-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGAMES10111.html
624 lines (515 loc) · 93.4 KB
/
GAMES10111.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width">
<meta name="theme-color" content="#222"><meta name="generator" content="Hexo 7.2.0">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png">
<link rel="mask-icon" href="/images/logo.svg" color="#222">
<link rel="stylesheet" href="/css/main.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.2/css/all.min.css" integrity="sha256-dABdfBfUoC8vJUBOwGVdm8L9qlMWaHTIfXt+7GnZCIo=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/3.1.1/animate.min.css" integrity="sha256-PR7ttpcvz8qrF57fur/yAx1qXMFJeJFiA6pSzWi0OIE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/pace/1.2.4/themes/white/pace-theme-minimal.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/pace/1.2.4/pace.min.js" integrity="sha256-gqd7YTjg/BtfqWSwsJOvndl0Bxc8gFImLEkXQT8+qj0=" crossorigin="anonymous"></script>
<script class="next-config" data-name="main" type="application/json">{"hostname":"example.com","root":"/","images":"/images","scheme":"Pisces","darkmode":false,"version":"8.22.0","exturl":false,"sidebar":{"position":"left","width_expanded":320,"width_dual_column":240,"display":"post","padding":18,"offset":12},"hljswrap":true,"copycode":{"enable":true,"style":"default"},"fold":{"enable":true,"height":500},"bookmark":{"enable":false,"color":"#222","save":"auto"},"mediumzoom":false,"lazyload":false,"pangu":false,"comments":{"style":"tabs","active":"disqus","storage":true,"lazyload":false,"nav":{"disqus":{"text":"Load Disqus","order":-1}},"activeClass":"disqus"},"stickytabs":false,"motion":{"enable":true,"async":false,"duration":200,"transition":{"menu_item":"fadeInDown","post_block":"fadeIn","post_header":"fadeInDown","post_body":"fadeInDown","coll_header":"fadeInLeft","sidebar":"fadeInUp"}},"prism":false,"i18n":{"placeholder":"搜索...","empty":"没有找到任何搜索结果:${query}","hits_time":"找到 ${hits} 个搜索结果(用时 ${time} 毫秒)","hits":"找到 ${hits} 个搜索结果"},"path":"/search.xml","localsearch":{"enable":true,"top_n_per_article":1,"unescape":false,"preload":false,"trigger":"auto"}}</script><script src="/js/config.js"></script>
<meta name="description" content="前言 GAMES101-12:光栅化下的处理思路:阴影映射、软阴影 GAMES101-13:Whitted-Style 光线追踪与求交问题、AABB 包围盒">
<meta property="og:type" content="article">
<meta property="og:title" content="GAMES101-12&13:Whitted-Style 光线追踪(1)">
<meta property="og:url" content="http://example.com/GAMES10111.html">
<meta property="og:site_name" content="LeeKa 的酒馆">
<meta property="og:description" content="前言 GAMES101-12:光栅化下的处理思路:阴影映射、软阴影 GAMES101-13:Whitted-Style 光线追踪与求交问题、AABB 包围盒">
<meta property="og:locale" content="zh_CN">
<meta property="og:image" content="http://example.com/assets/101-raytracing.png">
<meta property="article:published_time" content="2023-08-01T04:32:02.000Z">
<meta property="article:modified_time" content="2024-04-20T18:58:06.436Z">
<meta property="article:author" content="LeeKa">
<meta property="article:tag" content="笔记">
<meta property="article:tag" content="计算机图形学">
<meta property="article:tag" content="GAMES">
<meta property="article:tag" content="GAMES101">
<meta property="article:tag" content="着色">
<meta property="article:tag" content="软阴影">
<meta property="article:tag" content="阴影映射">
<meta property="article:tag" content="光线追踪">
<meta property="article:tag" content="Whitted-Style 光线追踪">
<meta property="article:tag" content="AABB 包围盒">
<meta property="article:tag" content="求交点">
<meta name="twitter:card" content="summary">
<meta name="twitter:image" content="http://example.com/assets/101-raytracing.png">
