-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhD Thesis.aux
1054 lines (1054 loc) · 111 KB
/
PhD Thesis.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\relax
\providecommand*\new@tpo@label[2]{}
\providecommand\babel@aux[2]{}
\@nameuse{bbl@beforestart}
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand\BKM@entry[2]{}
\providecommand\@newglossary[4]{}
\@newglossary{main}{glg}{gls}{glo}
\@newglossary{symbols}{slg}{sls}{slo}
\providecommand\@glsxtr@savepreloctag[2]{}
\babel@aux{english}{}
\providecommand\@gls@reference[3]{}
\BKM@entry{id=1,dest={636861707465722E31},srcline={1}}{5C3337365C3337375C303030495C3030306E5C303030745C303030725C3030306F5C303030645C303030755C303030635C303030745C303030695C3030306F5C3030306E}
\citation{CurvedYMH}
\citation{DaSilva}
\citation{DaSilva}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\citation{mackenzieGeneralTheory}
\citation{CurvedYMH}
\citation{CurvedYMH}
\citation{CurvedYMH}
\BKM@entry{id=2,dest={73656374696F6E2E312E31},srcline={337}}{5C3337365C3337375C3030304E5C3030306F5C303030745C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C3030306F5C303030745C303030685C303030655C303030725C3030305C3034305C303030635C3030306F5C3030306E5C303030765C303030655C3030306E5C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030745C303030685C303030725C3030306F5C303030755C303030675C303030685C3030306F5C303030755C303030745C3030305C3034305C303030745C303030685C303030695C303030735C3030305C3034305C303030775C3030306F5C303030725C3030306B}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Notation and other conventions throughout this work}{13}{section.1.1}\protected@file@percent }
\newlabel{StandardNotation}{{1.1}{13}{Notation and other conventions throughout this work}{section.1.1}{}}
\@gls@reference{symbols}{MN}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{TN}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{X(N)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{0[]}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{DAiff}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{Cinfty(N)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{Cinfty(N;M)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{0bigwedgedotV}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{1Camma(V)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{Aut}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{End}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{AutSection}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{EndSection}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{Trs(V)a}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\@gls@reference{symbols}{Trs(V)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{13}}
\citation{hamilton}
\@gls@reference{symbols}{V*}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{T*N}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{1ZOmegak(N)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{0nabla}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{Rnabla}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{D}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{dbas}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{0partiali}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{Lie}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{1ZOmegap(NV)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\@gls@reference{symbols}{dnabla}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{14}}
\BKM@entry{id=3,dest={636861707465722E32},srcline={1}}{5C3337365C3337375C303030475C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C30303079}
\BKM@entry{id=4,dest={73656374696F6E2E322E31},srcline={3}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C303030615C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030745C303030685C303030655C303030695C303030725C3030305C3034305C303030615C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Gauge theory}{17}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ClassicGaugeTheory}{{2}{17}{Gauge theory}{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Lie algebras and their actions}{17}{section.2.1}\protected@file@percent }
\newlabel{LieAlgebraActions}{{2.1}{17}{Lie algebras and their actions}{section.2.1}{}}
\newlabel{def:HamLieGroup}{{2.1.1}{17}{Lie group, \cite [Definition 1.1.4; page 6]{hamilton}}{theorem.2.1.1}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{def:HamLieAlgebra}{{2.1.3}{18}{Lie algebra, \cite [Definition 1.4.1, page 36]{hamilton}}{theorem.2.1.3}{}}
\@gls@reference{symbols}{g1}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{18}}
\@gls@reference{symbols}{0[]g}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{18}}
\newlabel{def:StructureConstants}{{2.1.4}{18}{Structure constants, \cite [Definition 1.4.17; page 38]{hamilton}}{theorem.2.1.4}{}}
\@gls@reference{symbols}{Cbca}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{18}}
\newlabel{def:LieGroupRepresentation}{{2.1.6}{18}{Lie group representation, \cite [Definition 2.1.1; page 84]{hamilton}}{theorem.2.1.6}{}}
\citation{hamilton}
\citation{cohen2006quantum}
\citation{hamilton}
\newlabel{def:LiealgebraRepresentation}{{2.1.7}{19}{Lie algebra representation \cite [Definition 2.1.5; page 85]{hamilton}}{theorem.2.1.7}{}}
\newlabel{lem:LieGroupRepInducesLieAlgRep}{{2.1.8}{19}{Every Lie group representation induces a Lie algebra representation \cite [Proposition 2.1.12; page 86]{hamilton}}{theorem.2.1.8}{}}
\newlabel{ex:sutwoliealgactionasLiealg}{{2.1.9}{19}{$\mathrm {su}(2)$-action, \newline \cite [\S 6.2 \textit {et seq.}, page 586ff.; and \S 6.6 \textit {et seq.}; page 633ff.]{cohen2006quantum}}{theorem.2.1.9}{}}
\@gls@reference{symbols}{1epsilonijk}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{19}}
\@gls@reference{symbols}{1deltaijz}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{19}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{ex:electroweakinteractionasLiealg}{{2.1.10}{20}{Electroweak interaction coupled to a Higgs field, \newline \cite [Example 8.1.9; page 449f.; and \S 8.3.1; page 465ff.]{hamilton}}{theorem.2.1.10}{}}
\newlabel{ex:AdjointReps}{{2.1.11}{20}{Adjoint representations, \newline \cite [Theorem 2.1.45 and abstract before that; page 101]{hamilton} \& \cite [Theorem 2.1.52; page 105]{hamilton}}{theorem.2.1.11}{}}
\@gls@reference{symbols}{ad}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{20}}
\citation{hamilton}
\citation{hamilton}
\citation{DaSilva}
\newlabel{def:LieGroupAction}{{2.1.12}{21}{Left action on manifold, \cite [\S 3.2, Definition 3.2.1; page 130]{hamilton}}{theorem.2.1.12}{}}
\newlabel{FundamentalVectorFields}{{2.1.13}{21}{}{theorem.2.1.13}{}}
\citation{hamilton}
\newlabel{def:LieAlgebraAction}{{2.1.14}{22}{Lie algebra action, \cite [\S 16.2, Example 5; page 114]{DaSilva}}{theorem.2.1.14}{}}
\@gls@reference{symbols}{1cammaz}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{22}}
\newlabel{prop:LieRepAndLieAct}{{2.1.16}{22}{Lie algebra representation $\rightarrow $ Lie algebra action, \newline \cite [generalisation of parts of Example 3.4.2; page 143f.]{hamilton}}{theorem.2.1.16}{}}
\newlabel{RemTVGleichV}{{2.1.18}{22}{}{theorem.2.1.18}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{lem:LemmaEndGleichMinusVectorField}{{2.1.19}{23}{$\overline {\mathrm {End}(W)}$ a Lie subalgebra of $\mathfrak {X}(W)$, \newline \cite [\S 3.4; page 141ff.; especially second equation in Remark 3.4.5; page 145]{hamilton}}{theorem.2.1.19}{}}
\newlabel{cor:EndVGleichBarEndV}{{2.1.20}{23}{Lie algebra isomorphism $\mathrm {End}(W) \cong \overline {\mathrm {End}(W)}$, \newline \cite [simplified Proposition 3.4.3; page 144]{hamilton}}{theorem.2.1.20}{}}
\newlabel{defSuperEasyPeasyDefinitionvonhomomderactionsundReps}{{2.9}{23}{Lie algebras and their actions}{equation.2.1.9}{}}
\citation{hamilton}
\BKM@entry{id=5,dest={73656374696F6E2E322E32},srcline={397}}{5C3337365C3337375C303030495C303030735C3030306F5C303030745C303030725C3030306F5C303030705C30303079}
\citation{hamilton}
\newlabel{cor:LieGroupRepsImplyActionStuff}{{2.1.21}{24}{Lie group representation defines actions, \newline \cite [Example 3.4.2, page 143f.]{hamilton}}{theorem.2.1.21}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Isotropy}{24}{section.2.2}\protected@file@percent }
\newlabel{IsotropyClassical}{{2.2}{24}{Isotropy}{section.2.2}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{def:IsotropySubalgebra}{{2.2.1}{25}{The Isotropy Subalgebra, \newline \cite [infinitesimal version of Definition 3.2.4; page 132]{hamilton}}{theorem.2.2.1}{}}
\newlabel{ClassicalIsotropy}{{2.2.2}{25}{}{theorem.2.2.2}{}}
\newlabel{cor:IsotropyVonLieAlgMitAdjoint}{{2.2.3}{25}{Isotropy of integrable Lie algebra actions, \newline \cite [infinitesimal version of the abstract before Proposition 3.2.10; page 134]{hamilton}}{theorem.2.2.3}{}}
\citation{hamilton}
\BKM@entry{id=6,dest={73656374696F6E2E322E33},srcline={531}}{5C3337365C3337375C303030595C303030615C3030306E5C303030675C3030302D5C3030304D5C303030695C3030306C5C3030306C5C303030735C3030302D5C303030485C303030695C303030675C303030675C303030735C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C30303079}
\newlabel{isotropygrouprelation}{{2.13}{26}{Isotropy}{equation.2.2.13}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Yang-Mills-Higgs gauge theory}{27}{section.2.3}\protected@file@percent }
\newlabel{YMHGT}{{2.3}{27}{Yang-Mills-Higgs gauge theory}{section.2.3}{}}
\@gls@reference{symbols}{a0}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{27}}
\newlabel{def:GradedExtensionOfBracket}{{2.3.1}{27}{Graded extension of the Lie bracket, \newline \cite [generalization of Definition 5.5.3; page 275]{hamilton}}{theorem.2.3.1}{}}
\newlabel{LokaleFormVonAwedgeAClassical}{{2.15}{27}{}{equation.2.3.15}{}}
\newlabel{def:ClassicFieldStrength}{{2.3.3}{27}{Field strength, \cite [Theorem 5.5.4; page 275]{hamilton}}{theorem.2.3.3}{}}
\@gls@reference{symbols}{F}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{27}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{thm:ClassicBianchiIdenityOfFieldstrength}{{2.3.4}{28}{Bianchi identity of the field strength, \newline \cite [Theorem 5.14.2; page 311]{hamilton}}{theorem.2.3.4}{}}
\newlabel{def:ClassicYMLagrangian}{{2.3.6}{28}{Yang-Mills Lagrangian, \cite [Definition 7.3.1; page 414]{hamilton}}{theorem.2.3.6}{}}
\@gls@reference{symbols}{1vhi}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{28}}
\newlabel{def:ClassicMinimalCoupling}{{2.3.7}{28}{Minimal coupling, \newline \cite [Definition 5.9.3; page 292; Definition 7.5.5 \textit {et seq.}; page 426]{hamilton}}{theorem.2.3.7}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\@gls@reference{symbols}{DAPhi}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{29}}
\newlabel{def:ClassicYMHLagrangian}{{2.3.9}{29}{Yang-Mills-Higgs Lagrangian, \cite [Definition 8.1.1; page 446f.]{hamilton}}{theorem.2.3.9}{}}
\@gls@reference{symbols}{LYMH}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{29}}
\BKM@entry{id=7,dest={73656374696F6E2E322E34},srcline={683}}{5C3337365C3337375C303030495C3030306E5C303030665C303030695C3030306E5C303030695C303030745C303030655C303030735C303030695C3030306D5C303030615C3030306C5C3030305C3034305C303030475C303030615C303030755C303030675C303030655C3030305C3034305C303030495C3030306E5C303030765C303030615C303030725C303030695C303030615C3030306E5C303030635C30303065}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Infinitesimal Gauge Invariance}{30}{section.2.4}\protected@file@percent }
\newlabel{InfGaugeTrafoClassical}{{2.4}{30}{Infinitesimal Gauge Invariance}{section.2.4}{}}
\newlabel{def:ClassicSpaceofFieldsAgain}{{2.4.1}{30}{The space of fields}{theorem.2.4.1}{}}
\newlabel{def:ClassicTrafos}{{2.4.2}{30}{Infinitesimal gauge transformation of the Higgs field and the field of gauge bosons, \newline \cite [infinitesimal version of Theorem 5.3.9, see also comment afterwards; page 269f.]{hamilton} and \cite [infinitesimal version of Theorem 5.4.4; page 273]{hamilton}}{theorem.2.4.2}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{def:ClassFunctionalGaugeTrafoBlag}{{2.4.3}{31}{Infinitesimal gauge transformation of functionals, \newline \cite [motivated by statements like Theorem 7.3.2; page 414ff.]{hamilton}}{theorem.2.4.3}{}}
\newlabel{RemabouttheddtOfClassicTrafos}{{2.4.4}{31}{}{theorem.2.4.4}{}}
\newlabel{prop:ClassicGaugeTrafoOfFieldStrengthAndMinimalCoupling}{{2.4.5}{31}{Infinitesimal gauge transformations of the field strength and minimal coupling, \newline \cite [infinitesimal version of Theorem 5.6.3; page 280]{hamilton} and \cite [infinitesimal version of Lemma 7.5.8; page 428]{hamilton}}{theorem.2.4.5}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{def:ClassicInvariance of metrics}{{2.4.7}{33}{Scalar products invariant under Lie algebra representations, \newline \cite [Definition 2.1.36; page 96]{hamilton}}{theorem.2.4.7}{}}
\citation{hamilton}
