-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
354 lines (299 loc) · 14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import torch.optim as optim
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
import random
from copy import deepcopy
import yaml
import os
import psutil
from torch.utils.data import DataLoader, TensorDataset
import attack
import aggregation
import utils
import time
import models
def get_params(net):
model_dict = deepcopy(net.state_dict())
param_1 = [model_dict[key] for key in model_dict.keys() if "num_batches_tracked" not in key]
return param_1
def create_masknet(param_list, net_type, ctx):
nworker = len(param_list)
if net_type == "cnn":
masknet = models.CNNMaskNet(param_list, nworker, ctx)
elif net_type == "resnet20":
masknet = models.ResMaskNet(param_list, nworker, ctx)
elif net_type == "LR":
masknet = models.LRMaskNet(param_list, nworker, ctx)
else:
masknet = None
return masknet
def train(net, local_net, data, label, ctx, args):
train_data = DataLoader(TensorDataset(data,label),args.batch_size,shuffle=True,drop_last=False)
model_dict = net.state_dict()
local_net.load_state_dict(model_dict)
optimizer = optim.SGD(local_net.parameters(), lr=args.local_lr)
param_1 = get_params(local_net)
for i in range(args.local_iter):
for j, item in enumerate(train_data):
x, y = item
optimizer.zero_grad()
output = local_net(x)
loss = F.nll_loss(output, y)
loss.backward(retain_graph=True)
utils.clip_gradient(optimizer=optimizer, grad_clip=1e-2)
optimizer.step()
param_2 = get_params(local_net)
res = [(param_1[i]-param_2[i]) for i in range(len(param_2))]
return res
def evaluate_accuracy(data_iterator, net, ctx, args):
correct = 0
with torch.no_grad():
net.eval()
for data, target in data_iterator:
data, target = data.to(ctx), target.to(ctx)
output = net(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
correct = 1. * correct / len(data_iterator.dataset)
net.train()
return correct
def main(args):
s = psutil.Process(os.getpid())
info = ''
for i in s.cmdline():
info += i + ' '
# Data Parallelism
if args.MULTIGPU is False:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device == torch.device('cpu'):
raise EnvironmentError('No GPUs, cannot initialize multigpu training.')
print(device)
# device to use
ctx = device
# model architecture
net = utils.get_net(args.net).to(ctx)
local_net = utils.get_net(args.net).to(ctx)
masknet = None
batch_size = args.batch_size
num_classes = 0
if args.dataset == "FashionMNIST" or args.dataset == "CIFAR-10":
num_classes = 10
elif args.dataset == "HAR":
num_classes = 6
byz = utils.get_byz(args.byz_type)
num_workers = args.nworkers
nbyz = args.nbyz
lr = args.global_lr
niter = args.niter
log_file = utils.get_log(args)
fo = open(log_file, 'a')
fo.write(info)
fo.close
grad_list = []
test_acc_list = []
# load the data
# fix the seeds for loading data
seed = args.nrepeats
if seed > 0:
torch.random.seed(seed)
random.seed(seed)
np.random.seed(seed)
# assign data to the server and clients
if args.dataset == 'HAR':
each_worker_data, each_worker_label, server_data, server_label, test_data = utils.HAR_dataloader()
else:
train_data, test_data = utils.load_data(args.dataset)
server_data, server_label, each_worker_data, each_worker_label = utils.assign_data(
train_data, args.bias, ctx, num_labels=num_classes, num_workers=num_workers,
server_pc=args.server_pc, p=args.p, dataset=args.dataset, seed=seed)
# count_num(each_worker_label)
mal_clients = [c for c in range(nbyz)]
if args.byz_type == "label_flipped":
labels = [label for label in range(10)]
if args.dataset == "HAR":
labels = [label for label in range(6)]
utils.count_num(each_worker_label[:nbyz])
each_worker_label = attack.LF_attack(each_worker_label, attack.set_lfa_labels(labels, type=1),mal_clients, ctx)
print("---------------")
utils.count_num(each_worker_label[:nbyz])
elif args.byz_type == 'scaling':
for id in mal_clients:
length = len(each_worker_data[id])
change_list = random.sample(range(length), int(length * 0.5))
for idx in change_list:
each_worker_data[id][idx][:, :5, :5] = 1
each_worker_label[id][idx] = 0
bd_test_dataloader = deepcopy(test_data)
elif args.byz_type == "lie_backdoor":
bd_train_data = []
bd_train_label = []
bd_test_data = []
bd_test_label = []
for id in mal_clients:
length = len(each_worker_data[id])
bd_data = []
bd_label = []
for idx in range(length):
img = deepcopy(each_worker_data[id][idx])
label = deepcopy(each_worker_label[id][idx])
if args.dataset == "FashionMNIST":
img[:, :5, :5] = 2.8
img = img.reshape(1,1,28,28)
label *= 0
elif args.dataset == "CIFAR-10":
img[:, :5, :5] = 1
img = img.reshape(1,3,32,32)
label *= 0
label = label.reshape(1)
bd_data.append(img)
bd_label.append(label)
bd_data = torch.cat(bd_data, dim=0)
bd_label = torch.cat(bd_label, dim=0)
bd_train_data.append(bd_data)
bd_train_label.append(bd_label)
bd_test_data = bd_data if bd_test_data == [] else torch.cat([bd_test_data, bd_data], dim=0)