<link rel="canonical" href="http://example.com/GAMES10111.html">
<script class="next-config" data-name="page" type="application/json">{"sidebar":"","isHome":false,"isPost":true,"lang":"zh-CN","comments":true,"permalink":"http://example.com/GAMES10111.html","path":"/GAMES10111.html","title":"GAMES101-12&13:Whitted-Style 光线追踪(1)"}</script>
<script class="next-config" data-name="calendar" type="application/json">""</script>
<title>GAMES101-12&13:Whitted-Style 光线追踪(1) | LeeKa 的酒馆</title>
<noscript>
<link rel="stylesheet" href="/css/noscript.css">
</noscript>
</head>
<body itemscope itemtype="http://schema.org/WebPage" class="use-motion">
<div class="headband"></div>
<main class="main">
<div class="column">
<header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="site-brand-container">
<div class="site-nav-toggle">
<div class="toggle" aria-label="切换导航栏" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
</div>
<div class="site-meta">
<a href="/" class="brand" rel="start">
<i class="logo-line"></i>
<p class="site-title">LeeKa 的酒馆</p>
<i class="logo-line"></i>
</a>
<p class="site-subtitle" itemprop="description">欢迎,旅人!坐下来享受一下暖烘烘的炉火吧。</p>
</div>
<div class="site-nav-right">
<div class="toggle popup-trigger" aria-label="搜索" role="button">
<i class="fa fa-search fa-fw fa-lg"></i>
</div>
</div>
</div>
<nav class="site-nav">
<ul class="main-menu menu"><li class="menu-item menu-item-home"><a href="/" rel="section"><i class="fa fa-home fa-fw"></i>首页</a></li><li class="menu-item menu-item-about"><a href="/about/" rel="section"><i class="fa fa-user fa-fw"></i>关于</a></li><li class="menu-item menu-item-tags"><a href="/tags/" rel="section"><i class="fa fa-tags fa-fw"></i>标签</a></li><li class="menu-item menu-item-categories"><a href="/categories/" rel="section"><i class="fa fa-th fa-fw"></i>分类</a></li><li class="menu-item menu-item-archives"><a href="/archives/" rel="section"><i class="fa fa-archive fa-fw"></i>归档</a></li><li class="menu-item menu-item-友链"><a href="/links/" rel="section"><i class="fa-solid fa-link fa-fw"></i>友链</a></li>
<li class="menu-item menu-item-search">
<a role="button" class="popup-trigger"><i class="fa fa-search fa-fw"></i>搜索
</a>
</li>
</ul>
</nav>
<div class="search-pop-overlay">
<div class="popup search-popup">
<div class="search-header">
<span class="search-icon">
<i class="fa fa-search"></i>
</span>
<div class="search-input-container">
<input autocomplete="off" autocapitalize="off" maxlength="80"
placeholder="搜索..." spellcheck="false"
type="search" class="search-input">
</div>
<span class="popup-btn-close" role="button">
<i class="fa fa-times-circle"></i>
</span>
</div>
<div class="search-result-container">
<div class="search-result-icon">
<i class="fa fa-spinner fa-pulse fa-5x"></i>
</div>
</div>
</div>
</div>
</header>
<aside class="sidebar">
<div class="sidebar-inner sidebar-nav-active sidebar-toc-active">
<ul class="sidebar-nav">
<li class="sidebar-nav-toc">
文章目录
</li>
<li class="sidebar-nav-overview">
站点概览
</li>
</ul>
<div class="sidebar-panel-container">
<!--noindex-->
<div class="post-toc-wrap sidebar-panel">
<div class="post-toc animated"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#%E5%89%8D%E8%A8%80"><span class="nav-number">1.</span> <span class="nav-text"> 前言</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E5%85%89%E6%A0%85%E5%8C%96%E4%B8%8B%E7%9A%84%E9%98%B4%E5%BD%B1%E5%A4%84%E7%90%86%E9%98%B4%E5%BD%B1%E6%98%A0%E5%B0%84shadow-mapping"><span class="nav-number">2.</span> <span class="nav-text"> 光栅化下的阴影处理:阴影映射(Shadow Mapping )</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E8%BD%AF%E9%98%B4%E5%BD%B1"><span class="nav-number">3.