\newlabel{thm:ClassicGaugeInvarOfYMHLagrangians}{{2.4.8}{34}{Infinitesimal gauge invariance of the Yang-Mills-Higgs Lagrangian, \newline \cite [infinitesimal version of Theorem 7.3.2; page 414]{hamilton} and \cite [infinitesimal version of Theorem 7.5.10; page 429]{hamilton}}{theorem.2.4.8}{}}
\newlabel{ClassicPotential}{{2.30}{34}{Infinitesimal gauge invariance of the Yang-Mills-Higgs Lagrangian, \newline \cite [infinitesimal version of Theorem 7.3.2; page 414]{hamilton} and \cite [infinitesimal version of Theorem 7.5.10; page 429]{hamilton}}{equation.2.4.30}{}}
\citation{hamilton}
\BKM@entry{id=8,dest={73656374696F6E2E322E35},srcline={991}}{5C3337365C3337375C303030495C3030306E5C303030665C303030695C3030306E5C303030695C303030745C303030655C303030735C303030695C3030306D5C303030615C3030306C5C3030305C3034305C303030475C303030615C303030755C303030675C303030655C3030305C3034305C303030495C3030306E5C303030765C303030615C303030725C303030695C303030615C3030306E5C303030635C303030655C3030305C3034305C303030755C303030735C303030695C3030306E5C303030675C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{basicconn}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}Infinitesimal Gauge Invariance using connections}{35}{section.2.5}\protected@file@percent }
\newlabel{NewInfGaugeTrafoTrafos}{{2.5}{35}{Infinitesimal Gauge Invariance using connections}{section.2.5}{}}
\newlabel{def:FirstStepLieDerivativeOfAnchors}{{2.5.1}{35}{Lie algebra connection, \newline \cite [special situation of \S 2, Definition 2.2]{basicconn}}{theorem.2.5.1}{}}
\newlabel{FirstStepToEDerivatives}{{2.32}{35}{Lie algebra connection, \newline \cite [special situation of \S 2, Definition 2.2]{basicconn}}{equation.2.5.32}{}}
\citation{ELeviCivita}
\citation{basicconn}
\newlabel{DifferenceOfLieAlgConnections}{{2.5.2}{36}{}{theorem.2.5.2}{}}
\newlabel{ex:LieAlgActionIsAConnection}{{2.5.3}{36}{Lie algebra action as a Lie algebra connection, \newline \cite [special situation of first example in Example 2.8]{ELeviCivita}}{theorem.2.5.3}{}}
\newlabel{ex:ClassicAdRepIsAConnection}{{2.5.4}{36}{Basic connection, \newline \cite [special situation of \S 2, Definition 2.9]{basicconn}}{theorem.2.5.4}{}}
\citation{ELeviCivita}
\citation{ELeviCivita}
\newlabel{def:LieAlgebraPfadeKurvi}{{2.5.5}{38}{Lie algebra paths, \newline \cite [\S 2, special situation of the Definition 2.4]{ELeviCivita}}{theorem.2.5.5}{}}
\newlabel{GpathBeiRep}{{2.5.6}{38}{}{theorem.2.5.6}{}}
\newlabel{prop:FirstEPullBACkConnectionFormula}{{2.5.7}{38}{Pullbacks of $\mathfrak {g}$-connections along $\mathfrak {g}$-paths, \newline \cite [\S 2, special situation of the comment before Definition 2.4]{ELeviCivita}}{theorem.2.5.7}{}}
\newlabel{WieReagiertmanaufPullbacksbeigConnection}{{2.36}{38}{Pullbacks of $\mathfrak {g}$-connections along $\mathfrak {g}$-paths, \newline \cite [\S 2, special situation of the comment before Definition 2.4]{ELeviCivita}}{equation.2.5.36}{}}
\newlabel{FullPulbackGConnection}{{2.37}{39}{Infinitesimal Gauge Invariance using connections}{equation.2.5.37}{}}
\newlabel{ImportantEquationToCheckForPullbacks}{{2.38}{39}{Infinitesimal Gauge Invariance using connections}{equation.2.5.38}{}}
\citation{ELeviCivita}
\newlabel{rem:ImportantRemarkAboutPullbacks}{{2.5.8}{40}{Essential condition for pullbacks of connections}{theorem.2.5.8}{}}
\newlabel{prop:DerivationAlonggLAlgPath}{{2.5.9}{40}{Derivations of sections along $\mathfrak {g}$-paths, \newline \cite [special situation of \S 2, beginning of subsection 2.3; there $\mathrm {D}/\mathrm {d}t$ is denoted as $\nabla ^\alpha $]{ELeviCivita}}{theorem.2.5.9}{}}
\newlabel{def:FirstAttemptOfEvaluationMap}{{2.5.10}{41}{The evaluation map}{theorem.2.5.10}{}}
\newlabel{rem:TangentSpaceOfMathfrakMg}{{2.5.11}{41}{Tangent spaces of $\mathfrak {M}_{\mathfrak {g}}(M; W)$}{theorem.2.5.11}{}}
\newlabel{def:ClassicGaugeTrafoOfHiggs}{{2.5.12}{43}{Infinitesimal gauge transformation of the Higgs field}{theorem.2.5.12}{}}
\newlabel{PsiEpsilonDieErste}{{2.5.13}{43}{}{theorem.2.5.13}{}}
\newlabel{cor:ClassicFLowsOfXgMg}{{2.5.14}{43}{Flows of $\mathfrak {X}^\psi (\mathfrak {M}_{\mathfrak {g}}(M; W))$}{theorem.2.5.14}{}}
\newlabel{FlowStuffOfXgMg}{{2.46}{44}{Flows of $\mathfrak {X}^\psi (\mathfrak {M}_{\mathfrak {g}}(M; W))$}{equation.2.5.46}{}}
\@gls@reference{symbols}{1jota}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{45}}
\newlabel{prop:ClassicFunctionDerivativesAlongPsiEpsilon}{{2.5.15}{45}{Functional derivative along $\mathfrak {X}^\psi (\mathfrak {M}_{\mathfrak {g}}(M; W))$}{theorem.2.5.15}{}}
\newlabel{ClassicGaugeTrafoLeibnizRule}{{2.47}{45}{Functional derivative along $\mathfrak {X}^\psi (\mathfrak {M}_{\mathfrak {g}}(M; W))$}{equation.2.5.47}{}}
\newlabel{ClassicGaugeTrafoPullbackRelationtoEv}{{2.48}{45}{Functional derivative along $\mathfrak {X}^\psi (\mathfrak {M}_{\mathfrak {g}}(M; W))$}{equation.2.5.48}{}}
\newlabel{WecombineeverythingToAvoidStrictPullbacks}{{2.5.16}{45}{}{theorem.2.5.16}{}}
\newlabel{ClassicHiggsDerivation}{{2.49}{46}{Infinitesimal Gauge Invariance using connections}{equation.2.5.49}{}}
\newlabel{def:InfinitesimalGaugeTrafoClassicAsConnection}{{2.5.17}{47}{Infinitesimal gauge transformation}{theorem.2.5.17}{}}
\newlabel{thm:RecoverOfClassicInfgGaugeTrafo}{{2.5.19}{48}{Recover of classical definition of infinitesimal gauge transformation}{theorem.2.5.19}{}}
\newlabel{rem:BosonsAsFunctionalies}{{2.5.20}{48}{$\delta _\varepsilon A$ as transformation of a functional}{theorem.2.5.20}{}}
\BKM@entry{id=9,dest={636861707465722E33},srcline={1}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C303030795C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C30303073}
\BKM@entry{id=10,dest={73656374696F6E2E332E31},srcline={3}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C30303073}
\citation{DaSilva}
\citation{DaSilva}
\citation{DaSilva}
\citation{DaSilva}
\citation{Homomrho}
\citation{DaSilva}
\citation{DaSilva}
\citation{DaSilva}
\citation{DaSilva}
\citation{DaSilva}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}General theory of Lie algebroids}{51}{chapter.3}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{MathematicalBasics}{{3}{51}{General theory of Lie algebroids}{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Lie algebroids}{51}{section.3.1}\protected@file@percent }
\newlabel{LieAoids}{{3.1}{51}{Lie algebroids}{section.3.1}{}}
\newlabel{def:test}{{3.1.1}{51}{Lie algebroid, \cite [reduced definition of \S 16.1, page 113]{DaSilva}}{theorem.3.1.1}{}}
\@gls@reference{symbols}{E}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{51}}
\@gls@reference{symbols}{1rho}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{51}}
\@gls@reference{symbols}{0[]E}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{51}}
\newlabel{eq:E-Leibniz}{{3.1}{51}{Lie algebroid, \cite [reduced definition of \S 16.1, page 113]{DaSilva}}{equation.3.1.1}{}}
\newlabel{rem:TransitiveLieALgeoids}{{3.1.2}{51}{Transitive Lie algebroids, \cite [very beginning of \S 17; page 123]{DaSilva}}{theorem.3.1.2}{}}
\newlabel{ex:LAoidsGeneralizeLAAndTN}{{3.1.4}{51}{\cite [\S 16.2, page 114]{DaSilva}}{theorem.3.1.4}{}}
\newlabel{def:BasicCalculusOf LieAlgoide}{{3.1.5}{52}{Basic calculus on Lie algebroids $E$}{theorem.3.1.5}{}}
\@gls@reference{symbols}{Cbca}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{52}}
\@gls@reference{symbols}{Lie}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{52}}
\@gls@reference{symbols}{Lie}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{52}}
\@gls@reference{symbols}{1ZOmegas(E)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{52}}
\@gls@reference{symbols}{1ZOmegap(EV)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{52}}
\@gls@reference{symbols}{dE}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{52}}
\citation{DaSilva}
\citation{DaSilva}
\citation{Homomrho}
\citation{mackenzieGeneralTheory}
\citation{meinrenkensplitting}
\citation{mackenzieGeneralTheory}
\newlabel{def:GeneralDefOfCurvMorphisms}{{3.1.7}{53}{Curvature of morphisms, \newline \cite [variant of Definition 5.2.9; page 187]{mackenzieGeneralTheory}}{theorem.3.1.7}{}}
\@gls@reference{symbols}{Rxi}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{53}}
\citation{meinrenkenlie}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:DefOfAnchorPreservingStuff}{{3.1.9}{54}{Anchor-preserving vector bundle morphism, \newline \cite [\S 4.3, Equation (22); page 157]{mackenzieGeneralTheory}}{theorem.3.1.9}{}}
\newlabel{EqFuerAnchorBundleMorphisms}{{3.8}{54}{Anchor-preserving vector bundle morphism, \newline \cite [\S 4.3, Equation (22); page 157]{mackenzieGeneralTheory}}{equation.3.1.8}{}}
\newlabel{rem:SomeExtraNotationForAnchorBundleMorphs}{{3.1.10}{54}{Notations and base-preserving morphisms}{theorem.3.1.10}{}}
\citation{meinrenkenlie}
\citation{Homomrho}
\newlabel{lem:KruemmungenSindTensorenMitAnkerErhaltung}{{3.1.12}{55}{Curvatures are tensorial in case of anchor-preservation, \newline \cite [variant of Lemma 5.2.8; page 187]{mackenzieGeneralTheory}}{theorem.3.1.12}{}}
\newlabel{def:JacobiatorOfLieAlgebras}{{3.1.14}{55}{Jacobiator, \cite [Remark 6.12; page 35]{meinrenkenlie}}{theorem.3.1.14}{}}
\@gls@reference{symbols}{J}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{55}}
\newlabel{prop:MeasureofJacobiandHomom}{{3.1.16}{56}{Relation of Jacobiator and anchor, \cite [page 68]{Homomrho}}{theorem.3.1.16}{}}
\newlabel{rem:AnchorAHomom}{{3.1.17}{56}{Anchor is a Homomorphism}{theorem.3.1.17}{}}
\citation{DaSilva}
\citation{DaSilva}
\citation{DaSilva}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{DaSilva}
\newlabel{ex:BLA}{{3.1.18}{57}{Bundle of Lie algebras, \newline \cite [\S 16.2, Example 2; page 114]{DaSilva} and \cite [\S 16.3; page 116f.]{DaSilva}}{theorem.3.1.18}{}}
\@gls@reference{symbols}{BLA}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{57}}
\newlabel{def:LAB}{{3.1.19}{57}{Lie algebra bundle (LAB), \cite [Definition 3.3.8; page 104]{mackenzieGeneralTheory}}{theorem.3.1.19}{}}
\@gls@reference{symbols}{LAB}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{57}}
\newlabel{def:ActionLieAlgebroids}{{3.1.20}{57}{Action Lie algebroids, \cite [\S 16.2, Example 5; page 114]{DaSilva}}{theorem.3.1.20}{}}
\citation{DaSilva}
\newlabel{LieBracketActionLieAlg}{{3.13}{58}{Action Lie algebroids, \cite [\S 16.2, Example 5; page 114]{DaSilva}}{equation.3.1.13}{}}
\newlabel{prop:ActionLieoidsAreOids}{{3.1.22}{58}{Action Lie algebroids are Lie algebroids, \newline \cite [\S 16.2, Example 5; page 114]{DaSilva}}{theorem.3.1.22}{}}
\newlabel{ex:sutwoliealgactionasLiealgoid}{{3.1.24}{60}{$\mathrm {su}(2)$-action Lie algebroid, recall Ex. \ref {ex:sutwoliealgactionasLiealg} and its references}{theorem.3.1.24}{}}
\newlabel{ex:electroweakinteractionasLiealgoid}{{3.1.25}{60}{Electroweak interaction coupled to a Higgs field, \newline recall Ex. \ref {ex:electroweakinteractionasLiealg} and its references}{theorem.3.1.25}{}}
\citation{DaSilva}
\citation{DaSilva}
\newlabel{def:IsotropyForLieAlgeoids}{{3.1.26}{61}{Isotropies of Lie algebroids, \newline \cite [\S 16.1, comment after the remark on page 113]{DaSilva}}{theorem.3.1.26}{}}
\citation{DaSilva}
\BKM@entry{id=11,dest={73656374696F6E2E332E32},srcline={555}}{5C3337365C3337375C3030304D5C3030306F5C303030725C303030705C303030685C303030695C303030735C3030306D5C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C30303073}
\citation{mackenzieGeneralTheory}
\citation{meinrenkenlie}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Morphism of Lie algebroids}{62}{section.3.2}\protected@file@percent }
\newlabel{MorphsOfLieOids}{{3.2}{62}{Morphism of Lie algebroids}{section.3.2}{}}
\newlabel{def:BasePreservingMorphismOfLieAlgebroids}{{3.2.1}{62}{Base-preserving morphism of Lie algebroids, \newline \cite [\S 3.3, second part of Definition 3.3.1; page 100]{mackenzieGeneralTheory}}{theorem.3.2.1}{}}
\BKM@entry{id=12,dest={73656374696F6E2E332E33},srcline={582}}{5C3337365C3337375C303030445C303030655C303030725C303030695C303030765C303030615C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C3030306F5C3030306E5C3030305C3034305C303030615C3030305C3034305C303030765C303030655C303030635C303030745C3030306F5C303030725C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C30303065}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Derivations on vector bundles $V$}{63}{section.3.3}\protected@file@percent }
\newlabel{DerivationsOnvector}{{3.3}{63}{\texorpdfstring {Derivations on vector bundles $V$}{Derivations on a vector bundle}}{section.3.3}{}}
\newlabel{def:DifferentialOperatorsOfLieAlgebroids}{{3.3.1}{63}{Derivations on a vector bundle at a fixed point, \newline \cite [variation of Example 3.3.4, page 102f.]{mackenzieGeneralTheory}}{theorem.3.3.1}{}}
\@gls@reference{symbols}{DApV}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{63}}
\newlabel{RemDerivationsatapointarelocally}{{3.3.2}{63}{}{theorem.3.3.2}{}}
\citation{basicconn}
\newlabel{def:DerivationsOnV}{{3.3.3}{64}{Derivations on a vector bundle $V$, \newline \cite [Example 3.3.4; page 102f.]{mackenzieGeneralTheory}}{theorem.3.3.3}{}}
