-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharchives-en.html
1605 lines (1592 loc) · 84.3 KB
/
archives-en.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-72643447-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() { dataLayer.push(arguments); }
gtag('js', new Date());
gtag('config', 'UA-72643447-1');
</script>
<!-- End of global site tag (gtag.js) - Google Analytics -->
<title>More is different - ARCHIVES</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="Home page of Kenji Harada">
<meta name="author" content="Kenji Harada">
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous">
<style>
.link-muted a:link {
color: #000;
}
.link-muted a:hover {
color: #999;
text-decoration: underline;
}
</style>
</head>
<body>
<header>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
<div class="container-fluid">
<a class="navbar-brand" href="https://www-np.acs.i.kyoto-u.ac.jp/~harada/index-en.html">Kenji Harada</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="nav-link" href="https://www-np.acs.i.kyoto-u.ac.jp/~harada/index-en.html">Home</a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://www-np.acs.i.kyoto-u.ac.jp/~harada/study/index-en.html">Study</a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://www-np.acs.i.kyoto-u.ac.jp/~harada/education/index-en.html">Education</a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://www-np.acs.i.kyoto-u.ac.jp/~harada/archives-en.html">Archives</a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://www-np.acs.i.kyoto-u.ac.jp/~harada/index.html">[Japanese]</a>
</li>
</ul>
</div>
</div>
</nav>
</header>
<main role="main">
<div class="py-5 bg-light">
<div class="container">
<h2 class="text-center" style="padding:0 0 18px 0">ARCHIVES</h2>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article1" aria-expanded="false"
aria-controls="collapse_article1">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">08 September 2022</div>  
<a data-toggle="collapse" href="#article1">
<strong>Paper "Automatic structural optimization of tree tensor networks" is submitted to arXiv.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article1" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Title</dt>
<dd>Automatic structural optimization of tree tensor networks</dd>
<dt>Author</dt>
<dd>Toshiya Hikihara, Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, and Tomotoshi Nishino</dd>
<dt>Abstract</dt>
<dd>
Tree tensor network (TTN) provides an essential theoretical framework for the
practical simulation of quantum many-body systems, where the network structure
defined by the connectivity of the isometry tensors plays a crucial role in
improving its approximation accuracy. In this paper, we propose a TTN algorithm
that enables us to automatically optimize the network structure by local
reconnections of isometries to suppress the bipartite entanglement entropy on
their legs. The algorithm can be seamlessly implemented to such a conventional
TTN approach as density-matrix renormalization group. We apply the algorithm to
the inhomogeneous antiferromagnetic Heisenberg spin chain having a hierarchical
spatial distribution of the interactions. We then demonstrate that the
entanglement structure embedded in the ground-state of the system can be
efficiently visualized as a perfect binary tree in the optimized TTN. Possible
improvements and applications of the algorithm are also discussed.
</dd>
<dt>Comments</dt>
<dd>11 pages, 10 figures, 2 tables</dd>
<dt>Preprint</dt>
<dd><a href="https://arxiv.org/abs/2209.03196">arXiv:2209.03196</a></dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article2" aria-expanded="false"
aria-controls="collapse_article2">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">07 September 2022</div>  
<a data-toggle="collapse" href="#article2">
<strong>Paper "Neural Network Approach to Scaling Analysis of Critical Phenomena" is submitted to arXiv.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article2" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Title</dt>
<dd>Neural Network Approach to Scaling Analysis of Critical Phenomena</dd>
<dt>Author</dt>
<dd>Ryosuke Yoneda and Kenji Harada</dd>
<dt>Abstract</dt>
<dd>
Determining the universality class of a system exhibiting critical phenomena is one of the central problems in physics. As methods for determining this universality class from data, polynomial regression, which is less accurate, and Gaussian process regression, which provides high accuracy and flexibility but is computationally heavy, have been proposed. In this paper, we propose a method by a regression method using a neural network. The computational complexity is only linear in the number of data points. We demonstrate the proposed method for the finite-size scaling analysis of critical phenomena on the two-dimensional Ising model and bond percolation problem to confirm the performance. This method efficiently obtains the critical values with accuracy in both cases.