bd_test_label = bd_label if bd_test_label == [] else torch.cat([bd_test_label, bd_label], dim=0)
bd_test_dataloader = DataLoader(TensorDataset(bd_test_data.to(ctx), bd_test_label.to(ctx)), 100,shuffle=False,drop_last=False)
# training
for e in range(niter):
grad_list = []
data_list = get_params(net)
for client_id in range(num_workers):
grad_list.append(train(net, local_net, each_worker_data[client_id].to(ctx), each_worker_label[client_id].to(ctx), ctx, args))
if args.byz_type == 'scaling': # how to backdoor (Scaling)
grad_list = [[item * (num_workers / nbyz) for item in grad] for grad in grad_list[:nbyz]]+ grad_list[nbyz:]
elif args.byz_type == 'lie_backdoor': # A little is enough
mal_grad_list = []
for mal_id in mal_clients:
mal_grad = attack.lie_backdoor(grad_list[nbyz:], net, local_net, bd_train_data[mal_id].to(ctx), bd_train_label[mal_id].to(ctx), ctx, args, args.bd_type, 0.8)
grad_list[mal_id] = mal_grad
if args.aggregation == "fltrust":
server_data = server_data
server_label = server_label
grad_list.append(train(net, local_net, server_data.to(ctx), server_label.to(ctx), ctx, args))
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.fltrust(grad_list, net, ctx, args)
t2 = time.time()
elif args.aggregation == "fedavg":
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.fedavg(grad_list, net, args)
t2 = time.time()
elif args.aggregation == 'flame':
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.flame(grad_list, net, args.global_lr, ctx, args, epsilon=3000, delta=0.01)
t2 = time.time()
elif args.aggregation == "trim":
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.trim(grad_list, net, args)
t2 = time.time()
elif args.aggregation == "krum":
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.krum(grad_list, net, args)
t2 = time.time()
elif args.aggregation == "mkrum":
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.multikrum(grad_list, net, args)
t2 = time.time()
elif args.aggregation == "bulyan":
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.bulyan(grad_list, net, args)
t2 = time.time()
elif args.aggregation == "tolpegin":
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.Tolpegin(grad_list, e, net, args, log_file)
t2 = time.time()
elif args.aggregation == "fldetector":
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
t1 = time.time()
model_dict = aggregation.FLDetector(grad_list, e, net, args, log_file)
t2 = time.time()
elif args.aggregation == "skymask":
server_data = server_data
server_label = server_label
grad_list.append(train(net, local_net, server_data.to(ctx), server_label.to(ctx), ctx, args))
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
param_list = []
for grad in grad_list:
data_item = []
idx = 0
for data in data_list:
size = 1
for item in data.shape:
size *= item
temp = data - args.local_lr * grad[idx:(idx+size)].reshape(data.shape)
data_item.append(temp)
param_list.append(data_item)
masknet = create_masknet(param_list, args.net, ctx)
t1 = time.time()
model_dict = aggregation.skymask(grad_list, data_list, masknet, ctx, e, server_data.to(ctx), server_label.to(ctx), net, args, log_file)
t2 = time.time()
elif args.aggregation == "skymask2":
server_data = server_data
server_label = server_label
grad_list.append(train(net, local_net, server_data.to(ctx), server_label.to(ctx), ctx, args))
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
grad_list = byz(grad_list, net, lr, nbyz, ctx, args)
param_list = []
for grad in grad_list:
data_item = []
idx = 0
for data in data_list:
size = 1
for item in data.shape:
size *= item
temp = data - args.local_lr * grad[idx:(idx+size)].reshape(data.shape)
data_item.append(temp)
param_list.append(data_item)
masknet = create_masknet(param_list, args.net, ctx)
t1 = time.time()
model_dict = aggregation.skymask2(grad_list, data_list, masknet, ctx, e, server_data.to(ctx), server_label.to(ctx), net, args, log_file)
t2 = time.time()
net.load_state_dict(model_dict)
grad_list = []
# evaluate the model accuracy
if (e) % 5 == 0:
test_accuracy = evaluate_accuracy(test_data, net, ctx, args)
test_acc_list.append(test_accuracy)
fo = open(log_file, 'a')
fo.write("Iteration %02d. Test_acc %0.4f" % (e, test_accuracy) + '\n')
fo.write("Iteration %02d. Time %0.4f" % (e, t2-t1) + '\n')
if args.byz_type == 'lie_backdoor':
bd_acc = evaluate_accuracy(bd_test_dataloader, net, ctx, args)
fo.write("Iteration %02d. Poisoned_test_acc %0.4f" % (e, bd_acc) + '\n')
elif args.byz_type == 'scaling':
bd_acc = evaluate_accuracy(bd_test_dataloader, net, ctx, args)
fo.write("Iteration %02d. Poisoned_test_acc %0.4f" % (e, bd_acc) + '\n')
fo.close
print("Iteration %02d. Test_acc %0.4f" % (e, test_accuracy))
print("Iteration %02d. Time %0.4f" % (e, t2-t1) + '\n')
if args.byz_type == 'lie_backdoor':
print("Iteration %02d. Poisoned_test_acc %0.4f" % (e, bd_acc))
elif args.byz_type == 'scaling':
print("Iteration %02d. Poisoned_test_acc %0.4f" % (e, bd_acc))
del test_acc_list
test_acc_list = []
if __name__ == "__main__":
args = utils.parse_args()
main(args)