\newlabel{eqDerivationsLiftASuperDuperVectorField}{{3.18}{64}{Derivations on a vector bundle $V$, \newline \cite [Example 3.3.4; page 102f.]{mackenzieGeneralTheory}}{equation.3.3.18}{}}
\newlabel{prop:IsomorphismofDerivationonVectorbundleatabasepoint}{{3.3.5}{64}{Isomorphisms of the space of derivations of $V$ at $p$, \newline \cite [Example 3.10]{basicconn}}{theorem.3.3.5}{}}
\newlabel{EqFibrewisesupderduperisomorphismofderivations}{{3.21}{64}{\texorpdfstring {Derivations on vector bundles $V$}{Derivations on a vector bundle}}{equation.3.3.21}{}}
\citation{mackenzieGeneralTheory}
\citation{basicconn}
\citation{mackenzieGeneralTheory}
\newlabel{lem:LemmaVectorbundlestructureofDV}{{3.3.7}{65}{Vector bundle of derivations, \newline \cite [variation of the introduction in Example 3.3.4, page 102f.]{mackenzieGeneralTheory} and \cite [Example 3.10]{basicconn}}{theorem.3.3.7}{}}
\citation{mackenzieGeneralTheory}
\newlabel{def:LieAlgebroidOfDerivations}{{3.3.8}{66}{The bundle of derivations, \newline \cite [variation of Example 3.3.4, page 102f.]{mackenzieGeneralTheory}}{theorem.3.3.8}{}}
\@gls@reference{symbols}{DAV}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{66}}
\newlabel{prop:LieAlgebroidOfDerivationOnV}{{3.3.9}{66}{Lie algebroid structure on $\mathcal {D}(V)$,\newline \cite [Example 3.3.4, page 102f.]{mackenzieGeneralTheory}}{theorem.3.3.9}{}}
\@gls@reference{symbols}{a1}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{66}}
\citation{meinrenkensplitting}
\citation{mackenzieGeneralTheory}
\citation{Highervectorbundles}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:LinearVectorFieldsOnVectorBundles}{{3.3.11}{68}{Linear vector fields, \cite [Definition 3.4.1; page 113]{mackenzieGeneralTheory}}{theorem.3.3.11}{}}
\newlabel{LiftingVectorFieldsByLinearOnes}{{3.28}{68}{Linear vector fields, \cite [Definition 3.4.1; page 113]{mackenzieGeneralTheory}}{equation.3.3.28}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{LinearityOfLinearVectorFields}{{3.29}{69}{Linear vector fields, \cite [Definition 3.4.1; page 113]{mackenzieGeneralTheory}}{equation.3.3.29}{}}
\newlabel{rem:CoordinateOnTangentStuffFOrLinearVectorFields}{{3.3.12}{69}{Coordinates on $\mathrm {T}V$}{theorem.3.3.12}{}}
\newlabel{prop:ActionOfLinearVecFields}{{3.3.13}{69}{Action of linear vector fields, \newline \cite [first two statements of Proposition 3.4.2; page 113f.]{mackenzieGeneralTheory}}{theorem.3.3.13}{}}
\citation{mackenzieGeneralTheory}
\citation{hamilton}
\citation{hamilton}
\newlabel{cor:LinFieldsAsClosedSubalge}{{3.3.14}{71}{Linear vector fields are a subalgebra, \newline \cite [Corollary 3.4.3; page 114]{mackenzieGeneralTheory}}{theorem.3.3.14}{}}
\citation{meinrenkensplitting}
\citation{mackenzieGeneralTheory}
\newlabel{thm:DerivationsSindEigentlichLineareVektorfelderKrass}{{3.3.15}{72}{Derivations as linear vector fields, \newline \cite [Theorem 3.4.5; page 116]{mackenzieGeneralTheory}}{theorem.3.3.15}{}}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=13,dest={73656374696F6E2E332E34},srcline={1401}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{basicconn}
\citation{ELeviCivita}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}Lie algebroid connections}{73}{section.3.4}\protected@file@percent }
\newlabel{SubsectionEDiffstuff}{{3.4}{73}{Lie algebroid connections}{section.3.4}{}}
\newlabel{def:Econnection}{{3.4.1}{73}{$E$-connection, $E$-curvature and $E$-torsion, \newline \cite [variation of Definition 5.2.5; page 186]{mackenzieGeneralTheory} \newline \cite [variation of Definition 5.2.9; page 187]{mackenzieGeneralTheory} \newline \cite [\S 4.1, trivial generalization of Equation (14); page 154]{mackenzieGeneralTheory}}{theorem.3.4.1}{}}
\@gls@reference{symbols}{0nablaE}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{73}}
\@gls@reference{symbols}{RnablaE}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{74}}
\@gls@reference{symbols}{tEnabla}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{74}}
\citation{ELeviCivita}
\citation{hamilton}
\citation{mackenzieGeneralTheory}
\newlabel{ex:NablaRhoConnection}{{3.4.3}{75}{Canonically induced $E$-connection, \newline \cite [first example in Example 2.8]{ELeviCivita}}{theorem.3.4.3}{}}
\@gls@reference{symbols}{0nablarho}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{75}}
\newlabel{ex:DualEConns}{{3.4.4}{75}{Dual Lie algebroid connections,\newline very typical construction forcing the Leibniz rule as in \cite [Definition 2.1.36, but using connections; page 96]{hamilton}}{theorem.3.4.4}{}}
\newlabel{cor:FlatConnectionsAreLieAlgebroidMorphisms}{{3.4.5}{75}{Flat connections, \cite [\S 5.2, Definition 5.2.9; page 187]{mackenzieGeneralTheory}}{theorem.3.4.5}{}}
\citation{LangeIstEsHerMitDerRaumzeit}
\citation{mackenzieGeneralTheory}
\newlabel{thm:1stBianchi}{{3.4.6}{76}{Bianchi identities, \newline \cite [Satz 8.3, generalization of second statement there; page 90]{LangeIstEsHerMitDerRaumzeit} \newline \cite [reformulation of Proposition 7.1.9; page 265]{mackenzieGeneralTheory}}{theorem.3.4.6}{}}
\newlabel{eq:firstBianchi}{{3.36}{76}{Bianchi identities, \newline \cite [Satz 8.3, generalization of second statement there; page 90]{LangeIstEsHerMitDerRaumzeit} \newline \cite [reformulation of Proposition 7.1.9; page 265]{mackenzieGeneralTheory}}{equation.3.4.36}{}}
\BKM@entry{id=14,dest={73656374696F6E2E332E35},srcline={1606}}{5C3337365C3337375C303030505C303030755C3030306C5C3030306C5C303030625C303030615C303030635C3030306B5C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{ELeviCivita}
\citation{ELeviCivita}
\@writefile{toc}{\contentsline {section}{\numberline {3.5}Pullbacks of Lie algebroid connections}{77}{section.3.5}\protected@file@percent }
\newlabel{PullbacksAlsoGeneral}{{3.5}{77}{Pullbacks of Lie algebroid connections}{section.3.5}{}}
\newlabel{def:EPaths}{{3.5.1}{77}{$E$-paths, \cite [\S 2, Definition 2.4]{ELeviCivita}}{theorem.3.5.1}{}}
\newlabel{SectionsAlongCurvesAreCurvePullbacksections}{{3.5.2}{77}{}{theorem.3.5.2}{}}
\newlabel{prop:PullBackEconnAlongEPaths}{{3.5.3}{78}{Pull-back of an $E$-connection along an $E$-path, \newline \cite [\S 2, comment before Definition 2.4]{ELeviCivita}}{theorem.3.5.3}{}}
\newlabel{eqPullbackEconnectioncondition}{{3.39}{78}{Pull-back of an $E$-connection along an $E$-path, \newline \cite [\S 2, comment before Definition 2.4]{ELeviCivita}}{equation.3.5.39}{}}
\newlabel{RemarkNotationvonPullbackConnection}{{3.5.4}{78}{}{theorem.3.5.4}{}}
\citation{ELeviCivita}
\newlabel{prop:DerivationAlongEPath}{{3.5.5}{79}{Derivations of sections along $E$-paths, \newline \cite [\S 2, beginning of subsection 2.3; there $\mathrm {D}/\mathrm {d}t$ is denoted as $\nabla ^\alpha $]{ELeviCivita}}{theorem.3.5.5}{}}
\@gls@reference{symbols}{Ddt}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{79}}
\newlabel{ParameterderivativeonCurvePullbackSections}{{3.42}{79}{Derivations of sections along $E$-paths, \newline \cite [\S 2, beginning of subsection 2.3; there $\mathrm {D}/\mathrm {d}t$ is denoted as $\nabla ^\alpha $]{ELeviCivita}}{equation.3.5.42}{}}
\newlabel{DdtGleichddt}{{3.5.6}{79}{}{theorem.3.5.6}{}}
\citation{meinrenkenlie}
\newlabel{cor:GeneralPullbackAnchorPreserving}{{3.5.7}{80}{Pullbacks of Lie algebroid connections by anchor-preserving morphisms}{theorem.3.5.7}{}}
\newlabel{GeneralPullbackDef}{{3.43}{80}{Pullbacks of Lie algebroid connections by anchor-preserving morphisms}{equation.3.5.43}{}}
\newlabel{1to1AnchorPresAndEpAth}{{3.44}{80}{}{equation.3.5.44}{}}
\newlabel{cor:VeryGeneralPullbackConnection}{{3.5.9}{81}{Pullbacks of connections just differentiating along one vector field}{theorem.3.5.9}{}}
\newlabel{WeakAnchorPreserv}{{3.45}{81}{Pullbacks of connections just differentiating along one vector field}{equation.3.5.45}{}}
\newlabel{rem:CommutingDiagramOfPullbacks}{{3.5.10}{81}{Commutating diagram behind pullbacks}{theorem.3.5.10}{}}
\BKM@entry{id=15,dest={73656374696F6E2E332E36},srcline={1870}}{5C3337365C3337375C303030435C3030306F5C3030306E5C3030306A5C303030755C303030675C303030615C303030745C303030655C303030645C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{basicconn}
\citation{blaomTangentBundleAsLieGroup}
\citation{blaomTangentBundleAsLieGroup}
\newlabel{JustLieDerivativeForGeneralPullbackAndlineBundle}{{3.5.11}{82}{}{theorem.3.5.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.6}Conjugated $E$-connections}{82}{section.3.6}\protected@file@percent }
\newlabel{ConjugateConnections}{{3.6}{82}{\texorpdfstring {Conjugated $E$-connections}{Conjugated Lie algebroid connections}}{section.3.6}{}}
\newlabel{def:ConjugationOfConnections}{{3.6.1}{82}{Conjugated $E$-connections, \newline \cite [beginning of \S 4.6]{blaomTangentBundleAsLieGroup}}{theorem.3.6.1}{}}
\citation{blaomTangentBundleAsLieGroup}
\citation{blaomTangentBundleAsLieGroup}
\newlabel{cor:TorsionOfDualTorsions}{{3.6.3}{83}{Torsion of conjugated $E$-connections \newline \cite [first statement in the first proposition of \S 4.6]{blaomTangentBundleAsLieGroup}}{theorem.3.6.3}{}}
\citation{basicconn}
\newlabel{lem:CurvatureOfDualConnectionsGeneral}{{3.6.4}{84}{Curvature of conjugated $E$-connections, \newline the first identity comes from \cite [second statement of the first proposition in \S 4.6]{blaomTangentBundleAsLieGroup}}{theorem.3.6.4}{}}
\newlabel{DualCurvaRemainin1}{{3.51}{84}{Curvature of conjugated $E$-connections, \newline the first identity comes from \cite [second statement of the first proposition in \S 4.6]{blaomTangentBundleAsLieGroup}}{equation.3.6.51}{}}
\newlabel{DualCurvaRemainin2}{{3.52}{84}{Curvature of conjugated $E$-connections, \newline the first identity comes from \cite [second statement of the first proposition in \S 4.6]{blaomTangentBundleAsLieGroup}}{equation.3.6.52}{}}
\citation{blaomTangentBundleAsLieGroup}
\newlabel{cor:LemmaCurvatureOfDualConnections}{{3.6.6}{85}{Curvature of conjugated $E$-connections where one connection is flat, \newline \cite [second and third statement of the first proposition in \S 4.6]{blaomTangentBundleAsLieGroup}}{theorem.3.6.6}{}}
\BKM@entry{id=16,dest={73656374696F6E2E332E37},srcline={2116}}{5C3337365C3337375C303030425C303030615C303030735C303030695C303030635C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030625C303030615C303030735C303030695C303030635C3030305C3034305C303030635C303030755C303030725C303030765C303030615C303030745C303030755C303030725C30303065}
\citation{basicconn}
\citation{fernandes}
\citation{basicconn}
\newlabel{cor:TOrsionCanBeLieBracketIfFlat}{{3.6.7}{86}{Torsion as Lie bracket}{theorem.3.6.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.7}Basic connection and the basic curvature}{86}{section.3.7}\protected@file@percent }
\newlabel{SectionOfBasicConnStuff}{{3.7}{86}{Basic connection and the basic curvature}{section.3.7}{}}
\newlabel{def:CanonicalBasicConnection}{{3.7.1}{86}{Basic connection, \cite [Definition 2.9]{basicconn}}{theorem.3.7.1}{}}
\@gls@reference{symbols}{0nablabas}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{86}}
\citation{CurvedYMH}
\citation{basicconn}
\citation{CurvedYMH}
\citation{basicconn}
\citation{basicconn}
\newlabel{cor:ENablaMitRhoVertauschung}{{3.7.3}{87}{Compatibility of the basic connection with the anchor, \newline \cite [comment after Definition 2.9]{basicconn}}{theorem.3.7.3}{}}
\newlabel{def:basiccurvature}{{3.7.4}{87}{Basic curvature, \cite [Definition 2.10]{basicconn}}{theorem.3.7.4}{}}
\@gls@reference{symbols}{Rnablabas}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{87}}
\citation{basicconn}
\citation{CurvedYMH}
\citation{blaomTangentBundleAsLieGroup}
\newlabel{prop:SnablamitREnabla}{{3.7.6}{88}{Relations between the curvatures, \newline \cite [Proposition 2.11]{basicconn}, \cite [Equation (9)]{CurvedYMH}, \cite [generalization of second statement of the first proposition in \S 4.6]{blaomTangentBundleAsLieGroup}}{theorem.3.7.6}{}}
\newlabel{eq:compcondfast}{{3.59}{88}{Relations between the curvatures, \newline \cite [Proposition 2.11]{basicconn}, \cite [Equation (9)]{CurvedYMH}, \cite [generalization of second statement of the first proposition in \S 4.6]{blaomTangentBundleAsLieGroup}}{equation.3.7.59}{}}
\newlabel{rem:vanishingbasicconn}{{3.7.7}{89}{}{theorem.3.7.7}{}}
\BKM@entry{id=17,dest={73656374696F6E2E332E38},srcline={2483}}{5C3337365C3337375C303030455C303030785C303030745C303030655C303030725C303030695C3030306F5C303030725C3030305C3034305C303030635C3030306F5C303030765C303030615C303030725C303030695C303030615C3030306E5C303030745C3030305C3034305C303030645C303030655C303030725C303030695C303030765C303030615C303030745C303030695C303030765C303030655C30303073}
\citation{basicconn}
\newlabel{thm:modBianchithm}{{3.7.8}{90}{Curvature of $\nabla _\rho $ for a vanishing basic curvature}{theorem.3.7.8}{}}
\newlabel{eq:BaufOrbit}{{3.61}{90}{Curvature of $\nabla _\rho $ for a vanishing basic curvature}{equation.3.7.61}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.8}Exterior covariant derivatives}{90}{section.3.8}\protected@file@percent }