</dd>
<dt>Comments</dt>
<dd>10 pages, 9 figures</dd>
<dt>Preprint</dt>
<dd><a href="https://arxiv.org/abs/2209.01777">arXiv:2209.01777</a></dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article3" aria-expanded="false"
aria-controls="collapse_article3">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">26 August 2022</div>  
<a data-toggle="collapse" href="#article3">
<strong>Talk in The 15th Asia Pacific Physics Conference (APPC15), Korea (online)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article3" class="collapse">
<div class="card-body">
<p class="card-text">
<p>
</p>
<dl class="dl-horizontal">
<dt>Date</dt>
<dd>Aug 26, 2022</dd>
<dt>Conference (invited talk)</dt>
<dd><a href="https://www.appc15.org">The 15th Asia Pacific Physics Conference (APPC15), Korea (online)</a></dd>
<dt>Title</dt>
<dd>Tensor renormalization group study of the non-equilibrium critical fixed point of the one-dimensional contact process</dd>
<dt>Abstract</dt>
<dd>
The steady-state of many stochastic systems is non-equilibrium. We studied the phase of non-equilibrium systems and the transition similar to equilibrium systems. In particular, the critical phase transition is interesting because we can define the non-equilibrium universality class.
To confirm the existence of a non-equilibrium critical fixed point, we study the time evolution operator of one-dimensional contact processes by using a tensor renormalization group technique. The time evolution operators converge to universal critical tensors in the tensor renormalization group flow. The spectrums of critical tensors are strongly anisotropic but share the intrinsic structure each for the universality class. The integer structure for the universality class of compact-directed percolation in the time direction is consistent with the exact spectrum structure of the diffusion-annihilation process.
</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article4" aria-expanded="false"
aria-controls="collapse_article4">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">17 January 2022</div>  
<a data-toggle="collapse" href="#article4">
<strong>Tensor Network States: Algorithms and Applications (TNSAA) 2021-2022 Online Workshop</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article4" class="collapse">
<div class="card-body">
<p class="card-text">
<p>
We will hold the oneline workshop, Tensor Network States: Algorithms and Applications (TNSAA) 2021-2022, from Jan. 17 to Jan. 21, 2022. The series of workshop, TNSAA, has been organized for the purposes of exchanging new developments, having discussions toward future studies, and providing intruductory talks for new generation of researchers about tensor networks.
</p>
<ul>
<a href="http://bussei.gs.niigata-u.ac.jp/~okunishi/tnsaa/">
http://bussei.gs.niigata-u.ac.jp/~okunishi/tnsaa/
</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article5" aria-expanded="false"
aria-controls="collapse_article5">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">31 May 2021</div>  
<a data-toggle="collapse" href="#article5">
<strong>Talk in StatPhys seminar at University of Tokyo, Hongo</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article5" class="collapse">
<div class="card-body">
<p class="card-text">
<p>
</p>
<dl class="dl-horizontal">
<dt>Date</dt>
<dd>May 31, 2021</dd>
<dt>Seminar</dt>
<dd><a href="https://sites.google.com/view/statphys-seminar">StatPhys seminar at University of Tokyo, Hongo, Japan</a></dd>
<dt>Title</dt>
<dd>Universal spectrum structure on the nonequilibrium critical line of the one-dimensional Domany-Kinzel cellular automaton</dd>
<dt>Abstract</dt>
<dd>
The Domany-Kinzel(DK) cellular automaton is a stochastic time-evolutional system with an absorbing state from which the system cannot escape and a canonical model for nonequilibrium critical phenomena[1]. We introduce the tensor network method as a new tool to study it. Estimating the entropy of the DK automaton with a matrix product state representation of distribution, we reported a new cusp of the Renyi entropy in the active phase of the DK cellular automaton[2]. We recently applied a tensor renormalization group method to transfer matrices at the nonequilibrium critical point of the DK cellular automaton, confirming a universal spectrum structure[3]. In this talk, we will report our results with a brief review of models and methods.<br><br>
[1] M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium Phase Transitions. Volume 1: Absorbing Phase Transitions, Vol. 1 (Springer, 2008).<br>
[2] K. H. and N. Kawashima, Entropy Governed by the Absorbing State of Directed Percolation, Physical Review Letters 123, 090601 (2019).<br>
[3] K. H., Universal spectrum structure at nonequilibrium critical points in the (1+1)-dimensional directed percolation, arXiv:2008.10807.<br>
</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article6" aria-expanded="false"
aria-controls="collapse_article6">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">14 December 2020</div>  
<a data-toggle="collapse" href="#article6">
<strong>Paper "Critical exponents in coupled phase-oscillator models on small-world networks" is published in Physical Review E.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article6" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Title</dt>
<dd>Critical exponents in coupled phase-oscillator models on small-world networks</dd>
<dt>Reference</dt>
<dd>Physical Review E <strong>102</strong>, 062212 (2020)</dd>
<dt>DOI</dt>
<dd><a href="https://doi.org/10.1103/PhysRevE.102.062212">10.1103/PhysRevE.102.062212</a></dd>
<dt>Author</dt>
<dd>Ryosuke Yoneda, Kenji Harada, and Yoshiyuki Y. Yamaguchi</dd>
<dt>Abstract</dt>
<dd>
A coupled phase-oscillator model consists of phase oscillators, each of which has the natural frequency obeying a probability distribution and couples with other oscillators through a given periodic coupling function. This type of model is widely studied since it describes the synchronization transition, which emerges between the nonsynchronized state and partially synchronized states. The synchronization transition is characterized by several critical exponents, and we focus on the critical exponent defined by coupling strength dependence of the order parameter for revealing universality classes. In a typical interaction represented by the perfect graph, an infinite number of universality classes is yielded by dependency on the natural frequency distribution and the coupling function. Since the synchronization transition is also observed in a model on a small-world network, whose number of links is proportional to the number of oscillators, a natural question is whether the infinite number of universality classes remains in small-world networks irrespective of the order of links. Our numerical results suggest that the number of universality classes is reduced to one and the critical exponent is shared in the considered models having coupling functions up to second harmonics with unimodal and symmetric natural frequency distributions.
