE7RqBe++ayZRHTrAF1/A5s1wxx1KokTEa8RHBtMwyk5KejaGUXwdlGEYpKRn0ygqhPjIYDdFeHpnlEgNGTKEv//+G4AdO3Zw8803ExQUxIcffqiRKREvV7SXQ1GlHE9e5ClS5eXlmVX3WrSAbt1gxQrw8YH+/WH9eli5Eq69VgUkRMTrWK0W+raKIyLYn+2pmWTmFFDoMMjMKWB7aiYRwf70aRWL1Wo5/cnc5IzGyv7++29atmwJwIcffki7du2YP38+P/zwA/369WPKlCkVGKKIVJbj93IoLCjg5mh4YelWrr+onsfv5SBSpRw+DK++ClOnwp49ZltwsFm2fORIqF/fndGJiFSIZrFhDO/YyPnZY98Rcx+pFnHh9GkV6/GfPc4okTIMA4fDAcDy5cvp0aMHAHXr1uXAgQMVF52IVJqivRwOZuURExaI3d8GHGDLnnR2H97G8I6NPP4NTcTrJSaaBSTeeAMyM822mBgYMQLuuQdq1HBreCIiFa1ZbBhNY0JJTMsiI6eAkABf4iODPXokqsgZJVIXX3wxTz/9NJ06dWL16tXMnDkTgJ07d1K7du0KDVBEXO/EvRwsFgs+mF+WnFPLztbUoyzamEzTmFCveGMT8TobNsDEifDhh1BYaLY1a2YWkOjfH/z93RufiIgLWa0Wjy1xfipnlEhNnjyZW265hY8//pjHH3+chg0bAvDRRx/Rtm3bCg1QRFyvKuzlIOJ1HA746iszgfrmm2PtnTqZCVSXLmDRFxciIp7qjBKpCy64gM2bN5dof/HFF/HxKb0WvIh4rqqwl4OI18jNhXnzzBLmf/5ptvn6Qr9+MGYM/G8NsoiIeLZylfmxWq34+PiU+KlRowZt2rThyy+/xM/Pz1WxioiLHL+XQ2m8YS8HEY938CA8+6xZKOKuu8wkKiTEHH3asQPeeUdJlIiIFynXp6LFixeX2n748GF+/vlnbr31VubOncuNN95YIcGJSOUo2sthU1I6DW32YtP7ivZyaBEX7tF7OYh4rB07YMoUePNNOHrUbIuLM6vv3XUXhKmIi4iINypXItWrV6+TXjdw4ECaNm3KxIkTlUiJeJmivRySD2U710rZ/S3gAzv2ZxIRHODxezmIeJyffzbXPy1caK6HArjgAnjwQbjpJtAMDhERr1ahO/h16dLFuVGviHiXor0cmseFcTg7j11pWQCcXydMpc9FysrhgE8/hauugtatzSp8Dgd07QrLl8Mvv8AttyiJEhGpAip0wUN2djYBAQEVeUoRqUTH7+WQnpXDv78d4MFrGmOzqfSyyCllZ5trnF56CYq+UPTzgwEDzAISzZu7Nz4REalwFZpIvf7661x44YUVeUoRqWRFeznkh9v49zc0na+KczgMr9wE0WMcOAAzZsD06bB/v9kWFgb33gvDhkFsrHvjExERlylXIjV69OhS29PT01m/fj3//PMP3333XYUEJiIirrU5OZ2FG5PYnppJbr4Dm5+VhlF2+raK01TO09m2DSZPhjlzzNEogHr1YNQouPNOsxqfiIhUaeVKpH755ZdS20NDQ+natStDhw6lfv36FRKYiIi4zubkdKau2MbBrDxiwgIJDPMhO6+QTUnpJB/K1rq4k1mzxiwg8fHHYBhmW6tWZgGJG24w94MSEZFqoVzv+KtWrXJVHCIiUkkcDoOFG5M4mJVHw6hj5e7tAb40tNnZnprJoo3JNI0J1TQ/gMJCs4DEiy/C2rXH2rt3N/eAatcOLOonEZHqRl+diYhUM4lpWc4y95YTEgCLxUJMWCDbUjNITMvinFp2N0XpAY4ehblzYdIk2L7dbPP3h1tvNQtING3q3vhERMStlEiJiFQzGTkF5OY7CAzzKfX6QH8f9h1xkJFTUMmReYjUVHjlFfMnLc1sq1ED7rsPHngAYmLcG5+IiHgEJVIiItVMSIAvNj8r2XmF2ANK/hvIzivE5mclpJTrqrStW83Rp7lzITfXbEtIMAtIDB4M9mo8OiciIiVUs/+SIiISHxlMwyg7m5LSaWizF5veZxgGKenZtIgLJz4y2I1RVhLDgO+/NwtIfPrpsfZLLjELSFx/vQpIiIhIqfTfQUSkmjh+z6g2CZEkHTzqXCsV6G9W7UtJzyYi2J8+rWKrdqGJggJYvNhMoH7++Vj7ddeZBSSuuEIFJERE5JSUSImIVAOl7RlVI8ifQH8fDh3NY98Rs61FXDh9WsVW3dLnWVnw1lvmHlA7d5ptNhsMHGhO4WvSxL3xiYiI11AiJSJSxZ1sz6g9h7OpEezPra3rER0WSEiAL/GRwVVzJGrvXnj1VZgxAw4dMtsiI+H++82fqCj3xiciIl5HiZSISBVWlj2jftp5iCe6R1fNBGrLFlpOn47vt99CXp7Z1qABjB4NgwZBUJBbwxMREe+lREpEpAqrlntGGQasXg0TJ+L3xRfUL2q/7DJz/VOvXuBTeul3ERGRslIiJSJShVWrPaMKCuCjj8wCEhs2AGBYLKS0bk3U88/je9VVbg5QRESqEiVSIiJVWLXYMyojA958E6ZMgV27zLaAABg8mIIHHmDdtm1ce9llbg1RRESqHqs77/zbb7+lZ8+e1KlTB4vFwscff1zsesMwGD9+PHXq1CEwMJD27dvzxx9/FDsmNzeXYcOGUbNmTYKDg7nuuutISkqqxEchIuK5ivaMSknPxjCMYtcV7RnVKCrEO/eM2rMHHnkE6tY1K+7t2gW1asGECfDvv2ZhiUaN3B2liIhUUW5NpLKysrjggguYPn16qde/8MILTJo0ienTp7Nu3Tqio6Pp3LkzGRkZzmNGjhzJ4sWLef/99/n+++/JzMykR48eFBYWVtbDEBHxWFarhb6t4ogI9md7aiaZOQUUOgwycwrYnprpnXtGbdpkFoqIj4fnn4f0dDj3XLMq365d8OSTZkIlIiLiQm6dy9GtWze6detW6nWGYTBlyhQef/xx+vTpA8DcuXOpXbs28+fPZ8iQIaSnp/Pmm2/yzjvv0KlTJwDmzZtH3bp1Wb58Oddcc02lPRYREU/VLDaM4R0bOfeR8so9owwDVq6EF1+EpUuPtV95pVlAokcPsLr1u0EREalmPHZS/M6dO9m7dy9dunRxttlsNtq1a8eaNWsYMmQIGzZsID8/v9gxderUoVmzZqxZs+akiVRubi65ubnOy0eOHAEgPz+f/Pz8Com/6DwVdT4pSX3sWupf16vMPm4cFcQjXRrx78GjZOYWYLf5Ui8iCKvV4tnPcX4+lg8/xGfyZCy//QaAYbVi9O6NY/RojEsvNY8rLDR/Stxcr2NXUx+7lvrX9dTHrudtfVzWOD02kdq7dy8AtWvXLtZeu3Ztdv1vMfHevXvx9/enRo0aJY4pun1pnnvuOSZMmFCi/euvvyaogvcUWbZsWYWeT0pSH7uW+tf13NXHW9xyr2Xje/Qo9b/+mgaffUZgWhoABTYb/3bsyD89e3I0JgYOHIAvvyzT+fQ6dj31sWupf11Pfex63tLHR48eLdNxHptIFTlx3xPDMEq0neh0xzz66KOMHj3aefnIkSPUrVuXLl26EBoaenYB/09+fj7Lli2jc+fO+Pn5Vcg5pTj1sWupf11PfVyK3buxvvIK1jfewPK/2QJG7do4hg7FuOce6kZGUrccp1Mfu5762LXUv66nPnY9b+vjotlqp+OxiVR0dDRgjjrFxMQ421NTU52jVNHR0eTl5XHo0KFio1Kpqam0bdv2pOe22WzYbLYS7X5+fhX+5LrinFKc+ti11L+upz4Gfv0VXnoJ3n/f3A8KoEkTGDsWyy234BMQwNlsoas+dj31sWupf11Pfex63tLHZY3RY1fmJiQkEB0dXWwIMC8vj9WrVzuTpIsuugg/P79ix6SkpLB58+ZTJlIiIuIBDMMsHNG5M1x4IcybZyZR7dvD55/DH3/AnXeae0KJiIh4GLeOSGVmZrJ9+3bn5Z07d/Lrr78SERFBvXr1GDlyJM8++yyNGjWiUaNGPPvsswQFBTFgwAAAwsLCuPPOOxkzZgyRkZFEREQwduxYmjdv7qziJyIiHiYvD957zxyB2rTJbPPxgRtvhDFj4OKL3RufiIhIGbg1kVq/fj0dOnRwXi5atzRw4EDmzJnDQw89RHZ2NkOHDuXQoUO0bt2ar7/+mpCQEOdtJk+ejK+vLzfddBPZ2dl07NiROXPm4ONzNpNARESkvBwOg8S0LDJyCggJ8CU+Mrj4/lSHD8Nrr8HLL5ub6QIEB8Pdd8OIEea+UCIiIl7CrYlU+/btMQzjpNdbLBbGjx/P+PHjT3pMQEAA06ZNY9q0aS6IUEREymJzcrpzn6rcfHOfqoZRdvq2iqNZwWEzeXr9dcjMNG8QEwPDh8OQIXBC5VURERFv4LHFJkRExDtsTk5n6optHMzKIyYskMAwH7LzCslc8zNZz47BWLccS9EeT+efb26g278/lFL0R0RExFsokRIRkTPmcBgs3JjEwaw8GkbZsRoG5/7yPVd+OocGm9c5jzM6dsQydixccw2cZgsLERERb6BESkREzlhiWhbbUzOpG+TDxSs/5spP36Z20j8AFFp92HhZFz7p2I87HujDObXsbo5WRESk4iiREhGRM3Z07366fTaHHqs/IvTwAQByAoP5uXNf1lx7Cwcjo0k8YBag8ESnLZAhIiJyEkqkRESk/HbuhClTaPrGmzQ7mgVAekQUP/S4lZ879SU32Kyump1TgM3PSkiA5/27OWWBjNgwd4cnIiIezvP+s4mIiOdatw4mToSPPgKHAyuwN6ExC666mdSu1+Hw93ceahgGKenZtIgLJz4y2H0xl+JkBTI2JaWTfCib4R0bKZkSEZFTsro7ABER8XAOB3z2GbRrB5deCh98YLZ16QJff82Bb3/kj6t7svVQLpk5BRQ6DDJzCtiemklEsD99WsV61HS5Ewtk2AN88bFasAf40jDKzsGsPBZtTMbhOPn2HCIiIhqREhGR0uXkwDvvwEsvwdatZpuvLwwYAGPGQIsWADQDhnds5Jwmt++IOU2uRVw4fVrFetzITlGBjJiwQCwnVBC0WCzEhAWyLTWDxLQsFchwA61bExFvoURKRESKO3AAZs6E6dMhNdVsCw2Fe++FYcMgLq7ETZrFhtE0JtQrPgBn5BSQm+8gMMyn1OsD/X3Yd8ThsQUyqjKtWxMRb6JESkRETNu3w+TJMHs2ZGebbXXrwqhRcOedZjJ1ClarxStGcEICfLH5WcnOK8ReShGM7LxCjy2QUZVp3ZqIeButkRIRqe7WroW+feHcc2HGDDOJuvBCmD8f/vnHTKROk0R5k/jIYBpG2UlJz8Ywiq+DKiqQ0SgqxOMKZFRlWrcmIt5IX7eJiFRHhYVmAYkXX4Q1a461X3stjB0L7duDxfOm5VUEq9VC31ZxJB/Kdq6VCvQ3Rz9S0rM9skBGVad1ayLijZRIiYhUJ0ePwttvw6RJsG2b2ebnB7feahaQOP9898ZXSZrFhnlVgYyqTuvWRMQbKZESEakOUlPNaXuvvGIWkwAID4f77jMLSMTEuDU8d/CmAhlVndatiYg30juSiEhV9vff5ujT3LlmOXOA+Hhz3dMdd4C9ek+T8pYCGVVd0bq1TUnpNLTZi03v8+SNnUWkelMiJSJS1RgG/PADTJwIn35qXga4+GJ48EHo08fcD0rEQ2jdmoh4I/0nFRGpKgoLYfFiM4H66adj7T17mgUkrryyyhaQEO+ndWsi4m2USImIeLusLJgzx5zCt2OH2Wazwe23w+jR0KSJW8MTKSutWxMRb6JESkTEW+3bB9Onm0UkDh402yIi4P77zZ/atd0bn8gZ0Lo1EfEWSqRERLzNn3+ao09vvw15eWZbgwbm6NPAgRCsBfkVweEwNDIiIiInpURKRMQbGAZ8+625/unzz4+1t25tFpDo3Rt8St+DR8pvc3K6c61Obr65VqdhlJ2+reK0VkdERAAlUiIinq2gABYuNBOo9evNNosFevUyC0i0basCEhVsc3I6U1ds42BWnlk9LsysHrcpKZ3kQ9kM79hIyZSIiCiREhHxSJmZ8OabMHky7NpltgUEwKBB5h5Q557r1vCqKofDYOHGJA5m5dEw6th+RvYAXxra7GxPzWTRxmSaxoRqmp+ISDWnREpExJPs2QPTpsGsWXD4sNlWsyY88AAMHQq1ark1vKouMS3LuY+R5YSRPovFQkxYINtSM0hMy1JBBBGRak6JlIiIJ9i8GV56Cd59F/LzzbZGjWDMGLOMeWCge+OrJjJyCsjNdxAYVvp6s0B/H/YdcZCRU1DJkYmIiKdRIiUi4i6GQc3ff8dn5kxYuvRY+xVXmOufevYEq9V98VVDIQG+2PysZOcVYg8o+S8yO68Qm5+VkFKuExGR6kX/CUREKlt+Pnz4Ib4vvsjlv/5qtlks0KePmUC1aePW8Kqz+MhgGkbZ2ZSUTkObvdj0PsMwSEnPpkVcOPGRKjEvIlLdKZESEaksR47AG2/AlCmwezcWoMDfH8udd+IzZoy5F1Ql015JxVmtFvq2iiP5ULZzrVSgv1m1LyU9m4hgf/q0iq3WfSQiIiYlUiIirpaUBFOnwquvmskUQFQUhUOH8vU559C5Xz98/PwqPSztlVS6ZrFhDO/YyNk3+46YfdMiLpw+rWKrdd+IiMgxSqRERCpIidGdpO1YJ0+C994z94MCaNLELCBx6604fHzI//JLt8SqvZJOrVlsGE1jQjVaJyIiJ6VESkSkAjhHd/Zl0Pj3H+m14j2sW34+dkC7dub6p2uvPVZAoqg6XyXTXkllY7VaVOJcREROSomUiMhZ2pyczitLt9B09Zf836r3id29HYBCi5WNl3Yk4j+P0qB7BzdHeYz2ShIRETl7SqRERM6C49BhUp54iqc/fofIw/sByA0IZH3HPnx/7QDWWcJp4QjnCYfhMaM72itJRETk7CmREhE5E//+Cy+/DK+9TufMDACOhNdkTfdb+KnLjeTYQwGIySnwuNEd7ZUkIiJy9vRfUkSkPDZuhJdeggULoLAQK7A7JoG11w/i96u6U+jnX+xwTxzd0V5JIiIiZ0+JlIjI6RgGLFkCEyfCypXH2q++mpS77+exzDqEB9mw+3nH6I72ShIRETl7VncHIJ7N4TDYsT+T33YfZsf+TBwOw90hiVSe3FyYPRuaNzer7a1cCT4+MGAAbNgAK1ZQ+6braVg7hJT0bAyj+N9H0ehOo6gQjxvdKdorqXlcGIez80g8kMXh7DxaxIVX+9LnIiIiZeE5X5GKx9FmnVJtHToEs2aZm+ju3Wu22e1wzz0wYgTUq+c81JtHd7RXkoiIyJlTIiWl8rTNOktsdOph3+5LFbFzJ0yZAm++CVlZZltsrJk83X03hIeXerOi0Z2iLx72HTG/eGgRF06fVrFl/lsp7XXu6qSmvHsluSNGERERT6RESkrwtM06TzYydv0F0S6/b6km1q+HF1+Ejz4Ch8Nsa9HC3ED35pvB3//Ut+fsR3e8YQTYG2IUERGpLEqkpARP2qzzVCNj+w5lcY0+u8mZcjjgyy/NAhKrVx9r79zZTKA6dwZL+b4oKO/oTpE/U44w/ZudHjMCXBpPG6UWERFxNyVSUoKnbNZ5upGxXfuPQBgqgOEFPGo6WE4OzJtnljD/6y+zzdcX+veHMWPgggsqPaRPft3jMSPApfG0UWpP51GvdxERcRklUlKCp2zWebqRsdqhgQD8e/AojWJOP/VK3MNjpoOlpcHMmTBtGqSmmm2hoTBkCAwfDnFxlRfLCXYc8IwR4JPxpFFqT+cxr3cREXE5JVJSgqds1lmWkTGAzFzP2ehUivOI6WD//AOTJ8Nbb0F2ttlWty6MHAl33WUmU26Wm++gVqh7R4BPxVNGqT2dR7zeRUSk0mgfKSmhqJxzRLA/21MzycwpoNBhkJlTwPbUzEor53z8yFhpitrtNn0f4IlOnA5mD/DFx2oxp4NF2TmYlceijcmum5r5449www3QqBG88oqZRLVsCe++ayZXo0d7RBIFnPZ17u4Nfcvyt+juGN3N7a93ERGpdEqkpFSesFln0cjYyTY63XfEHF2oFxHk8lik/MozHazCOBzw8cdwxRVw2WWwcCEYBnTrBitWwMaN5ma6fn4Vd58V4JyaJ3+de8KGvqf7W/SEGN3NLa93ERFxq+r79aGclrs36zzdRqdRwf7O48TzVOp0sOxsePtts4DEtm1mm58f3HqrOfLUrNnZ34cL9WpZh92Hd3rshr7evOlwZdH0RxGR6keJlJzSmZZzriin2ui09wW12flLittik1OrlKIl+/fDjBkwfTocOGC2hYfDvffCsGFQp86Zn7sSnRcTWiEb+rpSRW06XFV5SpEeERGpPHpHF493spGxwsICdv7i7ujkZFxatOTvv80CEnPmmOXMAerXh1Gj4I47ICSkYh5EJXL3CHBZeEOM7uIpRXpERKTyKJESr1DayFhh6evexUNU+HQww4A1a8wNdD/5xLwMcNFF8OCD0LevuR+UF3P3CHBZeEOM7qDpjyIi1Y93f+oQEY9WIdPBCgvNAhITJ5qV+Ir06AFjx8JVV4FFH06rMm/Z4LYypz96S5+IiFRlSqRExKXOeDpYVpY5dW/yZLNcOYC/P9x+u1lA4rzzXB67uJ+3bXBbGdMfva1PRESqKiVSIuJy5ZoOtm+fWTxixgw4eNBsi4iAoUPh/vshOtp1gYpH8dYNbl05/dFb+0REpCpSIiUinuGvv2DSJLOMeW6u2XbOOebo06BBEKxF+tXJiRvcFhVvsAf40tBmZ3tqJos2JtM0JrTaTGlTn4iIeBYlUiLiPoYB331nrn/67LNj7ZdeahaQuP568Cl9Xx6p2sqzwW11KX6hPhER8SxKpESk8hUUwKJFZgK1bp3ZZrHAddeZBSQuv1wFJKo5bXBbkvpERMSzKJESkcqTmQlvvWUWkEhMNNsCAmDgQHMPqMaN3RqeeA5tcFuS+kRExLPo3VZEXC8lBaZNg5kz4fBhsy0yEh54wCwiERXl1vDE82iD25LUJyIinkWJlIi4zh9/wEsvwbvvQl6e2dawIYwZY5YxDwpyb3xepjrtHaQNbktSn4iIeBYlUiJSsQwDVq0y1z999dWx9ssvN9c/9eypAhJnoDruHVSZG9x6C/WJiIjnUCIlIhUjPx8++shMoDZuNNssFrPy3tixcNll7o3Pi1W3vYNOHHl7vNt5/HvoaLUYiSuLytj0V0RETk+JlIicnYwMeOMNmDIF/v3XbAsMhMGDzQISDRu6NTxvV932DjrVyNsFdcPdHZ7HcOWmvyIiUjZKpETkzCQnw9Sp8OqrkJ5uttWqBcOGwX33Qc2a7o2viqhOewdVt5E3ERHxbkqkRKR8fv/dLCAxf765HxSYZcvHjIHbbjPLmUuFqS57B1W3kTcREfF+SqRE5PQMA5YvN9c/ff31sfarrjLXP3XvDlar++KrwqrL3kHVaeRNRESqBn3yEZGTshQUYHn3XbjwQujSxUyirFa46Sb46SdYvdqswqckymWK9g5KSc/GMIxi1xXtHdQoKsTr9w5yjrz5n3zkLTff+0feRESk6vDurzBFxDXS07HOmkXnF1/ENy3NbAsKgrvugpEjISHBreFVJ9Vl76DqMvImIiJVh/4jicgxu3fDyy/Da6/hk5FBIGBER2MZPhyGDIGICHdHWC1Vh72DikbeNiWl09BmLza9r2jkrUVcuNePvImISNWhREpE4JdfzAISCxY4C0gYTZrwa6dONHvuOfzsWpPiblV976DqMvImIiJVhxIpkerKMGDpUrOAxIoVx9o7dICxYyno2JF/lyyhmc3mvhilmKq+d1B1GHkTEZGqQ4mUSHWTmwvvvWeOQG3ebLb5+JgFJMaMgYsuMtvy890Xo1RbVX3kTUREqg4lUiLVxaFD5ua5U6dCSorZZrfD3XfDiBFQv7574xP5n6o+8iYiIlWDEimRqi4xEaZMgTfegKwss61OHTN5uuceCA93Y3AiIiIi3kmJlEhVtX69uf7pww/B4TDbmjc3N9Dt1w/8/d0bn4iIiIgXUyIlUpU4HPDVV2YC9c03x9o7dYIHH4TOncGitSbiWg6HoTVOIiJS5VndHcCpjB8/HovFUuwnOjraeb1hGIwfP546deoQGBhI+/bt+eOPP9wYsYib5OTAm29Cs2bQo4eZRPn6wq23mqXNly2DLl2URInLbU5O56kvtjDu0z945os/GffpHzz1xRY2J6e7OzQREZEK5fEjUueffz7Lly93Xvbx8XH+/sILLzBp0iTmzJnDueeey9NPP03nzp3ZunUrISEh7ghXpHKlpcGsWTBtGuzbZ7aFhJib5w4fDnXrujc+qVY2J6czdcU2DmblmftAhZn7QG1KSif5UDbDOzZSCXMREakyPD6R8vX1LTYKVcQwDKZMmcLjjz9Onz59AJg7dy61a9dm/vz5DBkypLJDFak8O3bA5Mnw1ltw9KjZFhcHI0fCXXdBmD6sSuVyOAwWbkziYFYeDaPsWP43+mkP8KWhzc721EwWbUymaUyopvmJiEiV4PGJ1LZt26hTpw42m43WrVvz7LPPcs4557Bz50727t1Lly5dnMfabDbatWvHmjVrTplI5ebmkpub67x85MgRAPLz88mvoL1zis5TUeeTkqpjH1t+/hnrpElYPv4Yy/8KSBgXXEDhqFEYN94Ifn7mgRXQJ9WxfytbVerjxANZJO4/QlyYDV+LARjHrrRAXJiNnfvT+WdfOvE1gystrqrUx55Kfexa6l/XUx+7nrf1cVnjtBiGYZz+MPf46quvOHr0KOeeey779u3j6aef5q+//uKPP/5g69atXH755SQnJ1OnTh3nbe655x527drF0qVLT3re8ePHM2HChBLt8+fPJygoyCWPReSMORxEr1tHw48/JvLPP53N+1q1YnuvXhxo0UJrn0REREQqyNGjRxkwYADp6emEhoae9DiPTqROlJWVRYMGDXjooYdo06YNl19+OXv27CEmJsZ5zN13383u3btZsmTJSc9T2ohU3bp1OXDgwCk7qzzy8/NZtmwZnTt3xq9olEAqVJXv4+xsLO++i8/kyVi2bQPA8PPD6N+fwhEjzFLmLlTl+9cDVKU+TjyQxbNf/UlYgD/2gJKTHTJzCkjPyeOxbudV+ohUVeljT6U+di31r+upj13P2/r4yJEj1KxZ87SJlMdP7TtecHAwzZs3Z9u2bfTu3RuAvXv3FkukUlNTqV279inPY7PZsNlsJdr9/Pwq/Ml1xTmluCrXxwcOwIwZMH067N9vtoWFwX33YRk2DEudOpVabrPK9a8Hqgp93KB2GPG1QtmUlE5Dm59zjRSYa1qT0nNpERdOg9phblkjVRX62NOpj11L/et66mPX85Y+LmuMHl3+/ES5ubn8+eefxMTEkJCQQHR0NMuWLXNen5eXx+rVq2nbtq0boxQ5Q9u2wdChUK8ejBtnJlH16plFJXbvhueeg+OmsYp4EqvVQt9WcUQE+7M9NZPMnAIKHQaZOQVsT80kItifPq1iVWhCRESqDI8ekRo7diw9e/akXr16pKam8vTTT3PkyBEGDhyIxWJh5MiRPPvsszRq1IhGjRrx7LPPEhQUxIABA9wdulRDZ7wJ6Zo15ga6H38MRTNtW7UyN9C94QZzPygRL9AsNozhHRuxcGMS21Mz2XfEgc3PSou4cPq0ilXpcxERqVI8+hNaUlIS/fv358CBA9SqVYs2bdrw448/Ur9+fQAeeughsrOzGTp0KIcOHaJ169Z8/fXX2kOqDM74Q7+UanNyuvPDY26++eGxYZSdvq3iSv/wWFgIn3xiJlBr1x5r794dxo6Fdu1UQEK8UrPYMJrGhOr9RUREqjyPTqTef//9U15vsVgYP34848ePr5yAqohyf+iXUyrXJqRHj8KcOTBpEvzzj9nm7w+33QajR0PTpm57HCIVxWq1cE4tu7vDEBERcSmPTqSk4pXrQ7+cVNGIXnp2PvPW7jr9JqTWbKwzZ5hFJNLSzJPUqGGuiXrgAShl02kRERER8VxKpKoRh8Ng4cak03/ojwnVNJxTOH5E7/DRfHYfOkp4oB817TZqBPs7j7NYLFyQtY8rJr4APy2BopL7CQnm6NPgwRBceWWgRURERKTiKJGqRhLTstiemklMWKAziTIMg4ycAvILHYQE+PH3viMkpmVpWs5JnDiiZ/O1knwom4ycfDYnp9MsNowaQX7E/7mRKz+dS9N13xy78aWXmgUkrr8efHzc9hhERERE5OwpkapGMnIKyM13EBhmfog/mJXHzgOZHMk2yxRbrYABv+0+rESqFKWN6DkMA39fK/6+FnKz84hb/jkD13xE3e2bnbfb0PJKYv77OHV6dFEBCREREZEqQolUNRIS4IvNz0p2XiF5hQ42J6eTW1BIkL8vvlYLOfmFZOQV8NHGJBrVDtFaqROUNqIXEuBLlDWPK7/9nFvWLqbOwRQA8v382di+J++27UvNiy7gie7nKYkSERERqUKUSFUj8ZHBNIyy8/vuw+boVEEhoQF+/0sKDPIKHcSEBpCb79BaqVKcOKIXcmg/l335Hv9Z+gHBWUcAOBQUynedbmJt135sI1CbkIqIiIhUUUqkqhGr1ULfVnH8vTeDbamZ2G3m059f6OBoXgEBvj6cU8uOn4+VbakZWit1gqIRvbAd2+iy9F0u/PZzfAvyAdhXuy7z2/ZhQdOriaodQZi/Hy2iQrQJqYiIiEgVpUSqmmkWG0bfi+LYvj+TQodZaMLHaiEy2EZCzWBqBPtT6DDYd8RBRk5BpcTkFZsDGwbxv//Mf2aN59z13zmbdzW+gG97DWLLRe34+8BRLq9p59Y29QgL9PPMxyEiIiIiFUKJVDXUsm4450aF4Otjwd/Hip+vlRCbr3MNT3ZeITY/KyEBrn95ePzmwAUF8NFHMHEi1g0bOBdwWCz8fMFVrOk1iL3NWpGdV0hKWjaRdhuDL4/3jLhFRERExKWUSFVD8ZHBNIgKZn3iIWLCAjAMMAALZjn0lPRsWsSFEx/p2j2OPHpz4IwMePNNmDwZ/v3XbAsMhMGD2d7vTpYetpnJ34EsbL5W6kcGcUXDmgT5++BwGBqJEhEREanilEhVQ1tSjnAwK5+U9BwS044S4GelRpA/MWGBHM0rqJQCCR67OXByMkybBrNmQXq62VarFjzwAAwdCjVrci7wn/9NR/x192G+336AfUdyeO/n3Sz6JdmzRtRERERExCWUSFUzx48CnV8nlD3p2Rw+aiZVB7PyuKJhTe6+6hyXJwGllRIvYrFYiAkLrNyCF5s2wUsvwfz5kG8WkODcc2HMGLjtNnM06jhWq4WjeYUs2bz32IiavweNqImIiIiISymRqkZKGwWKDQ8kI7eAvPxC9hzJISLYn6YxoS6P5cRS4icK9PdxfcELw4AVK2DiRFi69Fj7lVfC2LHQowfmLsUleeyImoiIiIhUCiVS1Uipo0AWCyEBfhDgh83Pl+37MytlFOj4zYHtpRS1cGnBi/x8WLDATKB++81ss1qhb19zBKp169OewuNG1ERERESkUimRqkY8YhTof4o2B96UlE5Dm71YMuKyghfp6fD66/Dyy5CUZLYFBcGdd8LIkXDOOWU+lSf1pYiIiIhUPiVS1YhbR4FOULQ5cPKhbOfITtEao5T07IoteLF7N0ydCq++albjA6hdG4YPh3vvhYiIcp/Sk/pSRERERCpf6QtApEoqGgVKSc/GMIxi1xWNAjWKCnF52fMizWLDGN6xEc3jwjicnUfigSwOZ+fRIi68Ygo1/PqrWSjinHPMaXwZGXDeefDGG5CYCI89dkZJFHheX4qIiIhI5dLX5dVIpY4ClVGz2DCaxoSSmJZFRk4BIQG+xEcGn3kMhgFff20mTsuXH2tv394sINGt20kLSJSHJ/aliIiIiFQeJVLVTNEo0MKNSWxPzWTfEQc2Pyst4sLp0yrWLeW6rVbL2RdkyMuD994zE6jNm802Hx+48UazgMTFF599oCfwxL4UERERkcqhRKoaqvBRIDfyzczE+uKL8MorsGeP2RgcDHffDSNGQHy8S++/KvWliIiIiJSdEqlqqkJGgdxp1y6skyZxzWuv4ZOTY7bFxJjJ0z33QI0alRaK1/eliIiIiJSbEinxLhs2mNP3PvwQn8JCAIzzz8fy4IPQvz/4+7s5QBERERGpDpRIiedzOGDJEjOBWrXqWPPVV/PTFVdw8eOP46cESkREREQqkcqfi+fKzYW33oLmzaF7dzOJ8vGBW26BjRspXLKE1FatwKL1SCIiIiJSuTQiJZ7n4EGYNcvcRHffPrMtJMRc+zRiBNSta7bl57svRhERERGp1pRIiefYsQOmTIE334SjR8222FgYOdKswhemcuIiIiIi4hmUSIn7/fyzuf5p4UJzPRTABReYG+jedJMKSIiIiIiIx1EiJe7hcMDnn5sJ1HffHWu/5hozgerYUWufRERERMRjKZHycg6H4V2bwWZnwzvvwKRJsHWr2ebnBwMGwOjR0KKFe+MTERERESkDJVJebHNyOgs3JrE9NZPcfAc2PysNo+z0bRVHs1gPW0904ADMnAnTpsH+/WZbWBjcey8MG2auhRIRERER8RJKpLzU5uR0pq7YxsGsPGLCAgkM8yE7r5BNSekkH8pmeMdGnpFMbd8OkyfD7NnmaBRAvXpmAYm77jKr8YmIiIiIeBklUl7I4TBYuDGJg1l5NIyyY/nfWiJ7gC8NbXa2p2ayaGMyTWNC3TfNb+1ac/3T4sVgGGZbq1bm+qcbbjCn84mIiIiIeCklUl4oMS2L7amZxIQFOpOoIhaLhZiwQLalZpCYlsU5teyVF1hhIXz6qZlArVlzrP3aa80Eqn17FZAQERERkSpBiZQXysgpIDffQWCYT6nXB/r7sO+Ig4ycgsoJ6OhRmDvXLCCxfbvZ5u8Pt95qFpA4//zKiUNEREREpJIokfJCIQG+2PysZOcVYg8o+RRm5xVi87MSUsp1FSo1FV55xfxJSzPbatSA++6DBx6AmBjX3r+IiIiIiJsokfJC8ZHBNIyysykpnYY2e7HpfYZhkJKeTYu4cOIjg10TwNat5ujT3LmQm/u/oOLN0afBg8FeidMJpcIVldRPz8pxXhYRERGR4pRIeSGr1ULfVnEkH8p2rpUK9Der9qWkZxMR7E+fVrEVW2jCMOCHH8z1T59+eqyAxCWXmOuf+vQBX72cvN3xJfULCwq4ORpeWLqV6y+q5xlVIEVEREQ8hD75eqlmsWEM79jI+aF33xFzH6kWceH0aRVbcR96CwvNynsTJ8JPPx1r79nTTKCuvFIFJKqIE0vq2/1twAG27Eln9+FtnlNSX0RERMQDKJHyYs1iw2gaE0piWhYZOQWEBPgSHxlcMSNRWVnm3k+TJsHOnWabzQa3325O4WvS5OzvQzxGaSX1fXAAcE4tO1tTj7q/pL6IiIiIB1Ei5eWsVkvFljjfuxemT4cZM+DQIbMtIgLuv9/8qV274u5LPIbHltQXERER8VBKpMS0ZYs5+vTOO5CXZ7Y1aGCOPg0cCMEuKlwhHsHjSuqLiIiIeDglUtWZYcDq1eb6py++ONbepg08+CD06gU+pX+wlqrFY0rqi4iIiHgJfSqqjgoKYOFCM4Favx4Aw2Ih/ZruZD0wgphuHcu1DqaoXHaFr9OSSuP2kvoiIiIiXkaJVHWSkQFvvQWTJ8OuXQA4bAFsuLoXC67oy78Rcdj2Wmn4xRb6toorU4W248tl5+ablQMbRtnLfHvxDKWV1Lf7W8AHduzPJCI4oOJL6ouIiIh4MSVS1cGePTBtGsyaBYcPm201a7Lv9rt4PuFq/vUJJiYskPj/7UW1KSmd5EPZpy13fWK57MCw8t1ePMuJJfXTMgpoEw3n1wmjt/aREhERESlGiVRVtnkzvPQSvPsu5OebbY0awZgxOG69jVkrd/JvUrqz3DWAPcCXhjY721MzT1nuurRy2eW5/aloqqD7HF9SPz0rh39/O8CD1zTGZvN3d2giIiIiHkWJVFVjGLBypbn+acmSY+1XXGFuoNuzJ1itJO7PPKty164ql62pgu5XVFI/P9zGv7+hJFZERESkFEqkqor8fPjgAzOB+vVXs81qhT59YMwYsxLfccpS7npveiF/7c0odWTIFeWyNVVQRERERLyFEilvd+QIvP46TJkCSUlmW1AQ3HEHjBxp7gVVitOVu96bnkNyejZvfb8Tq8VSYmSoostlu3KqoIiIiIhIRVMi5a2SkuDll+G118xkCiAqCoYNg/vug8jIU978VOWuD2bm8nvSYWy+VmJCAwi0+ZYYGWoaE1qh5bJdNVVQRERERMQVrO4OQMrpt9/g9tshIcGcxnfkCDRpYo5K7doFTzxx2iQKjpW7jgj2Z3tqJpk5BRQ6DDKy8/ll92EAWtYNxx7oh4/VYo4MRdk5mJXHoo3JACVvX+hgb3o2v+0+jM3PyvUX1inz6JFzqqD/yacK5uaXb6qg/H97dx8U1XnvAfx79pXlbVERASGAGkwQxCumDdpoRtRGY2NCJ8HUSbRp6jVqKtXctklqJZpGTUfGqNGMbVqt0wy29eWmadIGjWK8ThoFvKJyExJRFFcJKMvytm/nuX9s2WQFdFf2sLvy/cwwI885u+fZ7z7j8JvnOc8hIiIiIqVwRioUCAGUlroKp9LSr9unTHFtIDFrlut+KB/duN311RYZTiGgUUu4J96IwZF6j/NvnBn65utP1jXjsrkDVocMvVqFMK0aeyvrIUmSV/c1+XupIBERERGRkvhXaTCz2YCSElcBVVXlalOpgMcfd20gcd99fb7EN7e7tnQ6UN/cjh3/cwHxRkOP59+4iUTmcCNkIfD5FQsGh+sQbzQgNlKHTrvs0yYRN1tqeDtLBYmIiIiIlMRCKhg1N7vufXrjDdfDdAEgIgJ49llg2TLXsj4/6truGvB9ZkiWBfZV1sPqkJGdHPP1JhFqlU+bRHQtNay/3uG+V8rw7wcEm8wdGByhQ/744dxogoiIiIiCAgupYGI2A6+84rrfqbXV1ZaQAPzkJ8B//icwaJDiXfB1Zsifm0T0tNRQr1VhbFIM8scP59bnRERERBQ0WEgFk7Aw4J13XEXUmDGu+5+efBLQ62/9Wj/xdWbI38+TunGp4Y3PryIiIiIiCgYspIKJXu96HpTRCDz0ECAFpnjwZWZIiU0ivrnUkIiIiIgoGLGQCjZz5wa6BwC8nxniJhFERERENBCxkKJeeTMzxE0iiIiIiGgg4gN5qc+6lgJmJRnR3GHD+cY2NHfYMDYpxqutz4mIiIiIQg1npMgvuEkEEREREQ0kLKTIb7hJBBERERENFFzaR0RERERE5CMWUkRERERERD7i0j5SlCwL3jdFRERERHccFlKkmNP1ZvdDfa1210N9R8VF4vvjk7iTHxERERGFNBZSQS5UZ3RO15ux6WANrrXZXM+WMrqeLVV1yYz66x3cFp2IiIiIQhoLqSAWqjM6siywp+ISrrXZMCouEpLkKvwiwzQYpY/EFw2t2FtRj4yE6JAoComIiIiIbsRCKoh8c/bpirkDf62ox/UQnNE539SGLxpakWA0uIuoLpIkIcFoQE2DBeeb2rhdOhERERGFJBZSQeJ0vRl7yi+hqt6MNpsDTa02AMB/JMcgMsz1NUWGaTBKF4HTphZsL/sSP5l2N0bERvY6qxOoZYGWTgesdhkGo7rH4wadGldbZFg6HYr3hYiIiIhICSykgsDpejNe/ftZnPuqDbIQcDoFWm0OSBJQebEZ4+8ahEEROlxvs+FcYyuutdlQ19SOenMnxiYZe1zqF8hlgVFhGui1KnTYnO4i8Js6bE7otSpE9XCMiIiIiCgU8DlSASbLAtuPnMP/mSxwyjLCdRoYdGpIAIQscL3dhmpTC5paO1FZdx1XWzqhUUnQqiWEa9WoumTG2g+qsa/iEs591QpZFu6NHqoumRFj0CE1NgIxBh2qLrnaT9ebFf1MqUMiMCouEiZzB4QQHseEEDCZO3B3XBRSh0Qo2g8iIiIiIqVwSiDAzjW24sSFa5AkICZcB6tDRkunHQ5ZAAIQELh0vR1ftVphd8pQSxKsdhkqSUKr1YFWqx1XrlrxxdVW3D0sEnfHRaGpzRrQjR5UKgnfH5+E+usd7nulDDrXPV4mcwcGR+iQP344N5ogIiIiopDFGakA+/yqBa2dDkTqNbA6ZFxvs8HucBVMkAABwCmAdpsTKkmCRi1BFgIOIVBtasFXFiui9BpAArRqNY5fuIb/+aIJ4TrNLTd6UFLmcCN+knc3spKMaO6w4XxjG5o7bBibFBPUG2UEkiwLnPuqFf97sdk9u0hEREREwYkzUgH3dbFj6bTDKQvotWrYHDLsDs8/pO0OGUKooFGrIEHA6hAQAHQaFdqsTmjVEhKjw3C+sR0mcwcSY8K6FVP9udFD5nAjMhKiQ/I5WP0tVLe6JyIiIhqoWEgFWPqwSESGadDSYYfVIUOjVsEpC9fSvhvIAGQhw6DVod3mhE4jweYQsDpkqFUStGoVJAkI06pwvd0GS6cD0Qatx3v090YPKpXELc5vgQ8vJiIiIgo9d8zSvq1btyItLQ1hYWHIycnBxx9/HOgueWVEbCQmpAyCUwAOWUAIAZvDCVkW7rkqtQRoVK65KwmA1SFDCAGV5Nq8od3mgNGgQVSYBlF6DWLCtei0y7A5nB7X4kYPwefGhxdHhmmgVkmue9riInGtzYa9FfVc5kdEREQUZO6IQmr37t0oLCzEyy+/jMrKSjzwwAOYOXMm6urqAt21W1KpJCycPBIj4yIgSYDdKcMhA3DdIgUVXEv3umabJEmCzSlDwFV4OYVrKWBq7L83lpAkJBoN0GtUMJk70drpgFMWaO104IuGVm70EGR8eXgxEREREQWPO2JpX3FxMX70ox/h2WefBQBs3LgR//znP7Ft2zasXbu22/lWqxVWq9X9e0tLCwDAbrfDbrf7pU9d7+PN+42OC8fq2fdg5f7TqLvWDpskoFFJ0KlVkP89UwUhEB6mhkoCOuxOSAAcQmCwQYucpGgMjtAAcM1U2e12TBk1GDHhWtQ2taHJ4rrnZtzwKDwyLhGj48L99jkDyZeMg5W5rRNOhwOROj3UkLsdj9RJaLI4YG7rhD1G3699uxPyDXbMWHnMWHnMWFnMV3nMWHmhlrG3/ZTEjQ/6CTE2mw3h4eH4y1/+gscee8zdvmzZMpw8eRJlZWXdXlNUVIRXXnmlW/s777yD8PBwRftLRERERETBq729HT/4wQ9gNpsRHR3d63khPyPV2NgIp9OJYcOGebQPGzYMV65c6fE1L774IpYvX+7+vaWlBcnJyZgxY8ZNw/KF3W5HaWkppk+fDq1We+sX/NvZy2b86r/P4HJzB3QaFdQqFfQaCQISbA4n2qxORBk0yBs9DGOTjTh1yYxzjV/v9DYyNhKPjEvEvQn++RzB7HYzDiayLPD6Pz/D2ctmjBga6bG8TwjXduhjEo34r++O7vflmHdCvsGOGSuPGSuPGSuL+SqPGSsv1DLuWq12KyFfSHW58f4SIUS3ti56vR56ffdlUlqt1u9frq/vmZ0SizX52Vj/wf/hWpsN8UYDYiN16LA5cb6pDQmDNHhmUhqmZwyDSiXhe+PEgN9eXInvrT89lnMXLjbX4LOG9h4eXhyGR3Pugl6vC1j/Qj3fUMCMlceMlceMlcV8lceMlRcqGXvbx5AvpGJjY6FWq7vNPjU0NHSbpQoVY5Ni8OKse93PFbrQ1A69VoVvpQ1B/vjhHlthc3vx0Nf18OKu7/tqi2t2cWxSTLfvm4iIiIiCQ8gXUjqdDjk5OSgtLfW4R6q0tBRz5swJYM/6hg+zHVj4fRMRERGFlpAvpABg+fLleOqppzBhwgTk5uZi+/btqKurw6JFiwLdtT7hbNPAwu+biIiIKHTcEYVUQUEBmpqasHr1aphMJmRmZuL9999HSkpKoLtGRERERER3oDuikAKAxYsXY/HixYHuBhERERERDQCqQHeAiIiIiIgo1LCQIiIiIiIi8hELKSIiIiIiIh+xkCIiIiIiIvIRCykiIiIiIiIfsZAiIiIiIiLyEQspIiIiIiIiH7GQIiIiIiIi8hELKSIiIiIiIh+xkCIiIiIiIvIRCykiIiIiIiIfaQLdgWAghAAAtLS0+O097XY72tvb0dLSAq1W67f3pa8xY2UxX+UxY+UxY+UxY2UxX+UxY+WFWsZdNUFXjdAbFlIALBYLACA5OTnAPSEiIiIiomBgsVhgNBp7PS6JW5VaA4Asy7h8+TKioqIgSZJf3rOlpQXJycm4ePEioqOj/fKe5IkZK4v5Ko8ZK48ZK48ZK4v5Ko8ZKy/UMhZCwGKxIDExESpV73dCcUYKgEqlQlJSkiLvHR0dHRIDJpQxY2UxX+UxY+UxY+UxY2UxX+UxY+WFUsY3m4nqws0miIiIiIiIfMRCioiIiIiIyEcspBSi1+uxatUq6PX6QHfljsWMlcV8lceMlceMlceMlcV8lceMlXenZszNJoiIiIiIiHzEGSkiIiIiIiIfsZAiIiIiIiLyEQspIiIiIiIiH7GQIiIiIiIi8hELKQVs3boVaWlpCAsLQ05ODj7++ONAdylkFRUVQZIkj5/4+Hj3cSEEioqKkJiYCIPBgAcffBBnzpwJYI+D35EjR/C9730PiYmJkCQJ+/fv9zjuTaZWqxXPP/88YmNjERERgUceeQSXLl3qx08RvG6V74IFC7qN6fvvv9/jHOZ7c2vXrsV9992HqKgoxMXF4dFHH8Vnn33mcQ7H8e3zJl+O477Ztm0bxo4d6344aW5uLj744AP3cY7fvrtVxhzD/rV27VpIkoTCwkJ320AYxyyk/Gz37t0oLCzEyy+/jMrKSjzwwAOYOXMm6urqAt21kDVmzBiYTCb3T1VVlfvY66+/juLiYmzZsgXHjx9HfHw8pk+fDovFEsAeB7e2tjZkZ2djy5YtPR73JtPCwkLs27cPJSUlOHr0KFpbWzF79mw4nc7++hhB61b5AsBDDz3kMabff/99j+PM9+bKysqwZMkSfPLJJygtLYXD4cCMGTPQ1tbmPofj+PZ5ky/AcdwXSUlJWLduHU6cOIETJ05g6tSpmDNnjvuPTI7fvrtVxgDHsL8cP34c27dvx9ixYz3aB8Q4FuRX3/rWt8SiRYs82u655x7xi1/8IkA9Cm2rVq0S2dnZPR6TZVnEx8eLdevWuds6OzuF0WgUb731Vj/1MLQBEPv27XP/7k2mzc3NQqvVipKSEvc59fX1QqVSiX/84x/91vdQcGO+Qggxf/58MWfOnF5fw3x919DQIACIsrIyIQTHsb/dmK8QHMdKGDRokPjd737H8augroyF4Bj2F4vFIu6++25RWloqpkyZIpYtWyaEGDj/D3NGyo9sNhvKy8sxY8YMj/YZM2bg2LFjAepV6KupqUFiYiLS0tIwd+5cnDt3DgBQW1uLK1eueOSt1+sxZcoU5n2bvMm0vLwcdrvd45zExERkZmYydy8dPnwYcXFxSE9Px49//GM0NDS4jzFf35nNZgDA4MGDAXAc+9uN+XbhOPYPp9OJkpIStLW1ITc3l+NXATdm3IVjuO+WLFmChx9+GNOmTfNoHyjjWBPoDtxJGhsb4XQ6MWzYMI/2YcOG4cqVKwHqVWj79re/jT/+8Y9IT0/H1atX8eqrr2LixIk4c+aMO9Oe8r5w4UIguhvyvMn0ypUr0Ol0GDRoULdzOM5vbebMmXj88ceRkpKC2tparFy5ElOnTkV5eTn0ej3z9ZEQAsuXL8d3vvMdZGZmAuA49qee8gU4jv2hqqoKubm56OzsRGRkJPbt24eMjAz3H5Acv33XW8YAx7A/lJSUoKKiAsePH+92bKD8P8xCSgGSJHn8LoTo1kbemTlzpvvfWVlZyM3NxciRI7Fz5073TaHM2/9uJ1Pm7p2CggL3vzMzMzFhwgSkpKTg73//O/Lz83t9HfPt2dKlS3Hq1CkcPXq02zGO477rLV+O474bPXo0Tp48iebmZuzZswfz589HWVmZ+zjHb9/1lnFGRgbHcB9dvHgRy5Ytw4cffoiwsLBez7vTxzGX9vlRbGws1Gp1tyq6oaGhW0VOtyciIgJZWVmoqalx797HvP3Hm0zj4+Nhs9lw/fr1Xs8h7yUkJCAlJQU1NTUAmK8vnn/+ebz77rs4dOgQkpKS3O0cx/7RW7494Tj2nU6nw6hRozBhwgSsXbsW2dnZeOONNzh+/ai3jHvCMeyb8vJyNDQ0ICcnBxqNBhqNBmVlZdi0aRM0Go07ozt9HLOQ8iOdToecnByUlpZ6tJeWlmLixIkB6tWdxWq1orq6GgkJCUhLS0N8fLxH3jabDWVlZcz7NnmTaU5ODrRarcc5JpMJp0+fZu63oampCRcvXkRCQgIA5usNIQSWLl2KvXv34qOPPkJaWprHcY7jvrlVvj3hOO47IQSsVivHr4K6Mu4Jx7Bv8vLyUFVVhZMnT7p/JkyYgHnz5uHkyZMYMWLEwBjH/by5xR2vpKREaLVa8fbbb4uzZ8+KwsJCERERIc6fPx/oroWkFStWiMOHD4tz586JTz75RMyePVtERUW581y3bp0wGo1i7969oqqqSjz55JMiISFBtLS0BLjnwctisYjKykpRWVkpAIji4mJRWVkpLly4IITwLtNFixaJpKQkceDAAVFRUSGmTp0qsrOzhcPhCNTHCho3y9disYgVK1aIY8eOidraWnHo0CGRm5srhg8fznx98Nxzzwmj0SgOHz4sTCaT+6e9vd19Dsfx7btVvhzHfffiiy+KI0eOiNraWnHq1Cnx0ksvCZVKJT788EMhBMevP9wsY45hZXxz1z4hBsY4ZiGlgDfffFOkpKQInU4nxo8f77FlLPmmoKBAJCQkCK1WKxITE0V+fr44c+aM+7gsy2LVqlUiPj5e6PV6MXnyZFFVVRXAHge/Q4cOCQDdfubPny+E8C7Tjo4OsXTpUjF48GBhMBjE7NmzRV1dXQA+TfC5Wb7t7e1ixowZYujQoUKr1Yq77rpLzJ8/v1t2zPfmesoXgPjDH/7gPofj+PbdKl+O47575pln3H8nDB06VOTl5bmLKCE4fv3hZhlzDCvjxkJqIIxjSQgh+m/+i4iIiIiIKPTxHikiIiIiIiIfsZAiIiIiIiLyEQspIiIiIiIiH7GQIiIiIiIi8hELKSIiIiIiIh+xkCIiIiIiIvIRCykiIiIiIiIfsZAiIiIiIiLyEQspIiIKaTt27EBMTIxH2/bt25GcnAyVSoWNGzeiqKgI48aNU7wvqamp2Lhxo+LXISKiwGMhRUREiluwYAEkScK6des82vfv3w9Jkrx+n54KlYKCAnz++efu31taWrB06VL8/Oc/R319PRYuXIgXXngBBw8e7NNn+KaeijcAOH78OBYuXOi36xARUfBiIUVERP0iLCwM69evx/Xr1/36vgaDAXFxce7f6+rqYLfb8fDDDyMhIQHh4eGIjIzEkCFD/HrdngwdOhTh4eGKX4eIiAKPhRQREfWLadOmIT4+HmvXru31nD179mDMmDHQ6/VITU3Fhg0b3McefPBBXLhwAT/96U8hSZJ7Juubs0M7duxAVlYWAGDEiBGQJAnnz5/vcWnf73//e/e1EhISsHTpUvex4uJiZGVlISIiAsnJyVi8eDFaW1sBAIcPH8YPf/hDmM1mdz+KiooAdJ8xq6urw5w5cxAZGYno6Gg88cQTuHr1qvt4V7927dqF1NRUGI1GzJ07FxaLxX3OX//6V2RlZcFgMGDIkCGYNm0a2travA+eiIgUwUKKiIj6hVqtxmuvvYbNmzfj0qVL3Y6Xl5fjiSeewNy5c1FVVYWioiKsXLkSO3bsAADs3bsXSUlJWL16NUwmE0wmU7f3KCgowIEDBwAAn376KUwmE5KTk7udt23bNixZsgQLFy5EVVUV3n33XYwaNcp9XKVSYdOmTTh9+jR27tyJjz76CD/72c8AABMnTsTGjRsRHR3t7scLL7zQ7RpCCDz66KO4du0aysrKUFpaii+//BIFBQUe53355ZfYv38/3nvvPbz33nsoKytzL4E0mUx48skn8cwzz6C6uhqHDx9Gfn4+hBBepk5ERErRBLoDREQ0cDz22GMYN24cVq1ahbffftvjWHFxMfLy8rBy5UoAQHp6Os6ePYvf/OY3WLBgAQYPHgy1Wo2oqCjEx8f3+P5dszaAa5ldb+e9+uqrWLFiBZYtW+Zuu++++9z/LiwsdP87LS0Na9aswXPPPYetW7dCp9PBaDRCkqRe3x8ADhw4gFOnTqG2ttZdzO3atQtjxozB8ePH3deTZRk7duxAVFQUAOCpp57CwYMH8etf/xomkwkOhwP5+flISUkBAPeMGxERBRZnpIiIqF+tX78eO3fuxNmzZz3aq6urMWnSJI+2SZMmoaamBk6n02/Xb2howOXLl5GXl9frOYcOHcL06dMxfPhwREVF4emnn0ZTU5NPS+qqq6uRnJzsMSOWkZGBmJgYVFdXu9tSU1PdRRQAJCQkoKGhAQCQnZ2NvLw8ZGVl4fHHH8dvf/tbv99jRkREt4eFFBER9avJkyfju9/9Ll566SWPdiFEtx38lFjCZjAYbnr8woULmDVrFjIzM7Fnzx6Ul5fjzTffBADY7Xavr9PT5+mpXavVehyXJAmyLANwLYcsLS3FBx98gIyMDGzevBmjR49GbW2t1/0gIiJlsJAiIqJ+t27dOvztb3/DsWPH3G0ZGRk4evSox3nHjh1Deno61Go1AECn0/V5dioqKgqpqam9bod+4sQJOBwObNiwAffffz/S09Nx+fJlj3O86UdGRgbq6upw8eJFd9vZs2dhNptx7733et1fSZIwadIkvPLKK6isrIROp8O+ffu8fj0RESmDhRQREfW7rKwszJs3D5s3b3a3rVixAgcPHsSaNWvw+eefY+fOndiyZYvHRg6pqak4cuQI6uvr0djYeNvXLyoqwoYNG7Bp0ybU1NSgoqLC3ZeRI0fC4XBg8+bNOHfuHHbt2oW33nrL4/WpqalobW3FwYMH0djYiPb29m7XmDZtGsaOHYt58+ahoqICn376KZ5++mlMmTIFEyZM8Kqf//rXv/Daa6/hxIkTqKurw969e/HVV1/5VIgREZEyWEgREVFArFmzxmPp3vjx4/HnP/8ZJSUlyMzMxK9+9SusXr0aCxYscJ+zevVqnD9/HiNHjsTQoUNv+9rz58/Hxo0bsXXrVowZMwazZ89GTU0NAGDcuHEoLi7G+vXrkZmZiT/96U/dtmyfOHEiFi1ahIKCAgwdOhSvv/56t2tIkoT9+/dj0KBBmDx5MqZNm4YRI0Zg9+7dXvczOjoaR44cwaxZs5Ceno5f/vKX2LBhA2bOnHnbn52IiPxDEtxDlYiIiIiIyCeckSIiIiIiIvIRCykiIiIiIiIfsZAiIiIiIiLyEQspIiIiIiIiH7GQIiIiIiIi8hELKSIiIiIiIh+xkCIiIiIiIvIRCykiIiIiIiIfsZAiIiIiIiLyEQspIiIiIiIiH7GQIiIiIiIi8tH/A7pWDdAxOD6UAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "\n",
+ "# Scatter plot\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "plt.scatter(data[\"Notifications\"], data[\"Usage\"], alpha=0.6, label='Data')\n",
+ "\n",
+ "# Calculate the best-fit line\n",
+ "slope, intercept = np.polyfit(data[\"Notifications\"], data[\"Usage\"], 1)\n",
+ "x_values = np.array([min(data[\"Notifications\"]), max(data[\"Notifications\"])])\n",
+ "y_values = slope * x_values + intercept\n",
+ "\n",
+ "# Plot the best-fit line\n",
+ "plt.plot(x_values, y_values, color='red', label='Trendline')\n",
+ "\n",
+ "# Plot labels and title\n",
+ "plt.xlabel(\"Notifications\")\n",
+ "plt.ylabel(\"Usage\")\n",
+ "plt.title(\"Relationship Between Number of Notifications and Usage\")\n",
+ "plt.grid(True)\n",
+ "plt.legend()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3f9533c0",
+ "metadata": {},
+ "source": [
+ "there is a linear relationship between the number of notifications and the amount of usage. It means that more notifications result in more use of smartphones."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2d9c7925",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b342616e",
+ "metadata": {},
+ "source": [
+ "# Machine Learning using Linear Regression"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "2a55f8b8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Importing necessary libraries\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.metrics import mean_squared_error"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "38b941c4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# App column is categorical, we convert it to numerical using one-hot encoding\n",
+ "data = pd.get_dummies(data, columns=['App'], drop_first=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "7a700978",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Splitting the data into feature (X) and target-variable (y)\n",
+ "X = data.drop(columns=['Usage', 'Date']) # Features\n",
+ "y = data['Usage'] # Target variable"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "06a62eda",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Splitting dataset into training & testing sets 80:20 ratio\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "bea22e8a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "LinearRegression()"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Model Loading and training\n",
+ "model = LinearRegression()\n",
+ "model.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "b9368f20",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training RMSE: 32.410704975029894\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Model Eval\n",