\newlabel{ExteriorCovariantDerivativesAoids}{{3.8}{90}{Exterior covariant derivatives}{section.3.8}{}}
\newlabel{def:AllgemeineExteriorCovariantDerivativeSch}{{3.8.1}{91}{Exterior covariant derivatives using Lie algebroid connections, \newline \cite [the discussion after Def. 2.2]{basicconn}}{theorem.3.8.1}{}}
\@gls@reference{symbols}{dEnabla}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{91}}
\newlabel{def:ExteriorCovariantDerivatives}{{3.8.3}{91}{$(p,q)$-$E$-forms}{theorem.3.8.3}{}}
\@gls@reference{symbols}{1ZOmegapq(NEV)}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{91}}
\newlabel{rem:ExteriorStuffRemark}{{3.8.4}{91}{Exterior covariant derivatives induced by $\nabla $}{theorem.3.8.4}{}}
\newlabel{FirstInterpretationOfDoubleDegree}{{3.64}{91}{Exterior covariant derivatives induced by $\nabla $}{equation.3.8.64}{}}
\newlabel{SecondInterpretationOfDoubleDegree}{{3.65}{92}{Exterior covariant derivatives induced by $\nabla $}{equation.3.8.65}{}}
\citation{mackenzieGeneralTheory}
\newlabel{lem:commutationanchordifferential}{{3.8.5}{93}{Differential of basic curvature commutes with anchor}{theorem.3.8.5}{}}
\newlabel{thm:2ndBianchi}{{3.8.6}{93}{Second Bianchi identity, \newline \cite [reformulation of Proposition 7.1.9; page 265]{mackenzieGeneralTheory}}{theorem.3.8.6}{}}
\newlabel{rem:FinallyTheOtherBianchiStuff}{{3.8.7}{94}{Proof of the second Bianchi identity of Thm.~\ref {thm:1stBianchi}}{theorem.3.8.7}{}}
\newlabel{prop:commutationrelation}{{3.8.9}{95}{Commutation relation}{theorem.3.8.9}{}}
\newlabel{eq:flatcommutation}{{3.72}{96}{}{equation.3.8.72}{}}
\newlabel{def:differential1}{{3.73}{96}{}{equation.3.8.73}{}}
\newlabel{def:differential2}{{3.74}{96}{}{equation.3.8.74}{}}
\@gls@reference{symbols}{1jota}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{97}}
\newlabel{cor:commutationS=0}{{3.8.11}{97}{Commutation for vanishing basic curvature}{theorem.3.8.11}{}}
\newlabel{EasyDifferentialCommutationSGleichNuuull}{{3.76}{97}{Commutation for vanishing basic curvature}{equation.3.8.76}{}}
\BKM@entry{id=18,dest={73656374696F6E2E332E39},srcline={3041}}{5C3337365C3337375C303030445C303030695C303030725C303030655C303030635C303030745C3030305C3034305C303030705C303030725C3030306F5C303030645C303030755C303030635C303030745C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C30303073}
\citation{meinrenkenlie}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{meinrenkenlie}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {section}{\numberline {3.9}Direct product of Lie algebroids}{98}{section.3.9}\protected@file@percent }
\newlabel{DirectProdsOfLieAlgoids}{{3.9}{98}{Direct product of Lie algebroids}{section.3.9}{}}
\@gls@reference{symbols}{pri}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{98}}
\newlabel{lem:LemmaUniquenessOfDirectProductStructure}{{3.9.1}{98}{Uniqueness of the Lie algebroid structure on $E_1 \times E_2$, \newline \cite [Lemma 6.25]{meinrenkenlie} \newline \cite [beginning of \S 4.2; page 155]{mackenzieGeneralTheory}}{theorem.3.9.1}{}}
\newlabel{defGenerationOfDirectProductSections}{{3.77}{98}{Uniqueness of the Lie algebroid structure on $E_1 \times E_2$, \newline \cite [Lemma 6.25]{meinrenkenlie} \newline \cite [beginning of \S 4.2; page 155]{mackenzieGeneralTheory}}{equation.3.9.77}{}}
\newlabel{1defLieBracketOfDirectProductAlgebroids}{{3.78}{99}{Direct product of Lie algebroids}{equation.3.9.78}{}}
\newlabel{def:DirecProductOfLieAlgebroids}{{3.9.3}{100}{Direct product of Lie algebroids}{theorem.3.9.3}{}}
\newlabel{ex:ExamplesOfDirectProductsLieAoids}{{3.9.4}{100}{Examples of direct products of Lie algebroids}{theorem.3.9.4}{}}
\newlabel{lem:LiftsOfProjections}{{3.9.5}{101}{Projections have lifts to anchor-preserving morphisms}{theorem.3.9.5}{}}
\newlabel{rem:NotationAboutProductStructures}{{3.9.7}{102}{Products of inherited structures}{theorem.3.9.7}{}}
\newlabel{ProductOfObjects}{{3.79}{102}{Products of inherited structures}{equation.3.9.79}{}}
\BKM@entry{id=19,dest={73656374696F6E2E332E3130},srcline={3281}}{5C3337365C3337375C303030535C303030705C3030306C5C303030695C303030745C303030745C303030695C3030306E5C303030675C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C303030655C3030306D5C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C30303073}
\citation{DaSilva}
\citation{DaSilva}
\citation{DaSilva}
\citation{meinrenkensplitting}
\citation{DaSilva}
\@writefile{toc}{\contentsline {section}{\numberline {3.10}Splitting theorem for Lie algebroids}{103}{section.3.10}\protected@file@percent }
\newlabel{SectionAboutSplitting}{{3.10}{103}{Splitting theorem for Lie algebroids}{section.3.10}{}}
\newlabel{def:RegularPointsOfVectorBundleMorphisms}{{3.10.1}{103}{Singular and regular points of vector bundle morphisms, \newline \cite [\S 4; generalization of third remark after Theorem 4.1; page 17]{DaSilva}}{theorem.3.10.1}{}}
\@gls@reference{symbols}{Rzk}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{103}}
\@gls@reference{symbols}{Im}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{103}}
\citation{DaSilva}
\citation{fernandes}
\citation{meinrenkensplitting}
\newlabel{prop:RegularPointsAreDense}{{3.10.2}{104}{Amount of singular and regular points, \newline \cite [generalization of second remark after Theorem 4.1; page 17]{DaSilva}}{theorem.3.10.2}{}}
\citation{meinrenkensplitting}
\newlabel{thm:DirectSplitting}{{3.10.4}{105}{Splitting theorem around regular points, \cite [Corollary 4.2]{meinrenkensplitting}}{theorem.3.10.4}{}}
\newlabel{rem:LocalSplittingFrame}{{3.10.5}{105}{Local frame of the splitting theorem}{theorem.3.10.5}{}}
\citation{parallelFrameEconn}
\newlabel{lem:ParallelFramesForEConnections}{{3.10.6}{106}{Parallel frames of flat Lie algebroid connections around regular points, \newline \cite [Lemma 2.9]{parallelFrameEconn}}{theorem.3.10.6}{}}
\BKM@entry{id=20,dest={73656374696F6E2E332E3131},srcline={3447}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C303030615C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\BKM@entry{id=21,dest={73756273656374696F6E2E332E31312E31},srcline={3453}}{5C3337365C3337375C3030304E5C3030306F5C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030735C303030695C3030306D5C303030695C3030306C5C303030615C303030725C3030305C3034305C303030745C3030306F5C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C303030615C30303073}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {section}{\numberline {3.11}Lie algebra bundles}{107}{section.3.11}\protected@file@percent }
\newlabel{SectionOfLABStuff}{{3.11}{107}{Lie algebra bundles}{section.3.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.11.1}Notions similar to Lie algebras}{107}{subsection.3.11.1}\protected@file@percent }
\newlabel{prop:SubLABS}{{3.11.1}{107}{sub-LABs, \cite [Proposition 3.3.9; page 105]{mackenzieGeneralTheory}}{theorem.3.11.1}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{ex:CentreOfLABK}{{3.11.3}{108}{Centres of LABs, \newline \cite [first parapgraph after Proposition 3.3.9; page 105]{mackenzieGeneralTheory}}{theorem.3.11.3}{}}
\@gls@reference{symbols}{ZLAB}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{108}}
\newlabel{ex:DerivationsOFLABSK}{{3.11.4}{108}{Derivations of LABs, \newline \cite [second and third parapgraph after Proposition 3.3.9, and discussion around Proposition 3.3.10; page 105]{mackenzieGeneralTheory}}{theorem.3.11.4}{}}
\@gls@reference{symbols}{DAerK}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{109}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=22,dest={73756273656374696F6E2E332E31312E32},srcline={3557}}{5C3337365C3337375C303030455C303030785C303030745C303030655C3030306E5C303030735C303030695C3030306F5C3030306E5C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030615C3030306E5C303030675C303030655C3030306E5C303030745C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C303030735C3030305C3034305C303030775C303030695C303030745C303030685C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C303030615C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\citation{mackenzieGeneralTheory}
\@gls@reference{symbols}{adK}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{110}}
\newlabel{def:IdealsOfLABSK}{{3.11.6}{110}{Ideals of LABs, \cite [Definition 3.3.11; page 106]{mackenzieGeneralTheory}}{theorem.3.11.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.11.2}Extensions of tangent bundles with Lie algebra bundles}{110}{subsection.3.11.2}\protected@file@percent }
\newlabel{def:ExtensionOfTNByLABs}{{3.11.7}{110}{Extension of tangent bundles by LABs and transversals, \newline \cite [\S 7.1, Definition 7.1.11; page 266; and Definition 7.3.1; page 277]{mackenzieGeneralTheory}}{theorem.3.11.7}{}}
\newlabel{defShortExactSeqExtensionOfTNByK}{{3.82}{110}{Extension of tangent bundles by LABs and transversals, \newline \cite [\S 7.1, Definition 7.1.11; page 266; and Definition 7.3.1; page 277]{mackenzieGeneralTheory}}{equation.3.11.82}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{ex:DerivationsAreExtensions}{{3.11.9}{111}{Derivations as extension and connections as transversal, \newline \cite [second statement of Corollary 3.6.11; page 140]{mackenzieGeneralTheory}}{theorem.3.11.9}{}}
\newlabel{ExtensioNofDerivations}{{3.83}{111}{Derivations as extension and connections as transversal, \newline \cite [second statement of Corollary 3.6.11; page 140]{mackenzieGeneralTheory}}{equation.3.11.83}{}}
\citation{mackenzieGeneralTheory}
\@gls@reference{symbols}{DAVDerK}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{112}}
\newlabel{SequenceForBracketDerivations}{{3.84}{112}{Derivations as extension and connections as transversal, \newline \cite [second statement of Corollary 3.6.11; page 140]{mackenzieGeneralTheory}}{equation.3.11.84}{}}
\newlabel{def:IdealsOfTransitiveLieAlgebroids}{{3.11.10}{112}{Ideals of transitive Lie algebroids, \newline \cite [Definition 6.5.6; page 250]{mackenzieGeneralTheory}}{theorem.3.11.10}{}}
\citation{mackenzieGeneralTheory}
\newlabel{prop:QuotientsOfTransitiveLAOids}{{3.11.12}{113}{Quotient Lie algebroids of transitive Lie algebroids, \newline \cite [Proposition 6.5.8]{mackenzieGeneralTheory}}{theorem.3.11.12}{}}
\newlabel{SharpRestricted}{{3.87}{113}{Quotient Lie algebroids of transitive Lie algebroids, \newline \cite [Proposition 6.5.8]{mackenzieGeneralTheory}}{equation.3.11.87}{}}
\newlabel{rem:LabelOfQuotient}{{3.11.13}{114}{}{theorem.3.11.13}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{ex:OuterDerivationsOfK}{{3.11.14}{115}{Outer bracket derivations of K, \newline \cite [Definition 7.2.1 and Equation (7); page 271]{mackenzieGeneralTheory}}{theorem.3.11.14}{}}
\@gls@reference{symbols}{OutKA}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{115}}
\@gls@reference{symbols}{OutKDDerK}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{115}}
\newlabel{ex:BigCoolDiagramOfMackenzieAboutLABsStuff}{{3.11.15}{116}{Summary of Section \ref {SectionOfLABStuff}, \newline \cite [\S 7.2, Figure 7.1; page 272; we omit the labels of the inclusion arrows]{mackenzieGeneralTheory}}{theorem.3.11.15}{}}
\BKM@entry{id=23,dest={636861707465722E34},srcline={1}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C303030695C3030307A5C303030655C303030645C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C30303079}
\citation{DaSilva}
\citation{hamilton}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Generalized gauge theory}{117}{chapter.4}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{GeneralizedGTfas}{{4}{117}{Generalized gauge theory}{chapter.4}{}}
\newlabel{def:GradingOfProducts}{{4.0.1}{118}{Graded extension of products, \newline \cite [generalization of Definition 5.5.3; page 275]{hamilton}}{theorem.4.0.1}{}}
\newlabel{CoordExprOfGradedExtension}{{4.1}{118}{Graded extension of products, \newline \cite [generalization of Definition 5.5.3; page 275]{hamilton}}{equation.4.0.1}{}}
\newlabel{EqPullBackFormelFuerVerschiedeneDefinitionen}{{4.2}{118}{}{equation.4.0.2}{}}
\citation{hamilton}
\BKM@entry{id=24,dest={73656374696F6E2E342E31},srcline={135}}{5C3337365C3337375C303030535C303030705C303030615C303030635C303030655C3030305C3034305C3030306F5C303030665C3030305C3034305C303030665C303030695C303030655C3030306C5C303030645C30303073}
\newlabel{prop:GradedExtensionPlusAntiSymm}{{4.0.3}{119}{Graded extensions of antisymmetric tensors}{theorem.4.0.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Space of fields}{119}{section.4.1}\protected@file@percent }
\newlabel{SpaceOfFieldsSection}{{4.1}{119}{Space of fields}{section.4.1}{}}
\newlabel{def:SpaceOfFields}{{4.1.1}{119}{Space of fields}{theorem.4.1.1}{}}
\@gls@reference{symbols}{MSpaceOfFields}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{119}}
\@gls@reference{symbols}{a0}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{119}}
\@gls@reference{symbols}{1vhi}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{119}}