</dd>
<dt>Comments</dt>
<dd>8 pages, 8 figures</dd>
<dt>Preprint</dt>
<dd><a href="https://arxiv.org/abs/2007.04539">arXiv:2007.04539</a></dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<div class="row no-gutters">
<div class="col-md-10">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article7" aria-expanded="false"
aria-controls="collapse_article7">
<div class="card-header text-start">
<p class="card-title">
<h6 class="badge bg-primary">25 August 2020</h6>  
<a data-toggle="collapse" href="#article7">
<strong>Paper "Universal spectrum structure at nonequilibrium critical points in the (1+1)-dimensional directed percolation" is submitted.</strong>
</a>
</p>
</div>
</button>
<div id="collapse_article7" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Preprint</dt>
<dd><a href="http://arxiv.org/abs/2008.10807">arXiv:2008.10807</a></dd>
<dt>Author</dt>
<dd>Kenji Harada</dd>
<dt>Abstract</dt>
<dd>
Using a tensor renormalization group method with oblique projectors for an anisotropic tensor network, we confirm that the rescaled spectrum of transfer matrices at nonequilibrium critical points in the (1+1)-dimensional directed percolation, a canonical model of nonequilibrium critical phenomena, is scale-invariant and its structure is universal.
</dd>
<dt>Comments</dt>
<dd>6 pages, 7 figures</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="col-md-2">
<img src="https://www-np.acs.i.kyoto-u.ac.jp/~harada/posts/images/2020-08-25-Paper-Universal-spectrum-DP.jpg" alt="2020-08-25-Paper-Universal-spectrum-DP.jpg"
class="card-img">
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article8" aria-expanded="false"
aria-controls="collapse_article8">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">09 July 2020</div>  
<a data-toggle="collapse" href="#article8">
<strong>Paper "Critical exponents in coupled phase-oscillator models on small-world networks" is submitted.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article8" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Preprint</dt>
<dd><a href="https://arxiv.org/abs/2007.04539">arXiv:2007.04539</a></dd>
<dt>Title</dt>
<dd>Critical exponents in coupled phase-oscillator models on small-world networks</dd>
<dt>Author</dt>
<dd>Ryosuke Yoneda, Kenji Harada, Yoshiyuki Y. Yamaguchi</dd>
<dt>Abstract</dt>
<dd>
A coupled phase-oscillator model consists of phase-oscillators, each of which has the natural frequency obeying a probability distribution and couples with other oscillators through a given periodic coupling function. This type of models is widely studied since it describes the synchronization transition, which emerges between the non-synchronized state and partially synchronized states, and which is characterized by the critical exponents. Among them, we focus on the critical exponent defined by coupling strength dependence of the order parameter. The synchronization transition is not limited in the all-to-all interaction, whose number of links is of O(N2) with N oscillators, and occurs in small-world networks whose links are of O(N). In the all-to-all interaction, values of the critical exponent depend on the natural frequency distribution and the coupling function, classified into an infinite number of universality classes. A natural question is in small-world networks, whether the dependency remains irrespective of the order of links. To answer this question we numerically compute the critical exponent on small-world networks by using the finite-size scaling method with coupling functions up to the second harmonics and with unimodal and symmetric natural frequency distributions. Our numerical results suggest that, for the continuous transition, the considered models share the critical exponent 1/2, and that they are collapsed into one universality class.
