-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGAMES10103.html
547 lines (438 loc) · 106 KB
/
GAMES10103.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width">
<meta name="theme-color" content="#222"><meta name="generator" content="Hexo 7.2.0">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png">
<link rel="mask-icon" href="/images/logo.svg" color="#222">
<link rel="stylesheet" href="/css/main.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.2/css/all.min.css" integrity="sha256-dABdfBfUoC8vJUBOwGVdm8L9qlMWaHTIfXt+7GnZCIo=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/3.1.1/animate.min.css" integrity="sha256-PR7ttpcvz8qrF57fur/yAx1qXMFJeJFiA6pSzWi0OIE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/pace/1.2.4/themes/white/pace-theme-minimal.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/pace/1.2.4/pace.min.js" integrity="sha256-gqd7YTjg/BtfqWSwsJOvndl0Bxc8gFImLEkXQT8+qj0=" crossorigin="anonymous"></script>
<script class="next-config" data-name="main" type="application/json">{"hostname":"example.com","root":"/","images":"/images","scheme":"Pisces","darkmode":false,"version":"8.22.0","exturl":false,"sidebar":{"position":"left","width_expanded":320,"width_dual_column":240,"display":"post","padding":18,"offset":12},"hljswrap":true,"copycode":{"enable":true,"style":"default"},"fold":{"enable":true,"height":500},"bookmark":{"enable":false,"color":"#222","save":"auto"},"mediumzoom":false,"lazyload":false,"pangu":false,"comments":{"style":"tabs","active":"disqus","storage":true,"lazyload":false,"nav":{"disqus":{"text":"Load Disqus","order":-1}},"activeClass":"disqus"},"stickytabs":false,"motion":{"enable":true,"async":false,"duration":200,"transition":{"menu_item":"fadeInDown","post_block":"fadeIn","post_header":"fadeInDown","post_body":"fadeInDown","coll_header":"fadeInLeft","sidebar":"fadeInUp"}},"prism":false,"i18n":{"placeholder":"搜索...","empty":"没有找到任何搜索结果:${query}","hits_time":"找到 ${hits} 个搜索结果(用时 ${time} 毫秒)","hits":"找到 ${hits} 个搜索结果"},"path":"/search.xml","localsearch":{"enable":true,"top_n_per_article":1,"unescape":false,"preload":false,"trigger":"auto"}}</script><script src="/js/config.js"></script>
<meta name="description" content="前言 GAMES101-P3:基本线性变换(旋转、缩放、切变)和平移、仿射变换矩阵、齐次坐标、三维变换中的旋转问题。">
<meta property="og:type" content="article">
<meta property="og:title" content="GAMES101-3:变换">
<meta property="og:url" content="http://example.com/GAMES10103.html">
<meta property="og:site_name" content="LeeKa 的酒馆">
<meta property="og:description" content="前言 GAMES101-P3:基本线性变换(旋转、缩放、切变)和平移、仿射变换矩阵、齐次坐标、三维变换中的旋转问题。">
<meta property="og:locale" content="zh_CN">
<meta property="og:image" content="http://example.com/assets/101-shear.jpg">
<meta property="article:published_time" content="2023-03-10T05:28:27.000Z">
<meta property="article:modified_time" content="2024-04-20T18:58:06.448Z">
<meta property="article:author" content="LeeKa">
<meta property="article:tag" content="笔记">
<meta property="article:tag" content="GAMES">
<meta property="article:tag" content="GAMES101">
<meta property="article:tag" content="图形学">
<meta property="article:tag" content="基本线性变换">
<meta property="article:tag" content="仿射变换">
<meta property="article:tag" content="齐次矩阵">
<meta name="twitter:card" content="summary">
<meta name="twitter:image" content="http://example.com/assets/101-shear.jpg">
<link rel="canonical" href="http://example.com/GAMES10103.html">
<script class="next-config" data-name="page" type="application/json">{"sidebar":"","isHome":false,"isPost":true,"lang":"zh-CN","comments":true,"permalink":"http://example.com/GAMES10103.html","path":"/GAMES10103.html","title":"GAMES101-3:变换"}</script>
<script class="next-config" data-name="calendar" type="application/json">""</script>
<title>GAMES101-3:变换 | LeeKa 的酒馆</title>
<noscript>
<link rel="stylesheet" href="/css/noscript.css">
</noscript>
</head>
<body itemscope itemtype="http://schema.org/WebPage" class="use-motion">
<div class="headband"></div>
<main class="main">
<div class="column">
<header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="site-brand-container">
<div class="site-nav-toggle">
<div class="toggle" aria-label="切换导航栏" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
</div>
<div class="site-meta">
<a href="/" class="brand" rel="start">