</span> <span class="nav-text"> 软阴影</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#whitted-style-%E5%85%89%E7%BA%BF%E8%BF%BD%E8%B8%AA"><span class="nav-number">4.</span> <span class="nav-text"> Whitted-Style 光线追踪</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#%E5%85%89%E7%BA%BF%E6%8A%95%E5%B0%84"><span class="nav-number">4.1.</span> <span class="nav-text"> 光线投射</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#%E6%B1%82%E4%BA%A4%E7%82%B9"><span class="nav-number">4.2.</span> <span class="nav-text"> 求交点</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#%E9%9A%90%E5%BC%8F%E4%B8%89%E8%A7%92%E5%BD%A2%E6%B1%82%E4%BA%A4%E7%9A%84%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95aabb-%E5%8C%85%E5%9B%B4%E7%9B%92"><span class="nav-number">4.3.</span> <span class="nav-text"> 隐式三角形求交的优化算法:AABB 包围盒</span></a></li></ol></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E8%B7%B3%E8%BD%AC"><span class="nav-number">5.</span> <span class="nav-text"> 跳转</span></a></li></ol></div>
</div>
<!--/noindex-->
<div class="site-overview-wrap sidebar-panel">
<div class="site-author animated" itemprop="author" itemscope itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image" alt="LeeKa"
src="https://s2.loli.net/2022/03/24/zcq6l9KENbRJtDi.jpg">
<p class="site-author-name" itemprop="name">LeeKa</p>
<div class="site-description" itemprop="description">代码、音乐和游戏,一起来聊聊吧</div>
</div>
<div class="site-state-wrap animated">
<nav class="site-state">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">63</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories/">
<span class="site-state-item-count">15</span>
<span class="site-state-item-name">分类</span></a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/">
<span class="site-state-item-count">160</span>
<span class="site-state-item-name">标签</span></a>
</div>
</nav>
</div>
<div class="links-of-author animated">
<span class="links-of-author-item">
<a href="https://github.com/KXAND" title="GitHub → https://github.com/KXAND" rel="noopener me" target="_blank">GitHub</a>
</span>
<span class="links-of-author-item">
<a href="mailto:leeka.Pub@outlook.com" title="E-Mail → mailto:leeka.Pub@outlook.com" rel="noopener me" target="_blank">E-Mail</a>
</span>
<span class="links-of-author-item">
<a href="https://twitter.com/QuiXand" title="X → https://twitter.com/QuiXand" rel="noopener me" target="_blank">X</a>
</span>
<span class="links-of-author-item">
<a href="https://pinhua.leeka.pub/" title="宁远平话 → https://pinhua.leeka.pub" rel="noopener me" target="_blank">宁远平话</a>
</span>
</div>
<div class="cc-license animated" itemprop="license">
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/deed.zh-hans" class="cc-opacity" rel="noopener" target="_blank"><img src="https://cdnjs.cloudflare.com/ajax/libs/creativecommons-vocabulary/2020.11.3/assets/license_badges/big/by_nc_sa.svg" alt="Creative Commons"></a>
</div>
</div>
</div>
</div>
</aside>
</div>
<div class="main-inner post posts-expand">
<div class="post-block">
<article itemscope itemtype="http://schema.org/Article" class="post-content" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://example.com/GAMES10111.html">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="https://s2.loli.net/2022/03/24/zcq6l9KENbRJtDi.jpg">
<meta itemprop="name" content="LeeKa">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="LeeKa 的酒馆">
<meta itemprop="description" content="代码、音乐和游戏,一起来聊聊吧">
</span>
<span hidden itemprop="post" itemscope itemtype="http://schema.org/CreativeWork">
<meta itemprop="name" content="GAMES101-12&13:Whitted-Style 光线追踪(1) | LeeKa 的酒馆">