</dd>
<dt>Comments</dt>
<dd>7 pages, 7 figures</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article9" aria-expanded="false"
aria-controls="collapse_article9">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">04 June 2020</div>  
<a data-toggle="collapse" href="#article9">
<strong>Paper "Finite-m scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and entanglement spectrum for the six-state clock model" is published in Physical Review E.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article9" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Title</dt>
<dd>Finite-m scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and entanglement spectrum for the six-state clock model</dd>
<dt>Reference</dt>
<dd>Physical Review E <strong>101</strong>, 062111 (2020)</dd>
<dt>DOI</dt>
<dd><a href="https://doi.org/10.1103/PhysRevE.101.062111">10.1103/PhysRevE.101.062111</a></dd>
<dt>Author</dt>
<dd>Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, Roman Krčmár, Andrej Gendiar, Seiji Yunoki, and Tomotoshi Nishino</dd>
<dt>Abstract</dt>
<dd>
We investigate the Berezinskii-Kosterlitz-Thouless transitions for the square-lattice six-state clock model with the corner-transfer matrix renormalization group (CTMRG). Scaling analyzes for effective correlation length, magnetization, and entanglement entropy with respect to the cutoff dimension m at the fixed point of CTMRG provide transition temperatures consistent with a variety of recent numerical studies. We also reveal that the fixed point spectrum of the corner transfer matrix in the critical intermediate phase of the six-state clock model is characterized by the scaling dimension consistent with the c=1 boundary conformal field theory associated with the effective Z_6 dual sine-Gordon model.
</dd>
<dt>Comments</dt>
<dd>7 pages, 7 figures</dd>
<dt>Preprint</dt>
<dd><a href="https://arxiv.org/abs/2001.10176">arXiv:2001.10176</a></dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article10" aria-expanded="false"
aria-controls="collapse_article10">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">28 January 2020</div>  
<a data-toggle="collapse" href="#article10">
<strong>Paper "Finite-m scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and entanglement spectrum for the six-state clock model" is submitted.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article10" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Preprint</dt>
<dd><a href="https://arxiv.org/abs/2001.10176">arXiv:2001.10176</a></dd>
<dt>Author</dt>
<dd>Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, Roman Krčmár, Andrej Gendiar, Seiji Yunoki, and Tomotoshi Nishino</dd>
<dt>Abstract</dt>
<dd>
We investigate the Berezinskii-Kosterlitz-Thouless transitions for the square-lattice six-state clock model with the corner-transfer matrix renormalization group (CTMRG). Scaling analyzes for effective correlation length, magnetization, and entanglement entropy with respect to the cutoff dimension m at the fixed point of CTMRG provide transition temperatures consistent with a variety of recent numerical studies. We also reveal that the fixed point spectrum of the corner transfer matrix in the critical intermediate phase of the six-state clock model is characterized by the scaling dimension consistent with the c=1 boundary conformal field theory associated with the effective Z_6 dual sine-Gordon model.
</dd>
<dt>Comments</dt>
<dd>7 pages, 7 figures</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article11" aria-expanded="false"
aria-controls="collapse_article11">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">04 December 2019</div>  
<a data-toggle="collapse" href="#article11">
<strong>Talk in Tensor Network States: Algorithms and Applications (TNSAA) 2019-2020 (NCCU, Taipei, TAIWAN)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article11" class="collapse">
<div class="card-body">
<p class="card-text">
<ul>
<li>Conference: Tensor Network States: Algorithms and Applications (TNSAA) 2019-2020</li>
<li>Invited talk: "New numerical approaches for directed percolation"</li>
<li>Date: Dec. 4, 2019
<li>Conference dates: Dec. 4-6, 2019</li>
<li>Venue: NCCU, Taipei, TAIWAN</li>
<li>URL:<a href="https://tnsaa7.github.io">https://tnsaa7.github.io</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article12" aria-expanded="false"
aria-controls="collapse_article12">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">06 September 2019</div>  
<a data-toggle="collapse" href="#article12">
<strong>Upload videos of lectures and seminars in the international Workshop on Computational Approaches to Quantum Many-body Problems(CAQMP 2019)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article12" class="collapse">
<div class="card-body">
<p class="card-text">
<p>
We have uploaded videos of lectures and seminars onto YouTube as follows.