\newlabel{prop:TangentSpaceOfSpaceOfFields}{{4.1.2}{120}{Tangent space of $\mathfrak {M}_E(M; N)$}{theorem.4.1.2}{}}
\newlabel{rem:TangentCommutingDiagram}{{4.1.3}{120}{Total situation as commuting diagram}{theorem.4.1.3}{}}
\newlabel{AGaugeTrafoIsOverA}{{4.8}{120}{Total situation as commuting diagram}{equation.4.1.8}{}}
\newlabel{HorizontalCompOfDeltaA}{{4.9}{120}{Total situation as commuting diagram}{equation.4.1.9}{}}
\newlabel{RemarkAboutThatWeStillHaveLinearStructureinDeltaA}{{4.1.4}{121}{}{theorem.4.1.4}{}}
\citation{hamilton}
\@gls@reference{symbols}{VF}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{123}}
\newlabel{prop:VerticalBundleOfFracM}{{4.1.5}{123}{Vertical bundle of $\mathfrak {M}_E(M; N)$}{theorem.4.1.5}{}}
\newlabel{def:EvaluationMap}{{4.1.6}{124}{Evaluation map of $M \times \mathfrak {M}_E$}{theorem.4.1.6}{}}
\newlabel{rem:Bigrading}{{4.1.7}{125}{Bigrading of forms on $M \times \mathfrak {M}_E$}{theorem.4.1.7}{}}
\newlabel{SliceOfBIiiigManifold}{{4.17}{125}{Bigrading of forms on $M \times \mathfrak {M}_E$}{equation.4.1.17}{}}
\newlabel{def:FunctionalsAsForms}{{4.1.9}{126}{Space of functionals in gauge theory}{theorem.4.1.9}{}}
\@gls@reference{symbols}{Fk}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{126}}
\newlabel{ex:ProjectionOntoGaugeBosonies}{{4.1.11}{126}{Projection onto the field of gauge bosons}{theorem.4.1.11}{}}
\@gls@reference{symbols}{1pivar}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{126}}
\newlabel{ex:DAsFunctional}{{4.1.12}{126}{Tangent map, total differential as functional}{theorem.4.1.12}{}}
\@gls@reference{symbols}{D}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{126}}
\newlabel{rem:NotionsOnFunctionals}{{4.1.13}{127}{Notions on $\mathcal {F}^k_E$ and further pullbacks with $\mathrm {ev}$}{theorem.4.1.13}{}}
\newlabel{DGleichDev}{{4.21}{127}{Notions on $\mathcal {F}^k_E$ and further pullbacks with $\mathrm {ev}$}{equation.4.1.21}{}}
\newlabel{def:PullbacksAsFunctionals}{{4.1.14}{128}{Pullbacks as functionals}{theorem.4.1.14}{}}
\@gls@reference{symbols}{0*omega}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{128}}
\@gls@reference{symbols}{0*nabla}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{128}}
\@gls@reference{symbols}{0!omega}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{128}}
\BKM@entry{id=25,dest={73656374696F6E2E342E32},srcline={734}}{5C3337365C3337375C303030505C303030685C303030795C303030735C303030695C303030635C303030615C3030306C5C3030305C3034305C303030515C303030755C303030615C3030306E5C303030745C303030695C303030745C303030695C303030655C30303073}
\citation{CurvedYMH}
\citation{CurvedYMH}
\newlabel{ex:AnchorAsFunctional}{{4.1.16}{129}{Anchor as functional}{theorem.4.1.16}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Physical Quantities}{129}{section.4.2}\protected@file@percent }
\newlabel{NewPhysicQuants}{{4.2}{129}{Physical Quantities}{section.4.2}{}}
\newlabel{def:EichbosonenUndFeldstaerke}{{4.2.1}{129}{Field of gauge bosons and their field strength, \newline \cite [especially Eq.~(11); $\Phi $ is denoted as $X$ there]{CurvedYMH}}{theorem.4.2.1}{}}
\@gls@reference{symbols}{F}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{129}}
\newlabel{DefOfCovariantizedFieldStrengthF}{{4.30}{129}{Field of gauge bosons and their field strength, \newline \cite [especially Eq.~(11); $\Phi $ is denoted as $X$ there]{CurvedYMH}}{equation.4.2.30}{}}
\newlabel{RemarkUeberDefinitionVonNormalerFeldUndA}{{4.2.2}{129}{}{theorem.4.2.2}{}}
\citation{CurvedYMH}
\newlabel{StandardFDef}{{4.31}{130}{}{equation.4.2.31}{}}
\newlabel{def:MinimalCoupling}{{4.2.3}{130}{Minimal coupling, \cite [Eq.~(3), $\Phi $ is denoted as $X$ there]{CurvedYMH}}{theorem.4.2.3}{}}
\newlabel{MinimalCouplingInKurz}{{4.32}{130}{Minimal coupling, \cite [Eq.~(3), $\Phi $ is denoted as $X$ there]{CurvedYMH}}{equation.4.2.32}{}}
\@gls@reference{symbols}{DAPhi}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{130}}
\citation{CurvedYMH}
\citation{CurvedYMH}
\newlabel{def:CurvedYMHLagrangian}{{4.2.5}{131}{Yang-Mills-Higgs Lagrangian, \newline \cite [Eq.~(2) and (16); but a different field strength there which we will introduce later]{CurvedYMH}}{theorem.4.2.5}{}}
\@gls@reference{symbols}{LYMH}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{131}}
\newlabel{cor:StandardTheory}{{4.2.6}{131}{Standard theory as action Lie algebroid, as motivated in \cite {CurvedYMH}}{theorem.4.2.6}{}}
\BKM@entry{id=26,dest={73656374696F6E2E342E33},srcline={1359}}{5C3337365C3337375C303030495C3030306E5C303030665C303030695C3030306E5C303030695C303030745C303030655C303030735C303030695C3030306D5C303030615C3030306C5C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C30303073}
\BKM@entry{id=27,dest={73756273656374696F6E2E342E332E31},srcline={1361}}{5C3337365C3337375C303030495C3030306E5C303030665C303030695C3030306E5C303030695C303030745C303030655C303030735C303030695C3030306D5C303030615C3030306C5C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030485C303030695C303030675C303030675C303030735C3030305C3034305C303030665C303030695C303030655C3030306C5C30303064}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Infinitesimal gauge transformations}{132}{section.4.3}\protected@file@percent }
\newlabel{InfinitesimalGaugeTransformation}{{4.3}{132}{Infinitesimal gauge transformations}{section.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Infinitesimal gauge transformation of the Higgs field}{132}{subsection.4.3.1}\protected@file@percent }
\newlabel{def:VectorFieldAlongEPaths}{{4.3.1}{133}{Vector fields along Lie algebroid paths}{theorem.4.3.1}{}}
\@gls@reference{symbols}{XBM}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{133}}
\newlabel{NotASubalgebraXB}{{4.3.2}{133}{}{theorem.4.3.2}{}}
\newlabel{GaugeTrafoVektor}{{4.37}{133}{}{equation.4.3.37}{}}
\newlabel{cor:ReasonWhyVectorFieldAlongAnBPath}{{4.3.3}{133}{Flows of $\mathfrak {X}^B\bigl (\mathfrak {M}_E(M; N)\bigr )$}{theorem.4.3.3}{}}
\citation{CurvedYMH}
\newlabel{def:VariationenOfAundPhi}{{4.3.4}{134}{Infinitesimal gauge transformation of $\Phi $}{theorem.4.3.4}{}}
\newlabel{EqVariationOfHiggsField}{{4.38}{134}{Infinitesimal gauge transformation of $\Phi $}{equation.4.3.38}{}}
\newlabel{RemUeberVariationVonHiggs}{{4.3.5}{134}{}{theorem.4.3.5}{}}
\newlabel{cor:CoolesCommutingDiagramForHiggsTrafosStuff}{{4.3.6}{135}{Infinitesimal gauge transformation as condition for allowing pullbacks}{theorem.4.3.6}{}}
\newlabel{prop:VariationVonSkalarZeugsEasyPeasy}{{4.3.7}{135}{Parametrised variations of functionals}{theorem.4.3.7}{}}
\@gls@reference{symbols}{1delta0Psiepsilon}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{135}}
\newlabel{PullBackVariation}{{4.40}{136}{Parametrised variations of functionals}{equation.4.3.40}{}}
\newlabel{VertauschungMitVerjuengungVonEichtrafo}{{4.41}{136}{Parametrised variations of functionals}{equation.4.3.41}{}}
\newlabel{LeibnizForGauging}{{4.42}{136}{Parametrised variations of functionals}{equation.4.3.42}{}}
\newlabel{DefOfGaugeTrafoWithBookkeep}{{4.43}{136}{Infinitesimal gauge transformation of the Higgs field}{equation.4.3.43}{}}
\newlabel{OriginalFormula}{{4.44}{136}{Infinitesimal gauge transformation of the Higgs field}{equation.4.3.44}{}}
\newlabel{RemLeibnizeRegelaufProdukteWeshalbEConnectionNichtWichtigIst}{{4.3.9}{137}{}{theorem.4.3.9}{}}
\newlabel{eqVariationVertauschtMitDifferential}{{4.45}{137}{}{equation.4.3.45}{}}
\newlabel{thm:NewFormulaRecoversOldGaugeTrafoYay}{{4.3.10}{138}{Parametrised variations in the flat case}{theorem.4.3.10}{}}
\BKM@entry{id=28,dest={73756273656374696F6E2E342E332E32},srcline={1773}}{5C3337365C3337375C303030495C3030306E5C303030665C303030695C3030306E5C303030695C303030745C303030655C303030735C303030695C3030306D5C303030615C3030306C5C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030665C303030695C303030655C3030306C5C303030645C3030305C3034305C3030306F5C303030665C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030625C3030306F5C303030735C3030306F5C3030306E5C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Infinitesimal gauge transformation of the field of gauge bosons}{139}{subsection.4.3.2}\protected@file@percent }
\newlabel{StandardArgumenFuerDieMinimaleKopplungImBabyFall}{{4.49}{140}{Infinitesimal gauge transformation of the field of gauge bosons}{equation.4.3.49}{}}
\newlabel{cor:EichtrafovonDAPHIinClassicIstBabyEinfach}{{4.3.11}{141}{Gauge transformation of the minimal coupling in the standard framework}{theorem.4.3.11}{}}
\newlabel{EichtrafovonDAPHIinClassicIstBabyEinfachDieAequivalenz}{{4.50}{141}{Gauge transformation of the minimal coupling in the standard framework}{equation.4.3.50}{}}
\newlabel{CompsVonDMinimalAlsErstes}{{4.51}{141}{Infinitesimal gauge transformation of the field of gauge bosons}{equation.4.3.51}{}}
\newlabel{eqAbleitungVomAnkerGibtRepraesentierung}{{4.52}{141}{Infinitesimal gauge transformation of the field of gauge bosons}{equation.4.3.52}{}}
\citation{CurvedYMH}
\newlabel{lem:MetricCompsAdInvUndLieAlgebraRepSymm}{{4.3.12}{142}{Metric compatibilities and their imposed symmetries for gauge theory, \cite {CurvedYMH}}{theorem.4.3.12}{}}
\newlabel{lem:VariationsIdentities}{{4.3.14}{143}{Several identities related to variations with the basic connection}{theorem.4.3.14}{}}
\newlabel{DPhiVariation}{{4.57}{144}{Several identities related to variations with the basic connection}{equation.4.3.57}{}}
\newlabel{eqPhiRhoDieGeileSauIstnichtVariiert}{{4.58}{144}{Several identities related to variations with the basic connection}{equation.4.3.58}{}}
\newlabel{eqRhoAVariation}{{4.59}{144}{Several identities related to variations with the basic connection}{equation.4.3.59}{}}
\newlabel{EqVariationVonFormenBrrrr}{{4.60}{144}{Several identities related to variations with the basic connection}{equation.4.3.60}{}}
\newlabel{EqVariationVonFormenBrrrrVereinfacht}{{4.61}{144}{}{equation.4.3.61}{}}
\newlabel{prop:VariationOfA}{{4.3.16}{146}{Gauge transformation of the field of gauge bosons}{theorem.4.3.16}{}}
\@gls@reference{symbols}{1YPsiEpsilon}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{146}}
\newlabel{EichtrafoVonANochmal}{{4.62}{146}{Gauge transformation of the field of gauge bosons}{equation.4.3.62}{}}
\newlabel{eqGaugeTrafoOfAacomps}{{4.63}{146}{Gauge transformation of the field of gauge bosons}{equation.4.3.63}{}}
\newlabel{LinearityOfPsiEpsilon}{{4.64}{146}{Gauge transformation of the field of gauge bosons}{equation.4.3.64}{}}
\citation{CurvedYMH}
\newlabel{DiffEqFuerAComp}{{4.65}{147}{Infinitesimal gauge transformation of the field of gauge bosons}{equation.4.3.65}{}}
\citation{CurvedYMH}
\newlabel{RemDifferentVersionsOfGaugeTrafos}{{4.3.17}{148}{}{theorem.4.3.17}{}}
\newlabel{prop:InfinitesimalGaugeTrafoOfMinimalCoupleSmiley}{{4.3.18}{148}{Infinitesimal gauge transformation of the minimal Coupling}{theorem.4.3.18}{}}
\newlabel{def:GaugeTrafoOfA}{{4.3.21}{149}{Infinitesimal gauge transformation of gauge bosons}{theorem.4.3.21}{}}
\newlabel{WhyNablaBasPartOne}{{4.3.22}{149}{}{theorem.4.3.22}{}}
\newlabel{def:TotalInfGaugeTrafoYayy}{{4.3.23}{150}{Infinitesimal gauge transformation of functionals}{theorem.4.3.23}{}}
\@gls@reference{symbols}{1delta0epsilon}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{150}}
\newlabel{cor:DeltaEpsilonIstLinearInEpsilon}{{4.3.25}{150}{Linearity in $\varepsilon $}{theorem.4.3.25}{}}
\BKM@entry{id=29,dest={73756273656374696F6E2E342E332E33},srcline={2860}}{5C3337365C3337375C303030435C303030755C303030725C303030765C303030615C303030745C303030755C303030725C303030655C3030305C3034305C3030306F5C303030665C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C303030615C303030745C303030695C3030306F5C3030306E5C30303073}
\newlabel{cor:WennVonAUnabhaengigDannAuchVonNabla}{{4.3.26}{151}{Independence of $\nabla $}{theorem.4.3.26}{}}
\citation{meinrenkensplitting}
\citation{meinrenkenlie}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Curvature of gauge transformations}{152}{subsection.4.3.3}\protected@file@percent }
\newlabel{CurvatureOfGaugePart1}{{4.3.3}{152}{Curvature of gauge transformations}{subsection.4.3.3}{}}
\newlabel{def:PrebracketonPullbackLiealgebroid}{{4.3.28}{152}{Pre-bracket on $\mathcal {F}^0_E(M; {}^*E)$}{theorem.4.3.28}{}}
\@gls@reference{symbols}{1Delta}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{152}}
\newlabel{IdeaOfPrebracket}{{4.3.29}{152}{}{theorem.4.3.29}{}}
\newlabel{prop:PropertiesOfThePreBracket}{{4.3.30}{152}{Properties of the pre-bracket}{theorem.4.3.30}{}}
\newlabel{DeltaIstZumGlueckANtisymm}{{4.73}{152}{Properties of the pre-bracket}{equation.4.3.73}{}}
\newlabel{EqLieKlammerAufPullBackSections}{{4.75}{153}{Properties of the pre-bracket}{equation.4.3.75}{}}
\newlabel{EqDeltaInFrameKoord}{{4.76}{153}{Properties of the pre-bracket}{equation.4.3.76}{}}
\newlabel{ClassicalCommutatorRemark}{{4.3.31}{153}{}{theorem.4.3.31}{}}
\newlabel{cor:DeltaIstEineLieklammerAufPullbACkSections}{{4.3.32}{154}{$\Delta $ a Lie bracket on the pull-backs of $\Gamma (E)$}{theorem.4.3.32}{}}