+ "y_pred_train = model.predict(X_train)\n",
+ "train_rmse = mean_squared_error(y_train, y_pred_train, squared=False)\n",
+ "print(\"Training RMSE:\", train_rmse)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "6f7a734d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Testing RMSE: 35.9699712374762\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_test = model.predict(X_test)\n",
+ "test_rmse = mean_squared_error(y_test, y_pred_test, squared=False)\n",
+ "print(\"Testing RMSE:\", test_rmse)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "246e0541",
+ "metadata": {},
+ "source": [
+ "*Data Exploration:*\n",
+ "\n",
+ "- The dataset contains usage statistics of various smartphone apps, including usage duration, notifications received, and number of times opened.\n",
+ "- EDA revealed the distribution and trends of app usage over time, relationships between different variables, and potential insights into user behavior.\n",
+ "\n",
+ "*Data Preprocessing:*\n",
+ "\n",
+ "- Checked for missing values (none found).\n",
+ "- Utilized one-hot encoding to convert categorical variable App into numerical format.\n",
+ "\n",
+ "*Model Building:*\n",
+ "\n",
+ "- Used linear regression for predicting app usage based on features like notifications and times opened.\n",
+ "- Split the dataset into training and testing sets (80% train, 20% test).\n",
+ "- Trained the model on the training data and evaluated its performance using Root Mean Squared Error (RMSE).\n",
+ "\n",
+ "*Model Evaluation:*\n",
+ "\n",
+ "- Achieved a training RMSE of approximately 32.41 and testing RMSE of around 35.97.\n",
+ "- The RMSE values suggest a reasonably balanced model performance, with consistent performance on both training and testing sets.\n",
+ "\n",
+ "*Conclusion:*\n",
+ "\n",
+ "- Found that linear regression model provides a reasonable baseline for predicting app usage.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "26d2c6e1",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Machine Learning and Data Science/README.md b/Machine Learning and Data Science/README.md
index 6e890d78d..db746138a 100644
--- a/Machine Learning and Data Science/README.md
+++ b/Machine Learning and Data Science/README.md
@@ -22,7 +22,7 @@
| 13. | [Linear Regression from scratch](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Linear%20Regression%20from%20scratch) | 14. | [Medical Data Visualizer](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Medical%20Data%20Visualizer) | 15. | [Medical Insurance Prediction](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Medical%20Insurance%20Prediction) |
| 16. | [Movie Recommendation System](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Movie%20Recommendation%20System) | 17. | [Page View Time Series Visualizer](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Page%20View%20Time%20Series%20Visualizer) | 18. | [Sea Level Predictor](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Sea%20Level%20Predictor) |
| 19. | [Single Neural Network](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Single%20Neural%20Network) | 20. | [Titanic Survival Prediction](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Titanic_Survival_Prediction) | 21. | [Uber Analysis](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Uber%20Analysis) |
-| 22. | [Walmart Analysis](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Walmart%20Analysis) | 23. | [Wine Quality Prediction](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Wine%20Quality%20Prediction) |
+| 22. | [Walmart Analysis](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Walmart%20Analysis) | 23. | [Wine Quality Prediction](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/Wine%20Quality%20Prediction) | 24. | [Screen time analysis](https://github.com/Kushal997-das/Project-Guidance/tree/main/Machine%20Learning%20and%20Data%20Science/Basic/screen-time) |