</p>
<ul>
<a href="https://www.youtube.com/watch?v=PDYyt9B6wNw&list=PLyL_XwLqTTm6roebw6MgIK0ljrN8cSQUX">
https://www.youtube.com/watch?v=PDYyt9B6wNw&list=PLyL_XwLqTTm6roebw6MgIK0ljrN8cSQUX
</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<div class="row no-gutters">
<div class="col-md-10">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article13" aria-expanded="false"
aria-controls="collapse_article13">
<div class="card-header text-start">
<p class="card-title">
<h6 class="badge bg-primary">27 August 2019</h6>  
<a data-toggle="collapse" href="#article13">
<strong>Paper "Entropy Governed by the Absorbing State of Directed Percolation" is published in Physical Review Letters.</strong>
</a>
</p>
</div>
</button>
<div id="collapse_article13" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>TITLE</dt>
<dd>Entropy Governed by the Absorbing State of Directed Percolation</dd>
<dt>REFERENCE</dt>
<dd>Physical Review Letters <strong>123</strong>, 090601 (2019)</dd>
<dt>DOI</dt>
<dd><a href="https://doi.org/10.1103/PhysRevLett.123.090601">10.1103/PhysRevLett.123.090601</a></dd>
<dt>AUTHOR</dt>
<dd>Kenji Harada and Naoki Kawashima</dd>
<dt>ABSTRACT</dt>
<dd>
We investigate the informational aspect of (1+1)-dimensional directed percolation, a canonical model of a nonequilibrium continuous transition to a phase dominated by a single special state called the “absorbing” state. Using a tensor network scheme, we numerically calculate the time evolution of state probability distribution of directed percolation. We find a universal relaxation of Rényi entropy at the absorbing phase transition point as well as a new singularity in the active phase, slightly but distinctly away from the absorbing transition point. At the new singular point, the second-order Rényi entropy has a clear cusp. There we also detect a singular behavior of “entanglement entropy,” defined by regarding the probability distribution as a wave function. The entanglement entropy vanishes below the singular point and stays finite above. We confirm that the absorbing state, though its occurrence is exponentially rare in the active phase, is responsible for these phenomena. This interpretation provides us with a unified understanding of time evolution of the Rényi entropy at the critical point as well as in the active phase.
</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="col-md-2">
<img src="https://www-np.acs.i.kyoto-u.ac.jp/~harada/posts/images/2019-08-27-Paper-Renyi-DP.jpg" alt="2019-08-27-Paper-Renyi-DP.jpg"
class="card-img">
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article14" aria-expanded="false"
aria-controls="collapse_article14">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">17 July 2019</div>  
<a data-toggle="collapse" href="#article14">
<strong>Talks in the international Workshop on Computational Approaches to Quantum Many-body Problems(CAQMP 2019)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article14" class="collapse">
<div class="card-body">
<p class="card-text">
<ul>
<li>Title: Tensor network technique for stochastic process</li>
<li>Date: July 17, 2019</li>
<li>Title: Informational aspect of directed percolation problem</li>
<li>Date: July 22, 2019</li>
<li>Venue: The Institute for Solid State Physics, The University of Tokyo, JAPAN</li>
<li>URL: <a href="http://www.issp.u-tokyo.ac.jp/public/caqmp2019/">http://www.issp.u-tokyo.ac.jp/public/caqmp2019/</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article15" aria-expanded="false"
aria-controls="collapse_article15">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">27 February 2019</div>  
<a data-toggle="collapse" href="#article15">
<strong>Paper "Entropy governed by the absorbing state of directed percolation" is submitted.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article15" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Preprint</dt>
<dd><a href="http://arxiv.org/abs/1902.10479">arXiv:1902.10479</a></dd>
<dt>Author</dt>
<dd>Kenji Harada and Naoki Kawashima</dd>
<dt>Abstract</dt>
<dd>
We investigate the informational aspect of (1+1)-dimensional directed percolation(DP), a canonical model of a non-equilibrium continuous transition to a phase dominated by a single special state called the "absorbing" state. Using a tensor network scheme, we numerically calculate the time evolution of state probability distribution of DP. We find a universal relaxation of Renyi entropy at the absorbing phase transition point and a new singularity in the active phase where the second-order Renyi entropy has a cusp and the dynamical behavior of entanglement entropy changes from asymptotically-complete disentanglement to finite entanglement. We confirm that the absorbing state, though its occurrence is exponentially rare in the active phase, is responsible for these phenomena. This interpretation provides us with a unified understanding of time-evolution of the Renyi entropy at the critical point as well as in the active phase.