\newlabel{def:ErsteKruemmungsFormelFuerEichtrafos}{{4.3.33}{155}{Curvature of infinitesimal gauge transformations}{theorem.4.3.33}{}}
\@gls@reference{symbols}{Rdelta}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{155}}
\newlabel{cor:RelationShipsOfCurvatures}{{4.3.35}{155}{Relationships between curvatures}{theorem.4.3.35}{}}
\newlabel{prop:WirHabenEinenTensorBeiderTrafoKruemmung}{{4.3.36}{156}{$R_{\delta }$ is a tensor}{theorem.4.3.36}{}}
\newlabel{SplittingVonDerEichtrafo}{{4.79}{156}{$R_{\delta }$ is a tensor}{equation.4.3.79}{}}
\newlabel{thm:CurvatureOfBasicStuffIsEquivalentForGaugeTrafoCurvature}{{4.3.37}{158}{Curvature of the infinitesimal gauge transformation measured by the basic curvature}{theorem.4.3.37}{}}
\citation{EichtrafoKruemmungUrspruenglich}
\citation{mayerlieAuchEichtrafoStuff}
\citation{EichtrafoKruemmungUrspruenglich}
\citation{mayerlieAuchEichtrafoStuff}
\newlabel{cor:FlatnessVonEichtrafos}{{4.3.39}{159}{Flat infinitesimal gauge transformation}{theorem.4.3.39}{}}
\newlabel{DieKruemmungIstNullVonDenEichtrafosGeeeeil}{{4.81}{159}{Flat infinitesimal gauge transformation}{equation.4.3.81}{}}
\newlabel{CoordFuerEichKruemmungsRegel}{{4.82}{159}{Flat infinitesimal gauge transformation}{equation.4.3.82}{}}
\newlabel{RemarkUeberNablaRhoCurvatureForGauegTrafo}{{4.3.40}{159}{}{theorem.4.3.40}{}}
\citation{CurvedYMH}
\citation{basicconn}
\citation{blaomTangentBundleAsLieGroup}
\newlabel{thm:ActionLieALgebroid}{{4.3.41}{160}{Relation of the basic curvature and action Lie algebroids, \newline \cite [discussion around Eq.~(9)]{CurvedYMH}, \cite [Prop.~2.12]{basicconn}, and \cite [\S 2.5, Theorem A]{blaomTangentBundleAsLieGroup}}{theorem.4.3.41}{}}
\newlabel{remSimplyConnectedEqualsGlobal}{{4.3.42}{160}{}{theorem.4.3.42}{}}
\newlabel{thm:VektorfelderSindZumGlueckGeschlossen}{{4.3.43}{161}{Bracket of gauge transformations a gauge transformation}{theorem.4.3.43}{}}
\newlabel{rem:WasIstMitDemHiggsFeldBeiDerDeltaKruemmung}{{4.3.44}{162}{Curvature of $\delta $ on $\Phi $}{theorem.4.3.44}{}}
\newlabel{thm:AllgemEineGeileFormelFuerDieEichKruemmung}{{4.3.45}{163}{Curvature of $\delta $ on arbitrary functionals}{theorem.4.3.45}{}}
\newlabel{thm:PreKlammerEineSuperLieKlammer}{{4.3.47}{164}{Pre-bracket a Lie bracket}{theorem.4.3.47}{}}
\BKM@entry{id=30,dest={73656374696F6E2E342E34},srcline={3936}}{5C3337365C3337375C303030495C3030306E5C303030665C303030695C3030306E5C303030695C303030745C303030655C303030735C303030695C3030306D5C303030615C3030306C5C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030695C3030306E5C303030765C303030615C303030725C303030695C303030615C3030306E5C303030635C30303065}
\newlabel{RemarkBracketIsVeryIndependent}{{4.3.48}{165}{}{theorem.4.3.48}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Infinitesimal gauge invariance}{165}{section.4.4}\protected@file@percent }
\newlabel{InfInvariance}{{4.4}{165}{Infinitesimal gauge invariance}{section.4.4}{}}
\newlabel{prop:GaugeTrafosOfFieldStrengthAndMinimalCoupling}{{4.4.1}{165}{Infinitesimal gauge transformations of the field strength}{theorem.4.4.1}{}}
\newlabel{EqVariationForF}{{4.86}{165}{Infinitesimal gauge transformations of the field strength}{equation.4.4.86}{}}
\newlabel{IchMussDasDringendVerallgemeinern}{{4.87}{167}{Infinitesimal gauge invariance}{equation.4.4.87}{}}
\citation{CurvedYMH}
\citation{CurvedYMH}
\newlabel{RemVergleicheVonVariationenVonFUndDAPhi}{{4.4.2}{168}{}{theorem.4.4.2}{}}
\newlabel{eqVariationVonFKomps}{{4.88}{168}{}{equation.4.4.88}{}}
\citation{CurvedYMH}
\newlabel{thm:GaugeInvariantStandardLagrangian}{{4.4.3}{169}{The gauge invariance of the Lagrangian, \newline \cite [especially the discussion around Eq.~(16)]{CurvedYMH}}{theorem.4.4.3}{}}
\newlabel{PotentialCompatibility}{{4.93}{169}{The gauge invariance of the Lagrangian, \newline \cite [especially the discussion around Eq.~(16)]{CurvedYMH}}{equation.4.4.93}{}}
\newlabel{RemarkUeberPotentialCompatibility}{{4.4.4}{169}{}{theorem.4.4.4}{}}
\citation{hamilton}
\citation{blaomTangentBundleAsLieGroup}
\citation{CurvedYMH}
\newlabel{thm:StandardEichtheorieStecktInDenBedingung}{{4.4.5}{171}{Standard formulation of gauge theory is recovered, \cite {CurvedYMH}}{theorem.4.4.5}{}}
\citation{CurvedYMH}
\citation{CurvedYMH}
\newlabel{cor:ManBrauchZetaWahrscheinlich}{{4.4.7}{172}{Gauge invariance implies standard theory, \newline \cite [the discussion around Eq.~(9)ff.]{CurvedYMH}}{theorem.4.4.7}{}}
\newlabel{cor:AbelianIffNablaBasIsLeviCivita}{{4.4.9}{172}{Abelian Lie algebras and zero torsion}{theorem.4.4.9}{}}
\citation{ELeviCivita}
\BKM@entry{id=31,dest={73656374696F6E2E342E35},srcline={1}}{5C3337365C3337375C303030465C303030695C303030655C3030306C5C303030645C3030305C3034305C303030725C303030655C303030645C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E}
\citation{DeterminantenTheorem}
\newlabel{remELEVICITAOfBasnbala}{{4.4.10}{173}{}{theorem.4.4.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Field redefinition}{173}{section.4.5}\protected@file@percent }
\newlabel{FieldRedefSection}{{4.5}{173}{Field redefinition}{section.4.5}{}}
\newlabel{SylvestersDeterminante}{{4.96}{173}{Field redefinition}{equation.4.5.96}{}}
\newlabel{def:FieldRedefinition}{{4.5.1}{174}{Field redefinition}{theorem.4.5.1}{}}
\@gls@reference{symbols}{1lambda}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{174}}
\@gls@reference{symbols}{1Lambda}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{174}}
\@gls@reference{symbols}{1pivarwidetildelambda}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{174}}
\newlabel{EqFieldRedefFuerA}{{4.97}{174}{Field redefinition}{equation.4.5.97}{}}
\@gls@reference{symbols}{0nabla0widetildelambda}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{174}}
\newlabel{FieldTrafoOfNabla}{{4.98}{174}{Field redefinition}{equation.4.5.98}{}}
\@gls@reference{symbols}{1kappawidetildelambda}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{174}}
\newlabel{FieldTrafoOfKappa}{{4.99}{174}{Field redefinition}{equation.4.5.99}{}}
\@gls@reference{symbols}{gwidetildelambda}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{174}}
\newlabel{FieldTrafoOfG}{{4.100}{174}{Field redefinition}{equation.4.5.100}{}}
\@gls@reference{symbols}{1Lambdatilde}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{174}}
\citation{CurvedYMH}
\@gls@reference{symbols}{a0widetildelambda}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{175}}
\newlabel{EqAlternativeFormelFuerFieldredefofA}{{4.102}{175}{}{equation.4.5.102}{}}
\newlabel{rem:TrickyLeibnizRuleForConnections}{{4.5.3}{175}{An important note about notation}{theorem.4.5.3}{}}
\newlabel{OneofmanyformulasForTildeNabla}{{4.103}{176}{An important note about notation}{equation.4.5.103}{}}
\newlabel{cor:ConjugationOfDifferentialsAreShitty}{{4.5.4}{176}{Conjugation of differentials}{theorem.4.5.4}{}}
\newlabel{eqKrassWieDasBeiETileNablaAussieht}{{4.104}{176}{Conjugation of differentials}{equation.4.5.104}{}}
\newlabel{prop:PropsOfBigLambdas}{{4.5.6}{177}{Properties of $\Lambda $ and $\widehat {\Lambda }$}{theorem.4.5.6}{}}
\newlabel{basicconnectionTrafoRefield}{{4.107}{177}{Properties of $\Lambda $ and $\widehat {\Lambda }$}{equation.4.5.107}{}}
\newlabel{EqCommutationWithLambda}{{4.108}{177}{Properties of $\Lambda $ and $\widehat {\Lambda }$}{equation.4.5.108}{}}
\newlabel{EqCommutationWithLambdaInverse}{{4.109}{177}{Properties of $\Lambda $ and $\widehat {\Lambda }$}{equation.4.5.109}{}}
\newlabel{AndereFormelFuerNablaTrafoBesserFuerDasRechnen}{{4.110}{178}{Properties of $\Lambda $ and $\widehat {\Lambda }$}{equation.4.5.110}{}}
\newlabel{dievielBessereFormuelFuersRechnenFragezeichen}{{4.111}{178}{Properties of $\Lambda $ and $\widehat {\Lambda }$}{equation.4.5.111}{}}
\newlabel{KuerzesteFormelForRedefOfNabla}{{4.112}{178}{Properties of $\Lambda $ and $\widehat {\Lambda }$}{equation.4.5.112}{}}
\newlabel{lem:FieldRedefinitionIsInvertible}{{4.5.8}{180}{Invertible field redefinition}{theorem.4.5.8}{}}
\BKM@entry{id=32,dest={73656374696F6E2E342E36},srcline={573}}{5C3337365C3337375C303030525C303030655C303030645C303030655C303030665C303030695C3030306E5C303030655C303030645C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C30303079}
\@writefile{toc}{\contentsline {section}{\numberline {4.6}Redefined gauge theory}{181}{section.4.6}\protected@file@percent }
\newlabel{NastyCalculationsForTheseFieldRedefsBaeaeaeae}{{4.6}{181}{Redefined gauge theory}{section.4.6}{}}
\newlabel{thm:FieldRedefofstandardFieldStrengthF}{{4.6.1}{182}{Field redefinition of the field strength}{theorem.4.6.1}{}}
\newlabel{FieldRedefOfClassicF}{{4.118}{182}{Field redefinition of the field strength}{equation.4.6.118}{}}
\@gls@reference{symbols}{1fZetaTilHat}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{182}}
\newlabel{FormulaForZetaTildeWithZetaEqualzero}{{4.122}{182}{Field redefinition of the field strength}{equation.4.6.122}{}}
\newlabel{OtherNotationForZetaTransform}{{4.6.2}{182}{}{theorem.4.6.2}{}}
\newlabel{TollsteFormelFuerZetaTrafoFragezeichen}{{4.124}{182}{}{equation.4.6.124}{}}
\newlabel{prop:ChangeofCurvaturesUnderCHangesOfConnections}{{4.6.3}{187}{Change of (basic) curvature under a change of the connection}{theorem.4.6.3}{}}
\newlabel{Wedgies}{{4.6.4}{187}{}{theorem.4.6.4}{}}
\newlabel{thm:FieldRedefDerEinfacherenCompatibilities}{{4.6.5}{188}{Field redefinition of the compatibility conditions except curvature}{theorem.4.6.5}{}}
\newlabel{thm:BrokenFlatness}{{4.6.6}{190}{Flatness breaking}{theorem.4.6.6}{}}
\citation{My1stpaper}
\newlabel{thm:FieldRedefOfGaugeTrafo}{{4.6.7}{192}{Infinitesimal gauge transformation after field redefinition}{theorem.4.6.7}{}}
\newlabel{thm:WeHaveGladlyStillAGaugeTheoryAfterTheFieldRedefinition}{{4.6.9}{194}{Still a gauge theory after field redefinition}{theorem.4.6.9}{}}
\newlabel{MaybeANewFieldStrength}{{4.142}{194}{Still a gauge theory after field redefinition}{equation.4.6.142}{}}
\BKM@entry{id=33,dest={73656374696F6E2E342E37},srcline={2230}}{5C3337365C3337375C303030435C303030755C303030725C303030765C303030655C303030645C3030305C3034305C303030595C303030615C3030306E5C303030675C3030302D5C3030304D5C303030695C3030306C5C3030306C5C303030735C3030302D5C303030485C303030695C303030675C303030675C303030735C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C30303079}
\citation{CurvedYMH}
\newlabel{FieldRedefOfGWithZeroZeta}{{4.143}{195}{Redefined gauge theory}{equation.4.6.143}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.7}Curved Yang-Mills-Higgs gauge theory}{195}{section.4.7}\protected@file@percent }
\newlabel{SectionAboutCYMHGTs}{{4.7}{195}{Curved Yang-Mills-Higgs gauge theory}{section.4.7}{}}
\newlabel{def:FinallyIAmAtTheNewFieldStrength}{{4.7.1}{195}{New field strength, \cite [Equation (14)]{CurvedYMH}}{theorem.4.7.1}{}}
\@gls@reference{symbols}{1fZeta}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{195}}
\citation{CurvedYMH}
\citation{CurvedYMH}
\@gls@reference{symbols}{G}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{196}}
\newlabel{cor:NewGaugeTrafoOfFieldStrengthG}{{4.7.2}{196}{Infinitesimal gauge transformation of the new field strength}{theorem.4.7.2}{}}
\newlabel{def:NowReallyTheFinalLagrangian}{{4.7.4}{196}{Curved Yang-Mills-Higgs Lagrangian, \newline \cite [Eq.~(2) and (16)]{CurvedYMH}}{theorem.4.7.4}{}}
\@gls@reference{symbols}{LZYMH}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{196}}
\citation{CurvedYMH}
\citation{CurvedYMH}
\newlabel{thm:FinallyTheGaugeInvarianceWeWant}{{4.7.5}{197}{Infinitesimal gauge invariance of the curved Yang-Mills-Higgs Lagrangian}{theorem.4.7.5}{}}
\newlabel{EqMyFormulationOfZetaCondition}{{4.147}{197}{Infinitesimal gauge invariance of the curved Yang-Mills-Higgs Lagrangian}{equation.4.7.147}{}}
\newlabel{VanishingBasicCurvComp}{{4.148}{197}{Infinitesimal gauge invariance of the curved Yang-Mills-Higgs Lagrangian}{equation.4.7.148}{}}
\newlabel{rem:CYMH}{{4.7.6}{197}{}{theorem.4.7.6}{}}
\@gls@reference{symbols}{CYMH}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{197}}
\newlabel{def:ClassicalGT}{{4.7.8}{198}{Classical gauge theory}{theorem.4.7.8}{}}
\newlabel{def:FieldRedefinitionOfThePrimitive}{{4.7.10}{198}{Field redefinition of the primitive}{theorem.4.7.10}{}}
\@gls@reference{symbols}{1fZetaTilde}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{198}}
\newlabel{rem:FieldRedefOfFullCYMHGT}{{4.7.11}{199}{Field redefinition of CYMH GTs}{theorem.4.7.11}{}}
\newlabel{lem:FinallyNiceTrafoOfEverything}{{4.7.12}{199}{Field redefinition of the new field strength and compatibility condition}{theorem.4.7.12}{}}
\newlabel{thm:InvarianceUnderTheFieldRedefinition}{{4.7.13}{200}{Gauge theory invariant under the field redefinition}{theorem.4.7.13}{}}
\newlabel{rem:HaesslicherBeweisUnwichtig}{{4.7.15}{201}{Avoidance of the calculation in the proof of Thm.~\ref {thm:BrokenFlatness}}{theorem.4.7.15}{}}
\newlabel{lem:InverseOfZetaLambda}{{4.7.16}{202}{Invertible behaviour of the field redefinition of the primitive}{theorem.4.7.16}{}}