<meta itemprop="description" content="">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
GAMES101-12&13:Whitted-Style 光线追踪(1)<a href="https://github.com/KXAND/BlogSource/edit/source/_posts/GAMES101/GAMES101-11.md" class="post-edit-link" title="编辑" rel="noopener" target="_blank"><i class="fa fa-pen-nib"></i></a>
</h1>
<div class="post-meta-container">
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2023-08-01 12:32:02" itemprop="dateCreated datePublished" datetime="2023-08-01T12:32:02+08:00">2023-08-01</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar-check"></i>
</span>
<span class="post-meta-item-text">更新于</span>
<time title="修改时间:2024-04-21 02:58:06" itemprop="dateModified" datetime="2024-04-21T02:58:06+08:00">2024-04-21</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/GAMES101/" itemprop="url" rel="index"><span itemprop="name">GAMES101</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Disqus:</span>
<a title="disqus" href="/GAMES10111.html#disqus_thread" itemprop="discussionUrl">
<span class="post-comments-count disqus-comment-count" data-disqus-identifier="/GAMES10111.html" itemprop="commentCount"></span>
</a>
</span>
<span class="post-meta-item" title="本文字数">
<span class="post-meta-item-icon">
<i class="far fa-file-word"></i>
</span>
<span class="post-meta-item-text">本文字数:</span>
<span>1.4k</span>
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody"><h2 id="前言"><a class="markdownIt-Anchor" href="#前言"></a> 前言</h2>
<p><a href="https://www.bilibili.com/video/BV1X7411F744/?p=12">GAMES101-12</a>:光栅化下的处理思路:阴影映射、软阴影</p>
<p><a href="https://www.bilibili.com/video/BV1X7411F744/?p=13">GAMES101-13</a>:Whitted-Style 光线追踪与求交问题、AABB 包围盒</p>
<span id="more"></span>
<h2 id="光栅化下的阴影处理阴影映射shadow-mapping"><a class="markdownIt-Anchor" href="#光栅化下的阴影处理阴影映射shadow-mapping"></a> 光栅化下的阴影处理:阴影映射(Shadow Mapping )</h2>
<p>着色是一种局部现象,不考虑整体因此处理不了阴影,为此,人们发明了 Shadow Mapping。</p>
<p>Shadow Mapping 的思路:一个点不在阴影含义是,这个点必须同时被光源和摄像机看到。</p>
<p>步骤:</p>
<ol>
<li>从光源做一次光栅化,记录光源看到的点的深度信息。(不用进行着色)</li>
<li>从摄像机做一次光栅化,对每个点投影回去,如果和“从光源看”的深度指向的点不一致,那么说明这个点在阴影里,否则不在阴影里。</li>
</ol>
<p>Shadow Mapping 的特点:</p>
<ul>
<li>不需要知道场景的几何信息;</li>
<li>阴影会产生走样现象:光源处分辨率的限制;</li>
<li>阴影带来巨大开销;</li>
<li>只能处理硬阴影:即要么是阴影,要么不是阴影的情况;</li>
<li>只能处理点光源</li>
<li>浮点数对比有的时候有很多脏数据;</li>
</ul>
<blockquote>
<p>光栅化下也有一些软阴影处理方案,此处不加以介绍。通常都比较麻烦而且不一定准确。</p>
</blockquote>
<h2 id="软阴影"><a class="markdownIt-Anchor" href="#软阴影"></a> 软阴影</h2>
<p>软阴影即介于阴影和无阴影之间的的边界是软边界,模糊过渡的一种阴影。产生这种现象的原因是光源本身有不可忽略的大小,即非点光源。</p>
<blockquote>
<p>一个例子是日食下的日月,光源太阳不是点光源。如果地球上一地区完全接收不到太阳光,那么这个地方就在月亮的硬阴影里;如果太阳被月亮挡住了部分,那么就是月亮的软阴影部分;否则,完全不被挡住,无阴影。</p>
</blockquote>
<h2 id="whitted-style-光线追踪"><a class="markdownIt-Anchor" href="#whitted-style-光线追踪"></a> Whitted-Style 光线追踪</h2>
<p>光栅化通常都是快速且近似的方法,光线追踪通常都比较慢。</p>
<p>光线追踪对光线的约束(尽管这些在物理学中不一定正确)</p>
<ul>
<li>光沿直线传播;</li>
<li>光线之间不相互碰撞;</li>
<li>光从光源出发,抵达人的眼睛,并且光路可逆;</li>
</ul>
<h3 id="光线投射"><a class="markdownIt-Anchor" href="#光线投射"></a> 光线投射</h3>
<ol>
<li>从眼睛(一个点)发出光线(eye ray)经过屏幕上一个像素打到物体表面得到一个交点,这个交点就是需要被着色的点(因此光线追踪不需要深度测试)。</li>
<li>如果光源发出的线(shadow ray)可以直接打到该点,就会有一次着色,否则结束。</li>
<li>这个点经过反射、折射(如果有)得到的二次交点们同样检查是否被 shadow ray 照亮。</li>
<li>把二次交点们发出的折射/反射的光(记为 second ray)对一次交点的着色结果累加到一次交点。</li>
<li>对二次交点当然也可以递归上述过程。</li>
</ol>
<p><img src="./../../assets/101-raytracing.png" alt="光线投射" /></p>
<h3 id="求交点"><a class="markdownIt-Anchor" href="#求交点"></a> 求交点</h3>
<p>光线是一个有起点的射线,我们如下定义</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>r</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>o</mi><mo>+</mo><mi>t</mi><mover accent="true"><mi>d</mi><mo>⃗</mo></mover><mo stretchy="false">(</mo><mn>0</mn><mo>≤</mo><mi>t</mi><mo><</mo><mi mathvariant="normal">∞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">r(t)=o+t\vec{d} (0\leq t<\infty)