<i class="logo-line"></i>
<p class="site-title">LeeKa 的酒馆</p>
<i class="logo-line"></i>
</a>
<p class="site-subtitle" itemprop="description">欢迎,旅人!坐下来享受一下暖烘烘的炉火吧。</p>
</div>
<div class="site-nav-right">
<div class="toggle popup-trigger" aria-label="搜索" role="button">
<i class="fa fa-search fa-fw fa-lg"></i>
</div>
</div>
</div>
<nav class="site-nav">
<ul class="main-menu menu"><li class="menu-item menu-item-home"><a href="/" rel="section"><i class="fa fa-home fa-fw"></i>首页</a></li><li class="menu-item menu-item-about"><a href="/about/" rel="section"><i class="fa fa-user fa-fw"></i>关于</a></li><li class="menu-item menu-item-tags"><a href="/tags/" rel="section"><i class="fa fa-tags fa-fw"></i>标签</a></li><li class="menu-item menu-item-categories"><a href="/categories/" rel="section"><i class="fa fa-th fa-fw"></i>分类</a></li><li class="menu-item menu-item-archives"><a href="/archives/" rel="section"><i class="fa fa-archive fa-fw"></i>归档</a></li><li class="menu-item menu-item-友链"><a href="/links/" rel="section"><i class="fa-solid fa-link fa-fw"></i>友链</a></li>
<li class="menu-item menu-item-search">
<a role="button" class="popup-trigger"><i class="fa fa-search fa-fw"></i>搜索
</a>
</li>
</ul>
</nav>
<div class="search-pop-overlay">
<div class="popup search-popup">
<div class="search-header">
<span class="search-icon">
<i class="fa fa-search"></i>
</span>
<div class="search-input-container">
<input autocomplete="off" autocapitalize="off" maxlength="80"
placeholder="搜索..." spellcheck="false"
type="search" class="search-input">
</div>
<span class="popup-btn-close" role="button">
<i class="fa fa-times-circle"></i>
</span>
</div>
<div class="search-result-container">
<div class="search-result-icon">
<i class="fa fa-spinner fa-pulse fa-5x"></i>
</div>
</div>
</div>
</div>
</header>
<aside class="sidebar">
<div class="sidebar-inner sidebar-nav-active sidebar-toc-active">
<ul class="sidebar-nav">
<li class="sidebar-nav-toc">
文章目录
</li>
<li class="sidebar-nav-overview">
站点概览
</li>
</ul>
<div class="sidebar-panel-container">
<!--noindex-->
<div class="post-toc-wrap sidebar-panel">
<div class="post-toc animated"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#%E5%89%8D%E8%A8%80"><span class="nav-number">1.</span> <span class="nav-text"> 前言</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E5%9F%BA%E6%9C%AC%E7%BA%BF%E6%80%A7%E5%8F%98%E6%8D%A2"><span class="nav-number">2.</span> <span class="nav-text"> 基本线性变换</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E9%BD%90%E6%AC%A1%E5%9D%90%E6%A0%87%E5%92%8C%E4%BB%BF%E5%B0%84%E5%8F%98%E6%8D%A2"><span class="nav-number">3.</span> <span class="nav-text"> 齐次坐标和仿射变换</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#%E4%BB%BF%E5%B0%84%E5%8F%98%E6%8D%A2"><span class="nav-number">3.1.</span> <span class="nav-text"> 仿射变换</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#%E9%80%86%E7%9F%A9%E9%98%B5"><span class="nav-number">3.2.</span> <span class="nav-text"> 逆矩阵</span></a></li></ol></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E7%BB%95%E4%BB%BB%E6%84%8F%E7%82%B9%E7%9A%84%E6%97%8B%E8%BD%AC"><span class="nav-number">4.</span> <span class="nav-text"> 绕任意点的旋转</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E4%B8%89%E7%BB%B4%E5%8F%98%E6%8D%A2"><span class="nav-number">5.</span> <span class="nav-text"> 三维变换</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#%E7%BB%95%E8%BD%B4%E6%97%8B%E8%BD%AC"><span class="nav-number">5.1.</span> <span class="nav-text"> 绕轴旋转</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#%E7%BB%95%E4%BB%BB%E6%84%8F%E8%BD%B4%E6%97%8B%E8%BD%AC"><span class="nav-number">5.2.</span> <span class="nav-text"> 绕任意轴旋转</span></a></li></ol></li><li class="nav-item nav-level-2"><a class="nav-link" href="#%E8%B7%B3%E8%BD%AC"><span class="nav-number">6.</span> <span class="nav-text"> 跳转</span></a></li></ol></div>
</div>
<!--/noindex-->
<div class="site-overview-wrap sidebar-panel">
<div class="site-author animated" itemprop="author" itemscope itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image" alt="LeeKa"
src="https://s2.loli.net/2022/03/24/zcq6l9KENbRJtDi.jpg">
<p class="site-author-name" itemprop="name">LeeKa</p>
<div class="site-description" itemprop="description">代码、音乐和游戏,一起来聊聊吧</div>
</div>
<div class="site-state-wrap animated">