</dd>
<dt>Comments</dt>
<dd>6(=4+1.5) pages, 8(=5+3) figures</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article16" aria-expanded="false"
aria-controls="collapse_article16">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">03 December 2018</div>  
<a data-toggle="collapse" href="#article16">
<strong>Talk in Tensor Network States: Algorithms and Applications (TNSAA) 2018-2019 (R-CCS, Kobe, Japan)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article16" class="collapse">
<div class="card-body">
<p class="card-text">
<ul>
<li>Conference: Tensor Network States: Algorithms and Applications (TNSAA) 2018-2019</li>
<li>Invited talk: "Entropy of the (1+1)-dimensional directed percolation"</li>
<li>Conference dates: 3-6 December 2018</li>
<li>Venue: R-CCS Kobe, JAPAN</li>
<li>URL:<a href="http://quattro.phys.sci.kobe-u.ac.jp/kobe_2018/TNSAA2018-19.html">http://quattro.phys.sci.kobe-u.ac.jp/kobe_2018/TNSAA2018-19.html</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article17" aria-expanded="false"
aria-controls="collapse_article17">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">12 November 2018</div>  
<a data-toggle="collapse" href="#article17">
<strong>Poster presentation on International Conference on Advances in Physics of Emergent orders in Fluctuations (APEF2018) (Tokyo, Japan)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article17" class="collapse">
<div class="card-body">
<p class="card-text">
<ul>
<li>Title: "Entropy of the (1+1)-dimensional directed percolation"</li>
<li>Conference: International Conference on Advances in Physics of Emergent orders in Fluctuations (APEF2018)</li>
<li>Conference dates: November 12-15, 2018</li>
<li>Venue: The University of Tokyo, Tokyo, JAPAN</li>
<li>URL:<a href="https://apef2018.org">https://apef2018.org</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article18" aria-expanded="false"
aria-controls="collapse_article18">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">16 January 2018</div>  
<a data-toggle="collapse" href="#article18">
<strong>Paper "Entanglement branching operator" is published in Physical Review B.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article18" class="collapse">
<div class="card-body">
<p class="card-text">
<p><span class="badge badge-primary">REFERENCE</span> Physical Review B <strong> 97 </strong> (2018) 045124<br>
<span class="badge badge-primary">DOI</span> <a href="https://doi.org/10.1103/PhysRevB.97.045124">10.1103/PhysRevB.97.045124</a><br>
<span class="badge badge-primary">AUTHOR</span> Kenji Harada<br>
<span class="badge badge-primary">ABSTRACT</span>
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.</p>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article19" aria-expanded="false"
aria-controls="collapse_article19">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">04 January 2018</div>  
<a data-toggle="collapse" href="#article19">
<strong>Wei-Lin Tu visits our laboratory until Mar. 5, 2018.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article19" class="collapse">
<div class="card-body">
<p class="card-text">
<p>
Wei-Lin is a student in a doctoral course of National Taiwan University. His stay is financially supported by Japan-Taiwan Exchange Association.
</p>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article20" aria-expanded="false"
aria-controls="collapse_article20">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">20 November 2017</div>  
<a data-toggle="collapse" href="#article20">
<strong>Poster presentation on International Symposium on Fluctuation and Structure out of Equilibrium 2017 (SFS2017) (Sendai, Japan)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article20" class="collapse">
<div class="card-body">
<p class="card-text">
<dl>
<dt>International Symposium on Fluctuation and Structure out of Equilibrium 2017 (SFS2017)</dt>
<dd>
<ul>
<li>Date of poster presentation: 14:50 ~ 16:50, 20th Nov. 2017.</li>
<li>Conference: International Symposium on Fluctuation and Structure out of Equilibrium 2017</li>
<li>Conference dates: From 20th Nov. 2017 to 23th Nov. 2017.</li>
<li>Venue: Sendai International Center, Sendai, Japan.</li>
<li>URL:<a href="http://sfs-dynamics.jp/sfs2017/">http://sfs-dynamics.jp/sfs2017/</a>
</ul>
</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article21" aria-expanded="false"
aria-controls="collapse_article21">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">06 November 2017</div>  
<a data-toggle="collapse" href="#article21">
<strong>Talk "Entanglement branching operator" in Novel Quantum States in Condensed Matter 2017 (YITP, Kyoto, Japan)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article21" class="collapse">
<div class="card-body">
<p class="card-text">
<dl>
<dt>Title: "Entanglement branching operator" (invited)</dt>
<dd>
<ul>
<li>Date of presentation: 14:00 ~ 15:00, 6th Nov. 2017.</li>
<li>Conference: Novel Quantum States in Condensed Matter 2017</li>
<li>Conference dates: From 23th Oct. 2017 to 24th Nov. 2017.</li>
<li>Venue: Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan.</li>
<li>URL:<a href="http://www2.yukawa.kyoto-u.ac.jp/~nqs2017.ws/index.php">http://www2.yukawa.kyoto-u.ac.jp/~nqs2017.ws/index.php</a>
</ul>
</dd>
<dt>Preprint</dt>
<dd><a href="http://arxiv.org/abs/1710.01830">arXiv:1710.01830</a></dd>
<dt>Abstract</dt>
<dd>
We introduce an entanglement branching operator to split a composite
entanglement flow in a tensor network which is a promising theoretical
tool for many-body systems. We can optimize an entanglement branching
operator by solving a minimization problem based on squeezing
operators. The entanglement branching is a new useful operation to
manipulate a tensor network. For example, finding a particular
entanglement structure by an entanglement branching operator, we can
improve a higher-order tensor renormalization group method to catch a
proper renormalization flow in a tensor network space. This new method
yields a new type of tensor network states. The second example is a
many-body decomposition of a tensor by using an entanglement branching
operator. We can use it for a perfect disentangling among
tensors. Applying a many-body decomposition recursively, we
conceptually derive projected entangled pair states from quantum
states that satisfy the area law of entanglement entropy.
