forked from javyduck/KnowHalu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarization_generate.py
197 lines (171 loc) · 8.77 KB
/
summarization_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
os.environ['HF_HOME'] = '/bigtemp/hpwang/huggingface/cache/'
from pathlib import Path
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, StoppingCriteria, StoppingCriteriaList
import pandas as pd
from openai import OpenAI
import argparse
import re
os.environ["OPENAI_API_KEY"] = 'sk-xxx'
client = OpenAI()
from local_token import access_token
from tqdm import tqdm
parser = argparse.ArgumentParser(description="QA processing script.")
parser.add_argument("--model", type=str, default='internlm3-8b-instruct', help="Model name")
args = parser.parse_args()
class LLMCompletion(nn.Module):
def __init__(self, model_name, max_new_tokens=1000, system_prompt=None):
super(LLMCompletion, self).__init__()
self.model_name = model_name
self.models = {
'Llama-2-7b-chat-hf': "meta-llama/Llama-2-7b-chat-hf",
# 'Starling-LM-7B-alpha': "berkeley-nest/Starling-LM-7B-alpha",
# 'Meta-Llama-3-8B-Instruct': "meta-llama/Meta-Llama-3-8B-Instruct",
'Llama-3.1-8B-Instruct': "meta-llama/Llama-3.1-8B-Instruct",
'DeepSeek-R1-Distill-Llama-8B': "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
'Qwen2.5-7B-Instruct': "Qwen/Qwen2.5-7B-Instruct",
'gemma-7b-it': "google/gemma-7b-it",
'Mistral-7B-Instruct-v0.3': "mistralai/Mistral-7B-Instruct-v0.3",
'internlm3-8b-instruct': "internlm/internlm3-8b-instruct",
'Qwen2.5-0.5B-Instruct': "Qwen/Qwen2.5-0.5B-Instruct",
'Qwen2.5-1.5B-Instruct': "Qwen/Qwen2.5-1.5B-Instruct",
'Qwen2.5-3B-Instruct': "Qwen/Qwen2.5-3B-Instruct",
}
if model_name in self.models:
model_path = self.models[model_name]
self.generation_config = GenerationConfig.from_pretrained(model_path, token=access_token)
self.generation_config.max_new_tokens = max_new_tokens
self.generation_config.temperature = 0.
self.generation_config.do_sample = False
self.generation_config.top_p = 1.0
self.tokenizer = AutoTokenizer.from_pretrained(model_path, token=access_token, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map="auto", token=access_token, trust_remote_code=True
).eval()
else:
raise ValueError(f"Unsupported model name: {model_name}")
@torch.no_grad()
def forward(self, prompt, stop_tokens=['\n'], split_token=None, return_prob=False):
inputs = self.tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt").to('cuda')
stopping_criteria = self.get_stopping_criteria(stop_tokens)
if self.model_name in ["Llama-3.1-8B-Instruct", 'Mistral-7B-Instruct-v0.3']:
pad_token_id = self.tokenizer.eos_token_id
else:
pad_token_id = self.tokenizer.pad_token_id
output = self.model.generate(
input_ids=inputs,
num_return_sequences=1,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=pad_token_id,
stopping_criteria=stopping_criteria,
generation_config=self.generation_config,
return_dict_in_generate=True,
output_scores=True
)
response = self.tokenizer.decode(output['sequences'][0], skip_special_tokens=True)
return response
def get_stopping_criteria(self, stop_tokens):
truncate_length = len(self.tokenizer(f'\n')['input_ids'])
if stop_tokens:
if self.model_name == "Starling-LM-7B-alpha":
# Build stop_token_ids and filter out any empty ones.
stop_token_ids = [
torch.LongTensor(self.tokenizer(f'\n{stop_token}')['input_ids'][truncate_length:]).cuda()
for stop_token in stop_tokens
if len(self.tokenizer(f'\n{stop_token}')['input_ids'][truncate_length:]) > 0
]
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# Check for empty input_ids
if input_ids.size(0) == 0:
return False
for stop_ids in stop_token_ids:
# Only check if input_ids is long enough
if input_ids.size(1) >= len(stop_ids):
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
return True
return False
return StoppingCriteriaList([StopOnTokens()])
elif self.model_name == "Llama-3.1-8B-Instruct":
# Build stop_token_ids and filter out any empty ones.
stop_token_ids = [
torch.tensor(self.tokenizer.encode("\n" + stop_token, add_special_tokens=False)).to('cuda')
for stop_token in stop_tokens
if len(self.tokenizer.encode("\n" + stop_token, add_special_tokens=False)) > 0
]
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# Check for empty input_ids
if input_ids.size(0) == 0:
return False
for stop_ids in stop_token_ids:
# Only check if input_ids is long enough
if input_ids.size(1) >= len(stop_ids):
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
return True
return False
return StoppingCriteriaList([StopOnTokens()])
else:
# Build stop_token_ids and filter out any empty ones.
stop_token_ids = [
torch.tensor(self.tokenizer.encode(stop_token, add_special_tokens=False)).to('cuda')
for stop_token in stop_tokens
if len(self.tokenizer.encode(stop_token, add_special_tokens=False)) > 0
]
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# Check for empty input_ids
if input_ids.size(0) == 0:
return False
for stop_ids in stop_token_ids:
# Only check if input_ids is long enough
if input_ids.size(1) >= len(stop_ids):
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
return True
return False
return StoppingCriteriaList([StopOnTokens()])
else:
return None
df = pd.read_json('data/summarization_sampled_data.json', lines=True)
documents = df['document'].tolist()
task = "summarization"
output_dir = Path(f'results/{task}/generated/{args.model}')
output_dir.mkdir(parents=True, exist_ok=True)
generated_summaries = []
llm = LLMCompletion(args.model)
for doc in tqdm(df['document']):
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"Without any explanation, only give a concise and comprehensive summary of this article directly. (100 words max) Article: {doc}"},
]
if args.model in ["Llama-3.1-8B-Instruct"] or "Qwen" in args.model:
response = llm(messages, ["\n\n\n"])
response = response.split("assistant\n")[1]
elif args.model == "DeepSeek-R1-Distill-Llama-8B":
response = llm(messages, ["\n\n\n"])
# Extracted text
response = response.split("</think>")[1]
elif args.model in ["gemma-7b-it", "Mistral-7B-Instruct-v0.3"]:
messages = messages[1:]
response = llm(messages, ["\n\n\n"])
# Extracted text
response = response.strip().split("\n")[-1]
elif args.model == "Llama-2-7b-chat-hf":
response = llm(messages, ["\n\n\n"])
response = response.split("[/INST]")[1]
elif args.model == "internlm3-8b-instruct":
response = llm(messages, ["\n\n\n"])
response = response.strip().split("\n")[-1]
else:
raise NotImplementedError
generated_summaries.append(response.strip())
print(response.strip(), "\n")
df = df.assign(generated_summary=generated_summaries)
df[['generated_summary']].to_json(
output_dir / 'generated_summaries.json',
orient='records',
lines=True,
force_ascii=False
)