-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathann.py
533 lines (419 loc) · 16.6 KB
/
ann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
# BUILD THE NETWORK
class Transformer(nn.Module):
"""
A standard Transformer architecture. Base for this and many
other models.
"""
def __init__(self, decoder, tgt_embed, generator, Nq, Na):
super(Transformer, self).__init__()
self.decoder = decoder
self.tgt_embed = tgt_embed
self.generator = generator
self.Nq = Nq
self.Na = Na
def forward(self, tgt, tgt_mask):
"Take in and process masked target sequences."
return self.decoder(self.tgt_embed(tgt), tgt_mask)
def p(self, a_vec, ret_tensor=False):
outcome = list(a_vec)
for nq in range(self.Nq):
outcome[nq] += 3
trg = torch.tensor([[1] + outcome + [2]])
trg_mask = Batch.make_std_mask(trg, 0)
out=self.forward(trg, trg_mask)
log_p=self.generator(out)
p_tensor = torch.exp(log_p)
p = 1.
for nq in range(self.Nq):
p *= p_tensor[0,nq,outcome[nq]].item()
if ret_tensor:
return (p, p_tensor)
else:
return p
def generate_next(self, a_vec):
a_vec = list(a_vec)
for a_ind in range(len(a_vec)):
a_vec[a_ind] += 3
trg = torch.tensor([[1] + a_vec ] )
trg_mask = Batch.make_std_mask(trg, 0)
out=self.forward(trg, trg_mask)
log_p=self.generator(out)
p_tensor = torch.exp(log_p)
p_vec = p_tensor[0,-1].detach().numpy()[3:]
p_vec = np.array(p_vec)/sum(p_vec) # RENORMALIZE DUE TO NUMERICAL ERRORS
next_a = np.random.choice(np.arange(len(p_vec)), size=None, p=p_vec)
return next_a
def samples(self, Ns):
Nq = self.Nq
outcomes = np.zeros((Ns, Nq), dtype=int)
for ns in range(Ns):
outcome = []
for nq in range(Nq):
o = self.generate_next(outcome)
outcome = outcome + [o]
outcomes[ns] = np.array(outcome)
return outcomes
def sample(model, Ns, device):
model.to(device)
Nq = model.Nq
outcomes = torch.ones(Ns, Nq+1, dtype=int).to(device)
for ns in range(Ns):
outcome = outcomes[[ns], :1]
for i in range(Nq):
log_p = model.generator(model.forward(outcome, Batch.make_std_mask(outcome, 0)))
p_tensor = torch.exp(log_p)
next_a = torch.multinomial(p_tensor.data[0,0], 1)
outcomes[ns, i+1] = next_a
outcome = outcomes[[ns], :(i+2)]
model.to('cpu')
outcomes.to('cpu')
return outcomes[:, 1:]-3
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)
# BASIC BUILDING BLOCKS
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))
# / BUILDING BLOCKS
# DECODER
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, tgt_mask):
for layer in self.layers:
x = layer(x, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
"Decoder is made of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, tgt_mask):
"Follow Figure 1 (right) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.self_attn(x, x, x, tgt_mask))
return self.sublayer[2](x, self.feed_forward)
# / DECODER
# MASK FOR SEQUENTIAL GENERATIVE MODELLING
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
# / MASK
# ATTENTION MODULE
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.0):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
# / ATTENTION
# FEED FORWARD MODULE
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.0):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
# / FEED FORWARD
# EMBEDDING
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
# / EMBEDDING
# POSITIONAL ENCODING
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2, dtype=torch.float) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
# GHZ state: Permutation Invariant
x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
return self.dropout(x)
# / POSITIONAL
# DATA BATCHING
class Batch:
"Object for holding a batch of data with mask during training."
def __init__(self, trg=None, pad=0):
if trg is not None:
self.trg = trg[:, :-1]
self.trg_y = trg[:, 1:]
self.trg_mask = \
self.make_std_mask(self.trg, pad)
self.ntokens = (self.trg_y != pad).data.sum()
@staticmethod
def make_std_mask(tgt, pad):
"Create a mask to hide padding and future words."
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & Variable(
subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
return tgt_mask
# / BATCHING
# OPTIMIZATION: changes learning rate. increases linearly for n=warmup steps, then decays as sqrt(step)
# class NoamOpt:
# "Optim wrapper that implements rate."
# def __init__(self, model_size, factor, warmup, optimizer):
# self.optimizer = optimizer
# self._step = 0
# self.warmup = warmup
# self.factor = factor
# self.model_size = model_size
# self._rate = 0
# def step(self):
# "Update parameters and rate"
# self._step += 1
# rate = self.rate()
# for p in self.optimizer.param_groups:
# p['lr'] = rate
# self._rate = rate
# self.optimizer.step()
# def rate(self, step = None):
# "Implement `lrate` above"
# if step is None:
# step = self._step
# # return self.factor * (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5)))
# return self.factor*0.01
# def get_std_opt(model):
# return NoamOpt(model.tgt_embed[0].d_model, 2, 4000,
# torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
# / OPTIMIZATION
# LOSS FUNCTION
def LossFunction(x, y):
# print(torch.tensor(y, dtype=torch.long))
# loss_NLL = nn.NLLLoss(size_average=False)(x,torch.tensor(y,dtype=torch.long))
loss_KL = nn.KLDivLoss(reduction='sum')(x,y)
loss_L1 = 0.*nn.L1Loss(reduction='sum')(x,y)
loss_L2 = 0.*nn.MSELoss(reduction='sum')(x,y)
print(loss_KL)
return loss_KL+loss_L1+loss_L2
# / LOSS FUNCTION
# LABEL SMOOTHING ?
class LabelSmoothing(nn.Module):
"Implement label smoothing."
