-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
96 lines (76 loc) · 2.95 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import glob
import json
import random
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import Dataset
def random_horizontal_flip(imgs):
if random.random() < 0.3:
for i in range(len(imgs)):
imgs[i] = imgs[i].transpose(Image.FLIP_LEFT_RIGHT)
return imgs
def random_rotate(imgs):
if random.random() < 0.3:
max_angle = 10
angle = random.random() * 2 * max_angle - max_angle
# print(angle)
for i in range(len(imgs)):
img = np.array(imgs[i])
w, h = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (h, w))
imgs[i] = Image.fromarray(img_rotation)
return imgs
def image_transforms(loadSize):
return transforms.Compose(
[
transforms.Resize(size=loadSize, interpolation=Image.BICUBIC),
transforms.ToTensor(),
]
)
class ErasingData(Dataset):
def __init__(self, data_root, load_size, mode="train"):
super(ErasingData, self).__init__()
self.root = data_root
self.image_names = sorted(
[x.split("/")[-1] for x in glob.glob(f"{self.root}/all_images/*.jpg")]
)
self.load_size = load_size
self.img_transforms = image_transforms(load_size)
self.mode = mode
def __getitem__(self, index):
img = Image.open(f"{self.root}/all_images/{self.image_names[index]}")
mask = Image.open(f"{self.root}/mask/{self.image_names[index]}")
gt = Image.open(f"{self.root}/all_labels/{self.image_names[index]}")
if self.mode == "train":
all_input = [img, mask, gt]
all_input = random_horizontal_flip(all_input)
all_input = random_rotate(all_input)
img = all_input[0]
mask = all_input[1]
gt = all_input[2]
input_image = self.img_transforms(img.convert("RGB"))
mask = self.img_transforms(mask.convert("L"))
ground_truth = self.img_transforms(gt.convert("RGB"))
if self.mode == "train":
return input_image, ground_truth, mask
else:
return input_image, ground_truth, mask, self.image_names[index]
def __len__(self):
return len(self.image_names)
class OWNData(Dataset):
def __init__(self, data_root, load_size) -> None:
super(OWNData, self).__init__()
self.root = data_root
self.image_files = glob.glob(f"{self.root}/*.jpg")
self.load_size = load_size
self.img_transforms = image_transforms(load_size)
def __getitem__(self, index):
img = Image.open(self.image_files[index])
input_image = self.img_transforms(img.convert("RGB"))
return input_image, torch.zeros_like(input_image), torch.zeros_like(input_image)
def __len__(self):
return len(self.image_files)