<nav class="site-state">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">63</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories/">
<span class="site-state-item-count">15</span>
<span class="site-state-item-name">分类</span></a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/">
<span class="site-state-item-count">160</span>
<span class="site-state-item-name">标签</span></a>
</div>
</nav>
</div>
<div class="links-of-author animated">
<span class="links-of-author-item">
<a href="https://github.com/KXAND" title="GitHub → https://github.com/KXAND" rel="noopener me" target="_blank">GitHub</a>
</span>
<span class="links-of-author-item">
<a href="mailto:leeka.Pub@outlook.com" title="E-Mail → mailto:leeka.Pub@outlook.com" rel="noopener me" target="_blank">E-Mail</a>
</span>
<span class="links-of-author-item">
<a href="https://twitter.com/QuiXand" title="X → https://twitter.com/QuiXand" rel="noopener me" target="_blank">X</a>
</span>
<span class="links-of-author-item">
<a href="https://pinhua.leeka.pub/" title="宁远平话 → https://pinhua.leeka.pub" rel="noopener me" target="_blank">宁远平话</a>
</span>
</div>
<div class="cc-license animated" itemprop="license">
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/deed.zh-hans" class="cc-opacity" rel="noopener" target="_blank"><img src="https://cdnjs.cloudflare.com/ajax/libs/creativecommons-vocabulary/2020.11.3/assets/license_badges/big/by_nc_sa.svg" alt="Creative Commons"></a>
</div>
</div>
</div>
</div>
</aside>
</div>
<div class="main-inner post posts-expand">
<div class="post-block">
<article itemscope itemtype="http://schema.org/Article" class="post-content" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://example.com/GAMES10103.html">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="https://s2.loli.net/2022/03/24/zcq6l9KENbRJtDi.jpg">
<meta itemprop="name" content="LeeKa">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="LeeKa 的酒馆">
<meta itemprop="description" content="代码、音乐和游戏,一起来聊聊吧">
</span>
<span hidden itemprop="post" itemscope itemtype="http://schema.org/CreativeWork">
<meta itemprop="name" content="GAMES101-3:变换 | LeeKa 的酒馆">
<meta itemprop="description" content="">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
GAMES101-3:变换<a href="https://github.com/KXAND/BlogSource/edit/source/_posts/GAMES101/GAMES101-3.md" class="post-edit-link" title="编辑" rel="noopener" target="_blank"><i class="fa fa-pen-nib"></i></a>
</h1>
<div class="post-meta-container">
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2023-03-10 13:28:27" itemprop="dateCreated datePublished" datetime="2023-03-10T13:28:27+08:00">2023-03-10</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar-check"></i>
</span>
<span class="post-meta-item-text">更新于</span>
<time title="修改时间:2024-04-21 02:58:06" itemprop="dateModified" datetime="2024-04-21T02:58:06+08:00">2024-04-21</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/GAMES101/" itemprop="url" rel="index"><span itemprop="name">GAMES101</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Disqus:</span>
<a title="disqus" href="/GAMES10103.html#disqus_thread" itemprop="discussionUrl">
<span class="post-comments-count disqus-comment-count" data-disqus-identifier="/GAMES10103.html" itemprop="commentCount"></span>
</a>
</span>
<span class="post-meta-item" title="本文字数">
<span class="post-meta-item-icon">
<i class="far fa-file-word"></i>
</span>
<span class="post-meta-item-text">本文字数:</span>
<span>1.1k</span>
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody"><h2 id="前言"><a class="markdownIt-Anchor" href="#前言"></a> 前言</h2>
<p><a href="https://www.bilibili.com/video/BV1X7411F744?p=3">GAMES101-P3</a>:基本线性变换(旋转、缩放、切变)和平移、仿射变换矩阵、齐次坐标、三维变换中的旋转问题。 <span id="more"></span></p>
<p>对图形进行各种变换,可以相当于对其左乘对应矩阵。</p>
<h2 id="基本线性变换"><a class="markdownIt-Anchor" href="#基本线性变换"></a> 基本线性变换</h2>
<ol>
<li>
<p>缩放矩阵<br />
<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>s</mi><mi>x</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>s</mi><mi>y</mi></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
s_x & 0\\
0 & s_y
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></p>
</li>
<li>
<p>切变 (Shear) 矩阵:<br />
<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>a</mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
1 & a\\
0 & 1