\newlabel{lem:TransFieldRedef}{{4.7.17}{204}{Transitivity of the field redefinition}{theorem.4.7.17}{}}
\BKM@entry{id=34,dest={73656374696F6E2E342E38},srcline={3215}}{5C3337365C3337375C303030505C303030725C3030306F5C303030705C303030655C303030725C303030745C303030695C303030655C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030435C303030595C3030304D5C303030485C3030305C3034305C303030475C30303054}
\newlabel{rem:FieldredefAsEquivalence}{{4.7.19}{207}{Field redefinition as equivalence of CYMH GTs}{theorem.4.7.19}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.8}Properties of CYMH GT}{207}{section.4.8}\protected@file@percent }
\newlabel{PropertiesOFNewTOlleGTs}{{4.8}{207}{Properties of CYMH GT}{section.4.8}{}}
\newlabel{thm:CurvatureClosed}{{4.8.1}{207}{Curvature closed under basic connections, by Alexei Kotov}{theorem.4.8.1}{}}
\newlabel{thm:BianchiIdentityForZeta}{{4.8.3}{208}{Bianchi identity for the primitives of the connection}{theorem.4.8.3}{}}
\newlabel{thm:BAlongL}{{4.8.4}{211}{Primitives of the connection along the foliation of the anchor}{theorem.4.8.4}{}}
\newlabel{eq:BrhoaufOrbit}{{4.168}{211}{Primitives of the connection along the foliation of the anchor}{equation.4.8.168}{}}
\newlabel{cor:ClassicalTheoriesAreAbelianWithCanonicalChoices}{{4.8.5}{211}{Certain classical CYMH GTs implying an abelian structure}{theorem.4.8.5}{}}
\newlabel{prop:MixedTermsOfB}{{4.8.7}{212}{Local mixed terms of the primitive of the connection}{theorem.4.8.7}{}}
\newlabel{MixeDZetaTermEquation}{{4.170}{212}{Local mixed terms of the primitive of the connection}{equation.4.8.170}{}}
\BKM@entry{id=35,dest={636861707465722E35},srcline={1}}{5C3337365C3337375C3030304F5C303030625C303030735C303030745C303030725C303030755C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C303030435C303030595C3030304D5C303030485C3030305C3034305C303030475C30303054}
\BKM@entry{id=36,dest={73656374696F6E2E352E31},srcline={6}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C303030615C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\citation{mackenzieGeneralTheory}
\citation{basicconn}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Obstruction for CYMH GT}{215}{chapter.5}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ObstructionStuff}{{5}{215}{Obstruction for CYMH GT}{chapter.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Lie algebra bundles}{215}{section.5.1}\protected@file@percent }
\newlabel{ObstrLAB}{{5.1}{215}{Lie algebra bundles}{section.5.1}{}}
\newlabel{thm:BLALAB}{{5.1.1}{215}{BLA $\stackrel {?}{=}$ LAB, \newline \cite [Theorem 6.4.5, see also the last note at the beginning of \S 6.4; page 238f.]{mackenzieGeneralTheory} \newline \cite [Proposition 2.13]{basicconn}}{theorem.5.1.1}{}}
\citation{mackenzieGeneralTheory}
\citation{basicconn}
\citation{meinrenkensplitting}
\BKM@entry{id=37,dest={73756273656374696F6E2E352E312E31},srcline={51}}{5C3337365C3337375C303030435C303030595C3030304D5C303030485C3030305C3034305C303030475C303030545C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C3030304C5C303030415C303030425C30303073}
\citation{My1stpaper}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}CYMH GT for LABs}{216}{subsection.5.1.1}\protected@file@percent }
\newlabel{SumamryForLABSituation}{{5.1.1}{216}{CYMH GT for LABs}{subsection.5.1.1}{}}
\newlabel{sit:CYMHGTForLABsToDoList}{{5.1.3}{216}{CYMH GT for Lie algebra bundles}{theorem.5.1.3}{}}
\newlabel{CondSGleichNullLAB}{{5.1}{217}{CYMH GT for Lie algebra bundles}{equation.5.1.1}{}}
\newlabel{CondKruemmungmitBLAB}{{5.2}{217}{CYMH GT for Lie algebra bundles}{equation.5.1.2}{}}
\newlabel{defNewFieldStrengthG}{{5.3}{217}{CYMH GT for Lie algebra bundles}{equation.5.1.3}{}}
\newlabel{defLagrangianForLABs}{{5.4}{217}{CYMH GT for Lie algebra bundles}{equation.5.1.4}{}}
\newlabel{EqInfGaugeTrafoLABs}{{5.5}{218}{}{equation.5.1.5}{}}
\newlabel{fieldredef:FieldRedefForLABs}{{5.1.5}{218}{In the situation of LABs}{theorem.5.1.5}{}}
\newlabel{EqZetaTrafoForLAB}{{5.10}{218}{In the situation of LABs}{equation.5.1.10}{}}
\newlabel{EqWennFlachDannExaktOderHaltInner}{{5.11}{218}{In the situation of LABs}{equation.5.1.11}{}}
\BKM@entry{id=38,dest={73756273656374696F6E2E352E312E32},srcline={270}}{5C3337365C3337375C303030525C303030655C3030306C5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030765C303030655C303030635C303030745C3030306F5C303030725C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C3030305C3034305C303030635C3030306F5C3030306E5C3030306E5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C303030695C303030655C303030735C3030305C3034305C303030775C303030695C303030745C303030685C3030305C3034305C303030635C303030655C303030725C303030745C303030615C303030695C3030306E5C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030645C303030655C303030725C303030695C303030765C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306C5C303030615C303030775C30303073}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.2}Relation of vector bundle connections in gauge theories with certain Lie derivation laws}{219}{subsection.5.1.2}\protected@file@percent }
\newlabel{ConnectionIsALieDerivation}{{5.1.2}{219}{Relation of vector bundle connections in gauge theories with certain Lie derivation laws}{subsection.5.1.2}{}}
\newlabel{theFullDiagramForLABStuff}{{5.13}{219}{Relation of vector bundle connections in gauge theories with certain Lie derivation laws}{equation.5.1.13}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:LieConnection}{{5.1.7}{220}{Lie derivation law, \newline \cite [\S 7.2, special form of Definition 7.2.9, page 275.]{mackenzieGeneralTheory}}{theorem.5.1.7}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:pairingsOfTNWithK}{{5.1.9}{221}{Pairing of $\mathrm {T}N$, \cite [\S 7.2, Definitions 7.2.2; page 272]{mackenzieGeneralTheory}}{theorem.5.1.9}{}}
\newlabel{def:LieDerivationLawOverApairingXi}{{5.1.10}{221}{Lie derivation law covering $\Xi $, \newline \cite [\S 7.2, see discussion after Definition 7.2.2; page 272]{mackenzieGeneralTheory}}{theorem.5.1.10}{}}
\newlabel{thm:GaugeTheoryNeedsLieDerivLawsCoveringApairing}{{5.1.12}{221}{(C)YMH GT only allows Lie derivation laws covering $\Xi $}{theorem.5.1.12}{}}
\newlabel{remExistenceOfLieDerivationLawsCoveringApairing}{{5.1.13}{221}{}{theorem.5.1.13}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{prop:FieldRedefPreservespairing}{{5.1.14}{223}{Field redefinition preserves the pairing}{theorem.5.1.14}{}}
\BKM@entry{id=39,dest={73756273656374696F6E2E352E312E33},srcline={569}}{5C3337365C3337375C3030304F5C303030625C303030735C303030745C303030725C303030755C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C3030306E5C3030306F5C3030306E5C3030302D5C303030705C303030725C303030655C3030302D5C303030635C3030306C5C303030615C303030735C303030735C303030695C303030635C303030615C3030306C5C3030305C3034305C303030675C303030615C303030755C303030675C303030655C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C303030695C303030655C30303073}
\citation{mackenzieGeneralTheory}
\newlabel{cor:CorLocalerFlacherZusammenhangFuerIrgendeineKopplung}{{5.1.16}{224}{Local existence of a flat Lie derivation law covering a pairing}{theorem.5.1.16}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.3}Obstruction for non-pre-classical gauge theories}{225}{subsection.5.1.3}\protected@file@percent }
\newlabel{MackenzieZeugsUndExistenzvonPreclassical}{{5.1.3}{225}{Obstruction for non-pre-classical gauge theories}{subsection.5.1.3}{}}
\newlabel{prop:InvarianteFuerFieldRedefImFallLAB}{{5.1.18}{225}{$\mathrm {d}^\nabla \zeta $ an invariant of the field redefinition, \newline \cite [\S 7.2, Proposition 7.2.11, last statement, there $\zeta $ is denoted by $\Lambda $ and $\mathrm {d}^\nabla \zeta $ by $f(\nabla , \Lambda )$; page 276]{mackenzieGeneralTheory}}{theorem.5.1.18}{}}
\newlabel{prop:BianchiIdentityForZeta}{{5.1.19}{225}{Bianchi identity for $\zeta $}{theorem.5.1.19}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{thm:DifferentialAufZentrumsDinge}{{5.1.21}{226}{Differential on centre-valued forms, \newline \cite [\S 7.2, Definition 7.2.3 and the discussion directly before; page 273]{mackenzieGeneralTheory}}{theorem.5.1.21}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{lem:DNablaZetaIsClosedUnderDXi}{{5.1.23}{227}{Closedness of $\mathrm {d}^\nabla \zeta $ under the central representation, \newline \cite [\S 7.2, Lemma 7.2.5, $\mathrm {d}^\nabla \zeta $ is denoted by $f$ and $\mathrm {d}^\Xi $ as $d$, and without written proof there; page 274]{mackenzieGeneralTheory}}{theorem.5.1.23}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{lem:ZetaKannGutGeaendertWerden}{{5.1.24}{228}{Varying $\zeta $ in $\mathrm {d}^\nabla \zeta $, \newline \cite [\S 7.2, Lemma 7.2.6, Mackenzie denotes $\zeta $ by $\Lambda $, $\mathrm {d}^\nabla \zeta $ by $f$ and $\mathrm {d}^\Xi $ by $d$; page 274]{mackenzieGeneralTheory}}{theorem.5.1.24}{}}
\citation{mackenzieGeneralTheory}
\newlabel{thm:ObstructionClassIstGeileInvariante}{{5.1.25}{229}{Cohomology of $\mathrm {d}^\nabla \zeta $ an invariant, \newline \cite [\S 7.2, Theorem 7.2.12, Mackenzie denotes $\mathrm {d}^\Xi $ with $\rho ^\Xi $, $\zeta $ with $\Lambda $, $\mathrm {d}^\nabla \zeta $ with $f(\nabla , \Lambda )$, and replace $A$ with $\mathrm {T}N$; page 277]{mackenzieGeneralTheory}}{theorem.5.1.25}{}}
\newlabel{def:ObstructionClassOfXi}{{5.1.26}{229}{The obstruction class of pairings, \newline \cite [\S 7.2, comment after Theorem 7.2.12; page 277]{mackenzieGeneralTheory}}{theorem.5.1.26}{}}
\newlabel{cor:FirstApproachOfLABConstruction}{{5.1.27}{229}{First approach of obstruction for CYMH GT on LABs}{theorem.5.1.27}{}}
\BKM@entry{id=40,dest={73756273656374696F6E2E352E312E34},srcline={865}}{5C3337365C3337375C3030304D5C303030615C303030635C3030306B5C303030655C3030306E5C3030307A5C303030695C303030655C303030275C303030735C3030305C3034305C303030745C303030685C303030655C3030306F5C303030725C303030795C3030305C3034305C303030615C303030625C3030306F5C303030755C303030745C3030305C3034305C303030655C303030785C303030745C303030655C3030306E5C303030735C303030695C3030306F5C3030306E5C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030615C3030306E5C303030675C303030655C3030306E5C303030745C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.4}Mackenzie's theory about extensions of tangent bundles}{230}{subsection.5.1.4}\protected@file@percent }
\newlabel{MackenzieStuff}{{5.1.4}{230}{Mackenzie's theory about extensions of tangent bundles}{subsection.5.1.4}{}}
\newlabel{prop:TransversalAndItsLieDerivationLaw}{{5.1.28}{230}{Lie derivation law of a transversal, \newline \cite [\S 7.3, Proposition 7.3.2 and Lemma 7.3.3, replace $A$ with $\mathrm {T}N$ and $A^\prime $ with $E$; page 278]{mackenzieGeneralTheory}}{theorem.5.1.28}{}}
\newlabel{DefTransversalConnection}{{5.22}{230}{Lie derivation law of a transversal, \newline \cite [\S 7.3, Proposition 7.3.2 and Lemma 7.3.3, replace $A$ with $\mathrm {T}N$ and $A^\prime $ with $E$; page 278]{mackenzieGeneralTheory}}{equation.5.1.22}{}}
\citation{mackenzieGeneralTheory}
\newlabel{EqKruemmungderTransversalen}{{5.23}{232}{Mackenzie's theory about extensions of tangent bundles}{equation.5.1.23}{}}
\newlabel{cor:TransversalsCoverTheSamepairing}{{5.1.29}{232}{All transversals results into the same covered pairing, \newline \cite [\S 7.3, comment after Lemma 7.3.3, replace $A$ with $\mathrm {T}N$ and $A^\prime $ with $E$; page 278]{mackenzieGeneralTheory}}{theorem.5.1.29}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\newlabel{def:pairingsOfExtensions}{{5.1.30}{233}{Pairing induced by an extension, \newline \cite [\S 7.3, Definition 7.3.4, replace $A$ with $\mathrm {T}N$ and $A^\prime $ with $E$; page 278]{mackenzieGeneralTheory}}{theorem.5.1.30}{}}
\newlabel{thm:ObstructionOfExtensions}{{5.1.31}{233}{Obstruction of an extension, \newline \cite [\S 7.3, Proposition 7.3.6, page 279, Corollary 7.3.9 and the comment afterwards, page 281; replace $A$ with $\mathrm {T}N$ and $A^\prime $ with $E$]{mackenzieGeneralTheory}}{theorem.5.1.31}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\BKM@entry{id=41,dest={73756273656374696F6E2E352E312E35},srcline={1181}}{5C3337365C3337375C303030525C303030655C303030735C303030755C3030306C5C303030745C30303073}
\newlabel{thm:ExtensionWennNContrahierbar}{{5.1.32}{235}{Extensions over contractible manifolds, \newline \cite [\S 8.2, Theorem 8.2.1, replace $A$ with $E$, $L$ with $K$ and $TM$ with $\mathrm {T}N$; page 314ff.]{mackenzieGeneralTheory}}{theorem.5.1.32}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.5}Results}{236}{subsection.5.1.5}\protected@file@percent }
\newlabel{LABResultsWooooo}{{5.1.5}{236}{Results}{subsection.5.1.5}{}}
\newlabel{thm:LokalLeiderImmerPreklassisch}{{5.1.33}{236}{Local existence of pre-classical gauge theory}{theorem.5.1.33}{}}
\newlabel{thm:NeueLABGTs}{{5.1.34}{236}{Possible new and curved gauge theories on LABs}{theorem.5.1.34}{}}
\citation{mackenzieGeneralTheory}
\citation{mackenzieGeneralTheory}
\citation{hamilton}