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathnormal">o</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2274399999999999em;vertical-align:-0.25em;"></span><span class="mord mathnormal">t</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.06882999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.65418em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∞</span><span class="mclose">)</span></span></span></span></span></p>
<p>其中向量 d 是单位向量表示方向。</p>
<p>对一个隐式几何表面 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">f(x,y,z)=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span> 求交就是说</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>o</mi><mo>+</mo><mi>t</mi><mover accent="true"><mi>d</mi><mo>⃗</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">f(r(t))=f(o+t\vec{d})=0
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">o</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2274399999999999em;vertical-align:-0.25em;"></span><span class="mord mathnormal">t</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.06882999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></p>
<p>当然多个交点时取最近的。</p>
<p>对于一个显式几何,最简单的办法是对每个三角形求交。思想如下:</p>
<ol>
<li>
<p>首先求射线和三角形所在平面的交点;</p>
<p>射线如上表示为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">r(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span>,平面表示为点 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>p</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">p'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.946332em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span> 和法线 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>N</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span> 的组合。就有 平面上一点表示为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>−</mo><msup><mi>p</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">)</mo><mo>⋅</mo><mover accent="true"><mi>N</mi><mo>⃗</mo></mover><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">(p-p')\cdot\vec{N}=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.001892em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span>,代入有</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo stretchy="false">(</mo><mi>o</mi><mo>+</mo><mi>t</mi><mover accent="true"><mi>d</mi><mo>⃗</mo></mover><mo>−</mo><msup><mi>p</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">)</mo><mo>⋅</mo><mover accent="true"><mi>N</mi><mo>⃗</mo></mover><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">(o+t\vec{d}-p')\cdot\vec{N}=0
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">o</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.0607699999999998em;vertical-align:-0.08333em;"></span><span class="mord mathnormal">t</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.06882999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.051892em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></p>
<p>于是</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>t</mi><mo>=</mo><mfrac><mrow><mo stretchy="false">(</mo><msup><mi>p</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>−</mo><mi>o</mi><mo stretchy="false">)</mo><mo>⋅</mo><mover accent="true"><mi>N</mi><mo>⃗</mo></mover></mrow><mrow><mover accent="true"><mi>d</mi><mo>⃗</mo></mover><mo>⋅</mo><mover accent="true"><mi>N</mi><mo>⃗</mo></mover></mrow></mfrac><mtext> </mtext><mo stretchy="false">(</mo><mn>0</mn><mo>≤</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">t= \frac{(p'-o)\cdot\vec{N}}{\vec{d}\cdot\vec{N}}