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">a</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></p>
<p>切变的本质就是将矩形变成平行四边形。坐标不变的一条边称之为<strong>依赖轴</strong>,变换称之为<strong>方向轴</strong>。下图为一个 y 为依赖轴的例子:<img src="/assets/101-shear.jpg" alt="101-shear" /></p>
</li>
<li>
<p>旋转:旋转点通常是原点。<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>c</mi><mi>o</mi><mi>s</mi><mi>θ</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>c</mi><mi>o</mi><mi>s</mi><mi>θ</mi></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
cos\theta & -sin\theta \\
sin\theta & cos\theta
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="mord mathnormal">o</span><span class="mord mathnormal">s</span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="mord mathnormal">i</span><span class="mord mathnormal">n</span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathnormal">s</span><span class="mord mathnormal">i</span><span class="mord mathnormal">n</span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="mord mathnormal">o</span><span class="mord mathnormal">s</span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></p>
<p>对旋转矩阵,其反方向旋转的对应矩阵为其逆矩阵同时也是转置矩阵。</p>
</li>
</ol>
<h2 id="齐次坐标和仿射变换"><a class="markdownIt-Anchor" href="#齐次坐标和仿射变换"></a> 齐次坐标和仿射变换</h2>
<p>使用 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span> 维坐标表示 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">n</span></span></span></span> 维坐标。其中,对于<strong>点</strong>,记为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>T</mi></msup></mrow><annotation encoding="application/x-tex">(x,y,1)^T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span></span></span>,对于<strong>向量</strong>,记为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>0</mn><msup><mo stretchy="false">)</mo><mi>T</mi></msup></mrow><annotation encoding="application/x-tex">(x,y,0)^T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span></span></span></p>
<p>由于平移,不能写成左乘形式进而与其余变换统一。所以我们引入齐次坐标,使得平移矩阵为<br />
<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>t</mi><mi>x</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>t</mi><mi>y</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.6010299999999997em;vertical-align:-1.55002em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em;"><span style="top:-2.2500000000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.8099900000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.05101em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em;"><span style="top:-2.2500000000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.8099900000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.05101em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<blockquote>
<p>思考:为什么向量和点的第三维不一样?</p>
<p>对于向量,具有平移不变性,我们不希望其左乘平移矩阵得到的结果是新的向量,对于点的想法则相反。因此向量的最后一维应为 0 使得其不受平移矩阵影响。</p>
<p>进一步地,有:</p>
<ul>
<li>向量 + 向量 = 向量</li>
<li>向量 + 点 = 点</li>
<li>点 - 点 = 向量</li>
<li>点 + 点 = 二者中点</li>
<li>……</li>
</ul>
<p>可以发现向量为 0 而点为 1 的情况对于上述现象也可以解释得很好。</p>
</blockquote>
<h3 id="仿射变换"><a class="markdownIt-Anchor" href="#仿射变换"></a> 仿射变换</h3>
<p>定义<strong>仿射变换</strong>:仿射变换 = 线性变换 + 平移。</p>
<p>使用齐次坐标可以表示仿射变换。齐次坐标等于多个线性变换矩阵、平移变换矩阵左乘后的结果。</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>M</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>a</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>b</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>t</mi><mi>x</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>c</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>d</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>t</mi><mi>y</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">M=\begin{bmatrix}
a & b & t_x \\
c & d & t_y \\
0 & 0 & 1
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.6010299999999997em;vertical-align:-1.55002em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em;"><span style="top:-2.2500000000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.8099900000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.05101em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">a</span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">c</span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">b</span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em;"><span style="top:-2.2500000000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.8099900000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.05101em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