</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article22" aria-expanded="false"
aria-controls="collapse_article22">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">05 October 2017</div>  
<a data-toggle="collapse" href="#article22">
<strong>Paper "Entanglement branching operator" is submitted.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article22" class="collapse">
<div class="card-body">
<p class="card-text">
<dl class="dl-horizontal">
<dt>Preprint</dt>
<dd><a href="http://arxiv.org/abs/1710.01830">arXiv:1710.01830</a></dd>
<dt>Author</dt>
<dd>Kenji Harada</dd>
<dt>Abstract</dt>
<dd>
We introduce an entanglement branching operator to split a composite
entanglement flow in a tensor network which is a promising theoretical
tool for many-body systems. We can optimize an entanglement branching
operator by solving a minimization problem based on squeezing
operators. The entanglement branching is a new useful operation to
manipulate a tensor network. For example, finding a particular
entanglement structure by an entanglement branching operator, we can
improve a higher-order tensor renormalization group method to catch a
proper renormalization flow in a tensor network space. This new method
yields a new type of tensor network states. The second example is a
many-body decomposition of a tensor by using an entanglement branching
operator. We can use it for a perfect disentangling among
tensors. Applying a many-body decomposition recursively, we
conceptually derive projected entangled pair states from quantum
states that satisfy the area law of entanglement entropy.
</dd>
<dt>Comments</dt>
<dd>9 pages, 11 figures</dd>
</dl>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article23" aria-expanded="false"
aria-controls="collapse_article23">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">05 February 2017</div>  
<a data-toggle="collapse" href="#article23">
<strong>Workshop in the Centro de Ciencias de Benasque Pedro Pascual, Benasque, Spain : "Entanglement in Strongly Correlated Systems"</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article23" class="collapse">
<div class="card-body">
<p class="card-text">
<p>From 5 Feb. 2017 to 18 Feb. 2017,
<a href="http://benasque.org/2017scs/">
Workshop "Entanglement in Strongly Correlated Systems"
</a>,
the Centro de Ciencias de Benasque Pedro Pascual, Benasque, Spain.</p>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article24" aria-expanded="false"
aria-controls="collapse_article24">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">14 December 2016</div>  
<a data-toggle="collapse" href="#article24">
<strong>Talk "General Entanglement Branching in a Tensor Network" in Fourth Workshop on Tensor Network States: Algorithms and Applications (NCTS, Hsinchu, Taiwan)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article24" class="collapse">
<div class="card-body">
<p class="card-text">
<ul>
<li>Title: "General Entanglement Branching in a Tensor Network" (invited)</li>
<li>Date of presentation: 14th Dec. 2016.</li>
<li>Conference: Fourth Workshop on Tensor Network States: Algorithms and Applications</li>
<li>Conference dates: From 12th Dec. 2016 to 15th Dec. 2016.</li>
<li>Venue: National Center for Theoretical Sciences, Hsinchu, Taiwan</li>
<li>URL:<a href="http://www.phys.cts.nthu.edu.tw/actnews/index.php?Sn=318">http://www.phys.cts.nthu.edu.tw/actnews/index.php?Sn=318</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article25" aria-expanded="false"
aria-controls="collapse_article25">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">27 June 2016</div>  
<a data-toggle="collapse" href="#article25">
<strong>Talk "Branching and tensor network" in the international Workshop on Tensor Networks and Quantum Many-Body Problems (TNQMP2016)</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article25" class="collapse">
<div class="card-body">
<p class="card-text">
<ul>
<li>Title: "Branching and tensor network" (invited)</li>
<li>Date: June 27, 2016</li>
<li>Venue: The Institute for Solid State Physics, The University of Tokyo, JAPAN</li>
<li>URL: <a href="http://www.issp.u-tokyo.ac.jp/public/tnqmp2016/">http://www.issp.u-tokyo.ac.jp/public/tnqmp2016/</a>
</ul>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article26" aria-expanded="false"
aria-controls="collapse_article26">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">05 October 2015</div>  
<a data-toggle="collapse" href="#article26">
<strong>Paper "SU(N) Heisenberg model with multicolumn representations" is published in Physical Review B.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article26" class="collapse">
<div class="card-body">
<p class="card-text">