\newlabel{ex:HopfBuendelEventuellSuperFragezeichen}{{5.1.35}{237}{The isotropy of a Hopf fibration, \newline \cite [Example 7.3.20; page 287]{mackenzieGeneralTheory}}{theorem.5.1.35}{}}
\citation{TwoQubits}
\BKM@entry{id=42,dest={73756273656374696F6E2E352E312E36},srcline={1271}}{5C3337365C3337375C303030455C303030785C303030695C303030735C303030745C303030655C3030306E5C303030635C303030655C3030305C3034305C3030306F5C303030665C3030305C3034305C3030306E5C3030306F5C3030306E5C3030302D5C303030765C303030615C3030306E5C303030695C303030735C303030685C303030695C3030306E5C303030675C3030305C3034305C303030705C303030725C303030695C3030306D5C303030695C303030745C303030695C303030765C303030655C303030735C3030305C3034305C303030735C303030745C303030615C303030625C3030306C5C303030655C3030305C3034305C303030755C3030306E5C303030645C303030655C303030725C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030665C303030695C303030655C3030306C5C303030645C3030305C3034305C303030725C303030655C303030645C303030655C303030665C303030695C3030306E5C303030695C303030745C303030695C3030306F5C3030306E}
\newlabel{rem:HopfBundleIstEventuellDasBeispiel}{{5.1.36}{238}{Hopf bundle as an example for CYMH GT}{theorem.5.1.36}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.6}Existence of non-vanishing primitives stable under the field redefinition}{238}{subsection.5.1.6}\protected@file@percent }
\newlabel{NonclassicalStuff}{{5.1.6}{238}{Existence of non-vanishing primitives stable under the field redefinition}{subsection.5.1.6}{}}
\BKM@entry{id=43,dest={73756273656374696F6E2E352E312E37},srcline={1305}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030425C303030695C303030615C3030306E5C303030635C303030685C303030695C3030305C3034305C303030695C303030645C303030655C3030306E5C303030745C303030695C303030745C303030795C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C3030306E5C303030655C303030775C3030305C3034305C303030665C303030695C303030655C3030306C5C303030645C3030305C3034305C303030735C303030745C303030725C303030655C3030306E5C303030675C303030745C30303068}
\newlabel{thm:AbelschIstGeileNeueTheorie}{{5.1.38}{239}{Existence of LABs giving rise to non-classical gauge theories}{theorem.5.1.38}{}}
\newlabel{cor:CanonicalConstructionOfGaugeTheories}{{5.1.39}{239}{Canonical construction of non-classical gauge theories}{theorem.5.1.39}{}}
\citation{hamilton}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.7}The Bianchi identity of the new field strength}{240}{subsection.5.1.7}\protected@file@percent }
\newlabel{BianchiStuff}{{5.1.7}{240}{The Bianchi identity of the new field strength}{subsection.5.1.7}{}}
\newlabel{prop:PullbackvonUnseremGaugeNabla}{{5.1.40}{240}{Pull-Back of a Lie derivation law covering a pairing}{theorem.5.1.40}{}}
\newlabel{EqCompCondFuerPullbackCurvature}{{5.25}{240}{Pull-Back of a Lie derivation law covering a pairing}{equation.5.1.25}{}}
\citation{hamilton}
\newlabel{thm:BianchiIdentityOfFieldStrength}{{5.1.42}{241}{Bianchi identity of the field strength}{theorem.5.1.42}{}}
\BKM@entry{id=44,dest={73656374696F6E2E352E32},srcline={1431}}{5C3337365C3337375C303030545C303030615C3030306E5C303030675C303030655C3030306E5C303030745C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\BKM@entry{id=45,dest={73756273656374696F6E2E352E322E31},srcline={1435}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C3030305C3034305C303030735C303030695C303030745C303030755C303030615C303030745C303030695C3030306F5C3030306E}
\citation{hamilton}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Tangent bundles}{242}{section.5.2}\protected@file@percent }
\newlabel{TangentBundles}{{5.2}{242}{Tangent bundles}{section.5.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}General situation}{242}{subsection.5.2.1}\protected@file@percent }
\newlabel{GeneralSituForTangent}{{5.2.1}{242}{General situation}{subsection.5.2.1}{}}
\newlabel{sit:SituationForTangentBundles}{{5.2.1}{242}{Compatibility conditions for tangent bundles}{theorem.5.2.1}{}}
\citation{blaomTangentBundleAsLieGroup}
\citation{basicconn}
\newlabel{cor:TorsionConstancyAndFlatness}{{5.2.3}{244}{Pre-classical theories have constant torsion}{theorem.5.2.3}{}}
\newlabel{thm:LieGroupIsomorphisms}{{5.2.5}{244}{Certain classical CYMH GTs are Lie groups, \newline \cite [\S 3.1 and the references therein]{blaomTangentBundleAsLieGroup} and \cite [Comment after Proposition 2.12]{basicconn}}{theorem.5.2.5}{}}
\BKM@entry{id=46,dest={73756273656374696F6E2E352E322E32},srcline={1586}}{5C3337365C3337375C3030304C5C3030306F5C303030635C303030615C3030306C5C3030305C3034305C303030705C303030695C303030635C303030745C303030755C303030725C30303065}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.2}Local picture}{245}{subsection.5.2.2}\protected@file@percent }
\newlabel{LocalTangentBundles}{{5.2.2}{245}{Local picture}{subsection.5.2.2}{}}
\newlabel{thm:NoGoLocalTangentBundle}{{5.2.6}{245}{Tangent bundles are locally pre-classical as CYMH GT}{theorem.5.2.6}{}}
\BKM@entry{id=47,dest={73756273656374696F6E2E352E322E33},srcline={1670}}{5C3337365C3337375C303030555C3030306E5C303030695C303030745C3030305C3034305C3030306F5C303030635C303030745C3030306F5C3030306E5C303030695C3030306F5C3030306E5C30303073}
\citation{hamilton}
\citation{hamilton}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.3}Unit octonions}{246}{subsection.5.2.3}\protected@file@percent }
\newlabel{UnitoctonionsasGT}{{5.2.3}{246}{Unit octonions}{subsection.5.2.3}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{def:MultiplcationTableOfOctonions}{{5.2.7}{247}{Multiplication form for octonions, \newline \cite [Definition 3.10.1; page 171]{hamilton}}{theorem.5.2.7}{}}
\newlabel{def:GL7action}{{5.2.8}{247}{$\mathrm {GL}(7, \mathbb {R})$-action on $\bigwedge ^k V^*$, \newline \cite [comment before Definition 3.10.3]{hamilton}}{theorem.5.2.8}{}}
\newlabel{def:ExceptionalLieGroup}{{5.2.9}{247}{Exceptional Lie group $G_2$, \cite [Definition 3.10.3; page 171]{hamilton}}{theorem.5.2.9}{}}
\newlabel{def:PhiAsP}{{5.2.11}{247}{\cite [Definition 3.10.8; page 175]{hamilton}}{theorem.5.2.11}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{prop:PIsNice}{{5.2.12}{248}{Properties of $P$, \cite [Proposition 3.10.9]{hamilton}}{theorem.5.2.12}{}}
\newlabel{lem:PPFormula}{{5.2.13}{248}{Additonal properties of $P$, \newline \cite [first part of Exercise 3.12.16; page 190]{hamilton}}{theorem.5.2.13}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{def:OctonionsDef}{{5.2.14}{250}{Octonions, \cite [third part of Exercise 3.12.15; page 189f.]{hamilton}}{theorem.5.2.14}{}}
\citation{hamilton}
\citation{hamilton}
\citation{hamilton}
\newlabel{prop:ImportantRelationOfScalarproductonO}{{5.2.16}{251}{Compatibility of the multiplication in $\mathbb {O}$ with $(\cdot ,\cdot )$, \newline \cite [motivated by Example 4.5.10; page 229]{hamilton}}{theorem.5.2.16}{}}
\newlabel{thm:OktonionenFuerParalellilitaet}{{5.2.17}{251}{$\mathrm {T}\mathds {S}^7$ is trivial, \cite [last part of Example 4.5.10; page 229]{hamilton}}{theorem.5.2.17}{}}
\citation{flatmetricconn}
\citation{octonions}
\newlabel{thm:UnitOctonionsAreExamples}{{5.2.18}{253}{Global example: Unit octonions}{theorem.5.2.18}{}}
\newlabel{rem:OktonionenSehrStabil}{{5.2.20}{253}{Stability with respect to other transformations}{theorem.5.2.20}{}}
\BKM@entry{id=48,dest={73656374696F6E2E352E33},srcline={1}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C3030305C3034305C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C3030306F5C303030695C303030645C30303073}
\BKM@entry{id=49,dest={73756273656374696F6E2E352E332E31},srcline={3}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C3030305C3034305C303030735C303030695C303030745C303030755C303030615C303030745C303030695C3030306F5C3030306E}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}General Lie algebroids}{254}{section.5.3}\protected@file@percent }
\newlabel{GeneralObstrAoids}{{5.3}{254}{General Lie algebroids}{section.5.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3.1}General situation}{254}{subsection.5.3.1}\protected@file@percent }
\newlabel{GeneralGeneral}{{5.3.1}{254}{General situation}{subsection.5.3.1}{}}
\newlabel{cor:TorsionConstancyAndFlatnessGeneral}{{5.3.1}{254}{Pre-classical theories have constant torsion}{theorem.5.3.1}{}}
\BKM@entry{id=50,dest={73756273656374696F6E2E352E332E32},srcline={34}}{5C3337365C3337375C303030445C303030695C303030725C303030655C303030635C303030745C3030305C3034305C303030705C303030725C3030306F5C303030645C303030755C303030635C303030745C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030435C303030595C3030304D5C303030485C3030305C3034305C303030475C303030545C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3.2}Direct products of CYMH GTs}{255}{subsection.5.3.2}\protected@file@percent }
\newlabel{GeneralSitDirectProducts}{{5.3.2}{255}{Direct products of CYMH GTs}{subsection.5.3.2}{}}
\newlabel{thm:DirectProductsOfCYMHGT}{{5.3.3}{255}{Direct products of CYMH GTs is a CYMH GT}{theorem.5.3.3}{}}
\newlabel{def:DefinitionDerDirectProdCYMHGT}{{5.3.4}{256}{Direct product of CYMH GT}{theorem.5.3.4}{}}
\newlabel{thm:DirectProductsSadlyAlwaysFlat}{{5.3.5}{256}{Direct products of CYMHG GTs around regular points are flat}{theorem.5.3.5}{}}
\newlabel{conj:DoesMyFieldRedefSplit}{{5.3.6}{257}{Existence of a splitted field redefinition}{theorem.5.3.6}{}}
\BKM@entry{id=51,dest={73756273656374696F6E2E352E332E33},srcline={297}}{5C3337365C3337375C3030304C5C3030306F5C3030306F5C303030735C303030655C3030305C3034305C303030695C303030645C303030655C303030615C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030615C3030306E5C303030735C303030615C303030745C3030307A5C303030655C30303073}
\citation{mackenzieGeneralTheory}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3.3}Loose ideas and ansatzes}{258}{subsection.5.3.3}\protected@file@percent }
\newlabel{LastAnsatzes}{{5.3.3}{258}{Loose ideas and ansatzes}{subsection.5.3.3}{}}
\newlabel{lem:lemmaIsotropyInvariant}{{5.3.7}{258}{Invariance of connection restricting on the isotropy}{theorem.5.3.7}{}}
\newlabel{prop:AlgebraicMeaningOfTheFirstInvariantIveFound}{{5.3.8}{258}{Algebraic meaning in the flat situation}{theorem.5.3.8}{}}
\newlabel{cor:LieDerivationGleichVanishingBasicCurvature}{{5.3.11}{260}{Lie derivation laws and vanishing basic curvature}{theorem.5.3.11}{}}
\newlabel{cor:NablaErhaeltBasicConnKonstanz}{{5.3.12}{262}{$\nabla $ preserving $\nabla ^{\mathrm {bas}}$-closedness}{theorem.5.3.12}{}}
\newlabel{def:CentreOfBasicConnections}{{5.3.14}{263}{The centre of basic connections}{theorem.5.3.14}{}}
\@gls@reference{symbols}{ZENabla}{\glsnoidxdisplayloc{}{page}{glsnumberformat}{263}}
\newlabel{prop:PropsofCentreOfBasicConnections}{{5.3.16}{263}{Properties of the centre}{theorem.5.3.16}{}}
\newlabel{NablaZenterIstImKernyippie}{{5.49}{263}{Properties of the centre}{equation.5.3.49}{}}
\newlabel{lem:CentreOfBasicConnectionForRegularPointsPlusFlatness}{{5.3.18}{265}{Centre of the basic connection around regular points}{theorem.5.3.18}{}}
\newlabel{GesplitteteFormelVonNablaBas2}{{5.51}{265}{Loose ideas and ansatzes}{equation.5.3.51}{}}
\newlabel{cor:FlacheKruemmungBeiNablaBasZentrum}{{5.3.20}{266}{Zero curvature on the centre}{theorem.5.3.20}{}}
\newlabel{lem:StableKernelOfAdjointRepresentation}{{5.3.21}{266}{Stability of the kernel of the adjoint representation}{theorem.5.3.21}{}}
\BKM@entry{id=52,dest={636861707465722E36},srcline={1}}{5C3337365C3337375C303030465C303030755C303030745C303030755C303030725C303030655C3030305C3034305C303030775C3030306F5C303030725C3030306B5C30303073}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Future works}{269}{chapter.6}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ConclusionTheEnd}{{6}{269}{Future works}{chapter.6}{}}
\BKM@entry{id=53,dest={617070656E6469782E41},srcline={13}}{5C3337365C3337375C303030435C303030655C303030725C303030745C303030615C303030695C3030306E5C3030305C3034305C303030755C303030735C303030655C303030665C303030755C3030306C5C3030305C3034305C303030695C303030645C303030655C3030306E5C303030745C303030695C303030745C303030695C303030655C30303073}
\BKM@entry{id=54,dest={73656374696F6E2E412E31},srcline={15}}{5C3337365C3337375C3030304C5C303030695C303030655C3030305C3034305C303030615C3030306C5C303030675C303030655C303030625C303030725C303030615C3030305C3034305C303030625C303030755C3030306E5C303030645C3030306C5C303030655C30303073}
\citation{hamilton}
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Certain useful identities}{271}{appendix.A}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{CalculusIdentitiesNeeded}{{A}{271}{Certain useful identities}{appendix.A}{}}
\@writefile{toc}{\contentsline {section}{\numberline {A.1}Lie algebra bundles}{271}{section.A.1}\protected@file@percent }
\newlabel{DefVonWedgedemitEnd}{{A.1}{271}{Lie algebra bundles}{equation.A.1.1}{}}
\newlabel{prop:SeveralIdentitiesFortheCalculusWithPullbackandBlah}{{A.1.1}{271}{Several useful identities}{theorem.A.1.1}{}}
\newlabel{EqGeilePullBackCommuteFormel}{{A.2}{271}{Several useful identities}{equation.A.1.2}{}}