def __init__(self, size, padding_idx, smoothing=0.0):
super(LabelSmoothing, self).__init__()
# self.criterion = nn.KLDivLoss(size_average=False)
self.criterion = LossFunction
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None
def forward(self, x, target):
assert x.size(1) == self.size
true_dist = x.data.clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.data == self.padding_idx)
if mask.size(0) > 0:
print('LabelSmoothing: A wild Padding Character has appeared!')
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
return self.criterion(x, Variable(true_dist, requires_grad=False))
# / LABEL SMOOTHING
# COMPUTE LOSS AND BACK PROPAGATE
class SimpleLossCompute:
"A simple loss compute and train function."
def __init__(self, generator, criterion, optimizer=None):
self.generator = generator
self.criterion = criterion
self.optimizer = optimizer
def __call__(self, x, y, norm):
x = self.generator(x)
loss = self.criterion(x.contiguous().view(-1, x.size(-1)),
y.contiguous().view(-1)) / norm
loss.backward()
if self.optimizer is not None:
self.optimizer.step()
self.optimizer.zero_grad()
return loss.item() * norm
# / LOSS, BACKPROP
def data_to_torch(data):
# Padding = 0
# Start-of-line character = 1
# End-of-line character = 2
# Tokens = {3, ...}
data = np.array(data)
Ns = len(data)
Nq = len(data[0])
data_np = np.zeros((Ns, Nq+2),dtype=int)
for ns in range(Ns):
data_np[ns, 0] = 1
data_np[ns, -1] = 2
data_np[ns,1:-1] = data[ns]+3
np.random.shuffle(data_np)
return torch.from_numpy(data_np)
def data_gen(data, batch_size):
Ns = len(data)
# batch_size = int(n_data/nbatches)
Nbatch = int(Ns / batch_size)
# Data batching
for nb in range(Nbatch):
data_tgt = data[nb*batch_size:min((nb+1)*batch_size, Ns)]
tgt = Variable(data_tgt, requires_grad=False)
yield Batch(tgt, 0)
# / batch
# MAKE MODEL. SET HYPERPARAMETERS.
def make_model(Nq, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.):
"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = Transformer(
Decoder(DecoderLayer(d_model, c(attn), c(ff), dropout), N),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab), Nq, tgt_vocab-3)
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform(p)
return model
# / MAKE MODEL
# RUN ONE EPOCH
def run_epoch(data_iter, model, loss_compute, verbose=True):
"Standard Training and Logging Function"
start = time.time()
total_tokens = 0
total_loss = 0
tokens = 0
for i, batch in enumerate(data_iter):
out = model.forward(batch.trg, batch.trg_mask)
loss = loss_compute(out, batch.trg_y, batch.ntokens.item())
ntokens = batch.ntokens.item()
total_loss += loss
total_tokens += ntokens
tokens += ntokens
if i % 50 == 1:
elapsed = time.time() - start
if verbose:
print("Epoch Step: %d Loss: %f Tokens per Sec: %f" %(i, loss / ntokens, tokens / elapsed))
start = time.time()
tokens = 0
return total_loss / total_tokens
# / ONE EPOCH
def InitializeModel(Nq, Nlayer=2, dmodel=128, Nh=4, Na=4, dropout=0.):
V = Na+3
# Initialize Model
model = make_model(Nq=Nq, tgt_vocab=V, N=Nlayer, d_model=dmodel,d_ff=4*dmodel,h=Nh,dropout=dropout)
return model
def TrainModel(model, train_data_np, test_data_np, device, smoothing=0.0, lr=0.001, batch_size=100, Nep=20):
V = model.Na+3
# Train Model
loss = np.zeros((2, Nep))
criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=smoothing)
optimizer = torch.optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.98), eps=1e-9)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=Nep, eta_min=0.)
train_data = data_to_torch(train_data_np).to(device)
test_data = data_to_torch(test_data_np).to(device)
for epoch in range(Nep):
model.train()
loss[0, epoch] = run_epoch(
data_gen(train_data, batch_size),
model,
SimpleLossCompute(model.generator, criterion, optimizer),
verbose=False)
model.eval()
loss[1, epoch] = run_epoch(
data_gen(test_data, batch_size),
model,
SimpleLossCompute(model.generator, criterion, None),
verbose=False)
print(epoch+1,':',loss[1, epoch])
scheduler.step()
train_data.to('cpu')
test_data.to('cpu')
return model, loss