<p><span class="badge badge-primary">REFERENCE</span> Physical Review B <strong> 92 </strong> (2015) 134404<br>
<span class="badge badge-primary">DOI</span> <a href="http://dx.doi.org/10.1103/PhysRevB.92.134404">10.1103/PhysRevB.92.134404</a><br>
<span class="badge badge-primary">AUTHOR</span> Tsuyoshi Okubo, Kenji Harada, Jie Lou, and Naoki Kaishima<br>
<span class="badge badge-primary">ABSTRACT</span>
The SU(N) symmetric antiferromagnetic Heisenberg model with multicolumn representations on the two- dimensional square lattice is investigated by quantum Monte Carlo simulations. For the representation of a Young diagram with two columns, we confirm that a valence-bond solid (VBS) order appears as soon as the Néel order disappears at N = 10, indicating no intermediate phase. In the case of the representation with three columns, there is no evidence for either the Néel or the VBS ordering for N >= 15. This is actually consistent with the large-N theory, which predicts that the VBS state immediately follows the Néel state, because the expected spontaneous order is too weak to be detected.<br></p>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article27" aria-expanded="false"
aria-controls="collapse_article27">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">06 July 2015</div>  
<a data-toggle="collapse" href="#article27">
<strong>Paper "Kernel methods for corrections to scaling" is published in Physical Review E.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article27" class="collapse">
<div class="card-body">
<p class="card-text">
<p><span class="badge badge-primary">REFERENCE</span> Physical Review E <strong> 92 </strong> (2015) 012106<br>
<span class="badge badge-primary">DOI</span> <a href="http://dx.doi.org/10.1103/PhysRevE.92.012106">10.1103/PhysRevE.92.012106</a><br>
<span class="badge badge-primary">AUTHOR</span> Kenji Harada<br>
<span class="badge badge-primary">ABSTRACT</span>
Scaling analysis, in which one infers scaling exponents and a scaling function in a scaling law from given data, is a powerful tool for determining universal properties of critical phenomena in many fields of science. However, there are corrections to scaling in many cases, and then the inference problem becomes ill-posed by an uncontrollable irrelevant scaling variable. We propose a new kernel method based on Gaussian process regression to fix this problem generally. We test the performance of the new kernel method for some example cases. In all cases, when the precision of the example data increases, inference results of the new kernel method correctly converge. Because there is no limitation in the new kernel method for the scaling function even with corrections to scaling, unlike in the conventional method, the new kernel method can be widely applied to real data in critical phenomena.<br>
<span class="badge badge-primary">NOTE</span>
The reference code of this new method is prepared at <a href="http://kenjiharada.github.io/BSA/">http://kenjiharada.github.io/BSA/</a></p>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article28" aria-expanded="false"
aria-controls="collapse_article28">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">22 April 2015</div>  
<a data-toggle="collapse" href="#article28">
<strong>Fixed a bug in Bayesian Scaling Analysis (BSA) toolkit.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article28" class="collapse">
<div class="card-body">
<p class="card-text">
<p><a href="http://kenjiharada.github.io/BSA/">BSA toolkit</a> is a reference code of a new method for scaling analysis
of critical phenomena. Using Bayesian inference, we automatically estimate critical point and indices.
We fixed a bug for the output of scaling function with the option "-f 1". This bug does not affect the inference result of parameters.</p>
</p>
</div>
</div>
</div>
<div class="card mb-4 shadow-sm">
<button class="btn btn-light" type="button" data-bs-toggle="collapse"
data-bs-target="#collapse_article29" aria-expanded="false"
aria-controls="collapse_article29">
<div class="card-header text-start">
<h6 class="card-title">
<div class="badge bg-primary">21 April 2015</div>  
<a data-toggle="collapse" href="#article29">
<strong>Paper "SU(N) Heisenberg model with multi-column representations" is submitted.</strong>
</a>
</h6>
</div>
</button>
<div id="collapse_article29" class="collapse">
<div class="card-body">
<p class="card-text">
<p><span class="badge badge-primary">PREPRINT</span> <a href="http://arxiv.org/abs/1504.05332">arXiv:1504.05332</a><br>
<span class="badge badge-primary">AUTHOR</span> Tsuyoshi Okubo, Kenji Harada, Jie Lou, Naoki Kaishima<br>
<span class="badge badge-primary">ABSTRACT</span>