\ \ \ (0\leq t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.51077em;vertical-align:-0.8674399999999999em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.64333em;"><span style="top:-2.1325600000000002em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.06882999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathnormal">o</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8674399999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace"> </span><span class="mspace"> </span><span class="mspace"> </span><span class="mopen">(</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></p>
</li>
<li>
<p>然后判断是否在三角形内。例如使用叉积</p>
</li>
</ol>
<p>或直接应用 Moller Trumbore 算法:</p>
<p>用三角形的重心坐标有:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>O</mi><mo>⃗</mo></mover><mo>+</mo><mi>t</mi><mover accent="true"><mi>D</mi><mo>⃗</mo></mover><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msub><mi>b</mi><mn>1</mn></msub><mo>−</mo><msub><mi>b</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mover accent="true"><msub><mi>P</mi><mn>0</mn></msub><mo>⃗</mo></mover><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><mover accent="true"><msub><mi>P</mi><mn>1</mn></msub><mo>⃗</mo></mover><mo>+</mo><msub><mi>b</mi><mn>2</mn></msub><mover accent="true"><msub><mi>P</mi><mn>2</mn></msub><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec{O}+t\vec{D}=(1-b_1-b_2)\vec{P_0}+b_1\vec{P_1}+b_2\vec{P_2}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0496599999999998em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">O</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord mathnormal">t</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.21633em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></p>
<p>其中 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>O</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec{O}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">O</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span>、<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>N</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span>、<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><msub><mi>P</mi><mi>i</mi></msub><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec{P_i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span> 都是三个数的坐标,应用克莱默法则即可求解。<br />
若 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msub><mi>b</mi><mn>1</mn></msub><mo>−</mo><msub><mi>b</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(1-b_1-b_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>、<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">b_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>、<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>b</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">b_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 都满足重心坐标系的要求(在 [0,1] 之间)那么就说明和三角形相交。</p>
<blockquote>
<p>我们还可以</p>
</blockquote>
<h3 id="隐式三角形求交的优化算法aabb-包围盒"><a class="markdownIt-Anchor" href="#隐式三角形求交的优化算法aabb-包围盒"></a> 隐式三角形求交的优化算法:AABB 包围盒</h3>
<p>现代模型往往有百千万级别的面数,如果依次按上述方法求交,无疑太慢了。对此的一种改进方法是<strong>包围盒</strong>:用一个简单图形(例如长方体)包围模型,如果和这个包围盒都无交点,那就不需要求和模型的交点。</p>
<p>如果将包围盒定义为三个方向的面都平行于一个轴面,那三个方向就都可以都简单记为一个 x/y/z 轴上区间的情况,这种包围盒就叫 AABB 包围盒(Axis-Aligned Bounding Box,轴对齐包围盒)。</p>
<p>AABB 包围盒的好处:</p>
<p>对于普通包围盒:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>t</mi><mo>=</mo><mfrac><mrow><msup><mi>p</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>−</mo><mi>o</mi><mo>⋅</mo><mi>N</mi></mrow><mrow><mi>d</mi><mo>⋅</mo><mi>N</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">t=\frac{p'-o\cdot N}{d\cdot N}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.1148919999999998em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4288919999999998em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathnormal">o</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p>对于轴对齐包围盒(以 x 轴为例):</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>t</mi><mo>=</mo><mfrac><mrow><msubsup><mi>p</mi><mi>x</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msubsup><mo>−</mo><msub><mi>o</mi><mi>x</mi></msub></mrow><msub><mi>d</mi><mi>x</mi></msub></mfrac></mrow><annotation encoding="application/x-tex">t= \frac{p'_x-o_x}{d_x}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.264892em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.428892em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathnormal">o</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p>对每个轴上的对立面求进入的“时间”和离开的时间,中间的差即在两个面之间的时间。对三个对立面分别这样处理,并取交集,即 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mrow><mi>e</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi></mrow></msub><mo>=</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mi>i</mi></msub><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">t_{enter}=max(t_in)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">m</span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">n</span><span class="mclose">)</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>v</mi><mi>e</mi></mrow></msub><mo>=</mo><mi>m</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mi>o</mi></msub><mi>u</mi><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">t_{leave}=min(t_out)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">v</span><span class="mord mathnormal mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">m</span><span class="mord mathnormal">i</span><span class="mord mathnormal">n</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span>,那么就能得到光线在 AABB 包围盒中滞留的时间。进行分析:</p>
<ol>
<li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mrow><mi>e</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi></mrow></msub><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">t_{enter}>0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>v</mi><mi>e</mi></mrow></msub><mo>></mo><msub><mi>t</mi><mrow><mi>e</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi></mrow></msub></mrow><annotation encoding="application/x-tex">t_{leave}>t_{enter}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">v</span><span class="mord mathnormal mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,正常地和 AABB 盒相交;</li>
<li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mrow><mi>e</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi></mrow></msub><mo><</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">t_{enter}<0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>v</mi><mi>e</mi></mrow></msub><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">t_{leave}>0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">v</span><span class="mord mathnormal mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span>,光源在 AABB 盒内,到处都相交;</li>
<li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mrow><mi>l</mi><mi>e</mi><mi>a</mi><mi>v</mi><mi>e</mi></mrow></msub><mo><</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">t_{leave}<0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76508em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">v</span><span class="mord mathnormal mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span> ,盒子在光源后面,没有实际的交点。</li>
</ol>
<h2 id="跳转"><a class="markdownIt-Anchor" href="#跳转"></a> 跳转</h2>
<p>Home:<a href="GAMES10101.html">GAMES101-1:课程总览与笔记导航</a></p>
<p>Prev:<a href="GAMES10110.html">GAMES101-11&12:曲线与面</a></p>
<p>Next:<a href="GAMES10112.html">GAMES101-14:Whitted-Style 光线追踪(2) 包围盒求交的速度优化</a></p>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/%E7%AC%94%E8%AE%B0/" rel="tag"><i class="fa fa-tag"></i> 笔记</a>
<a href="/tags/%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%9B%BE%E5%BD%A2%E5%AD%A6/" rel="tag"><i class="fa fa-tag"></i> 计算机图形学</a>
<a href="/tags/GAMES/" rel="tag"><i class="fa fa-tag"></i> GAMES</a>
<a href="/tags/GAMES101/" rel="tag"><i class="fa fa-tag"></i> GAMES101</a>
<a href="/tags/%E7%9D%80%E8%89%B2/" rel="tag"><i class="fa fa-tag"></i> 着色</a>
<a href="/tags/%E8%BD%AF%E9%98%B4%E5%BD%B1/" rel="tag"><i class="fa fa-tag"></i> 软阴影</a>
<a href="/tags/%E9%98%B4%E5%BD%B1%E6%98%A0%E5%B0%84/" rel="tag"><i class="fa fa-tag"></i> 阴影映射</a>
<a href="/tags/%E5%85%89%E7%BA%BF%E8%BF%BD%E8%B8%AA/" rel="tag"><i class="fa fa-tag"></i> 光线追踪</a>
<a href="/tags/Whitted-Style-%E5%85%89%E7%BA%BF%E8%BF%BD%E8%B8%AA/" rel="tag"><i class="fa fa-tag"></i> Whitted-Style 光线追踪</a>
<a href="/tags/AABB-%E5%8C%85%E5%9B%B4%E7%9B%92/" rel="tag"><i class="fa fa-tag"></i> AABB 包围盒</a>
<a href="/tags/%E6%B1%82%E4%BA%A4%E7%82%B9/" rel="tag"><i class="fa fa-tag"></i> 求交点</a>
</div>
<div class="post-nav">
<div class="post-nav-item">
<a href="/GAMES10110.html" rel="prev" title="GAMES101-11&12:曲线与面">
<i class="fa fa-angle-left"></i> GAMES101-11&12:曲线与面
</a>
</div>
<div class="post-nav-item">
<a href="/GAMES10112.html" rel="next" title="GAMES101-14:Whitted-Style 光线追踪(2) 包围盒求交的速度优化">
GAMES101-14:Whitted-Style 光线追踪(2) 包围盒求交的速度优化 <i class="fa fa-angle-right"></i>
</a>
</div>
</div>
</footer>
</article>
</div>
<div class="comments" id="disqus_thread">
<noscript>Please enable JavaScript to view the comments powered by Disqus.</noscript>
</div>
</div>
</main>
<footer class="footer">
<div class="footer-inner">
<div class="copyright">
© 2020 –
<span itemprop="copyrightYear">2025</span>
<span class="with-love">
<i class="fa fa-heart"></i>
</span>
<span class="author" itemprop="copyrightHolder">LeeKa</span>
</div>
<div class="wordcount">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-chart-line"></i>
</span>
<span>站点总字数:</span>
<span title="站点总字数">126k</span>
</span>
</div>
<div class="powered-by">由 <a href="https://hexo.io/" rel="noopener" target="_blank">Hexo</a> & <a href="https://theme-next.js.org/pisces/" rel="noopener" target="_blank">NexT.Pisces</a> 强力驱动
</div>
</div>
</footer>
<div class="toggle sidebar-toggle" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
<div class="sidebar-dimmer"></div>
<div class="back-to-top" role="button" aria-label="返回顶部">
<i class="fa fa-arrow-up fa-lg"></i>
<span>0%</span>
</div>
<noscript>
<div class="noscript-warning">Theme NexT works best with JavaScript enabled</div>
</noscript>
<script src="https://cdnjs.cloudflare.com/ajax/libs/animejs/3.2.1/anime.min.js" integrity="sha256-XL2inqUJaslATFnHdJOi9GfQ60on8Wx1C2H8DYiN1xY=" crossorigin="anonymous"></script>
<script src="/js/comments.js"></script><script src="/js/utils.js"></script><script src="/js/motion.js"></script><script src="/js/sidebar.js"></script><script src="/js/next-boot.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/hexo-generator-searchdb/1.4.1/search.js" integrity="sha256-1kfA5uHPf65M5cphT2dvymhkuyHPQp5A53EGZOnOLmc=" crossorigin="anonymous"></script>
<script src="/js/third-party/search/local-search.js"></script>
<script src="/js/third-party/pace.js"></script>
<script class="next-config" data-name="disqus" type="application/json">{"enable":true,"shortname":"leekapub","count":true,"i18n":{"disqus":"disqus"}}</script>
<script src="/js/third-party/comments/disqus.js"></script>
</body>
</html>