<p>其中 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo separator="true">,</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">a,b,c,d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">d</span></span></span></span> 表示旋转、缩放、切变,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mi>x</mi></msub><mo separator="true">,</mo><msub><mi>t</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">t_x,t_y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9011879999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span> 表示平移。</p>
<h3 id="逆矩阵"><a class="markdownIt-Anchor" href="#逆矩阵"></a> 逆矩阵</h3>
<p>对于仿射变换矩阵 M,定义逆矩阵:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>M</mi><msup><mi>M</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">MM^{-1} = E
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864108em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.864108em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span></p>
<p>其中 E 为单位矩阵。</p>
<p>M 的逆矩阵恰好对应原来仿射变换的逆变换。</p>
<p>特别地,对于旋转变换,其逆矩阵和转置矩阵相同,使得求其逆变换变得方便。逆矩阵等于转置矩阵的矩阵被称为<strong>正交矩阵</strong>。</p>
<blockquote>
<p>矩阵不满足交换律,变换也不满足交换律。变换的顺序很重要。</p>
</blockquote>
<h2 id="绕任意点的旋转"><a class="markdownIt-Anchor" href="#绕任意点的旋转"></a> 绕任意点的旋转</h2>
<p>设任意点为 P,将旋转分解为:把 P 平移回原点、旋转 α 度、平移 P 回 P 点。</p>
<p>于是有变换矩阵:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>T</mi><mo>=</mo><mi>T</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mi>T</mi><mo stretchy="false">(</mo><mi>α</mi><mo stretchy="false">)</mo><mi>T</mi><mo stretchy="false">(</mo><mo>−</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">T = T(P)T(\alpha)T(-P)
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mclose">)</span></span></span></span></span></p>
<p>(注意顺序是由右到左表示的)</p>
<h2 id="三维变换"><a class="markdownIt-Anchor" href="#三维变换"></a> 三维变换</h2>
<p>对于三维变换,可以简单地写出缩放和平移,重点关注旋转。</p>
<h3 id="绕轴旋转"><a class="markdownIt-Anchor" href="#绕轴旋转"></a> 绕轴旋转</h3>
<p>考虑简单的旋转:绕一个轴在一个平面内旋转。</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>R</mi><mi>x</mi></msub><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>sin</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>sin</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">R_x=\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos\alpha & -\sin\alpha & 0 \\
0 & \sin\alpha & \cos\alpha & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:4.80303em;vertical-align:-2.15003em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>R</mi><mi>y</mi></msub><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>sin</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>sin</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">R_y=\begin{bmatrix}
\cos\alpha & 0 & \sin\alpha & 0 \\
0 & 1 & 0 & 0 \\
-\sin\alpha & 0 & \cos\alpha & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:4.80303em;vertical-align:-2.15003em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>R</mi><mi>z</mi></msub><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>sin</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>sin</mi><mo></mo><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">R_z=\begin{bmatrix}
\sin\alpha & \cos\alpha & 0 & 0 \\
\cos\alpha & -\sin\alpha & 0 & 0\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:4.80303em;vertical-align:-2.15003em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
<p><strong>请注意 y 轴中 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mi>α</mi></mrow><annotation encoding="application/x-tex">sin\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathnormal">s</span><span class="mord mathnormal">i</span><span class="mord mathnormal">n</span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span> 的正负号与其他情况不同</strong>。</p>
<p>这是因为旋转矩阵的循环对称性。即 xyzxyz 的矩阵循环中,一个的值等于前面两个的值相乘。所以对 R_y 有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>R</mi><mi>z</mi></msub><mo>×</mo><msub><mi>R</mi><mi>z</mi></msub><mo>=</mo><msub><mi>R</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">R_z \times R_z = R_y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span> 而非相反。</p>
<h3 id="绕任意轴旋转"><a class="markdownIt-Anchor" href="#绕任意轴旋转"></a> 绕任意轴旋转</h3>
<p>对于任意角度的过原点轴,可以把它分解为三个轴上的角度(<strong>欧拉角</strong>)。变成三个轴的变换矩阵的乘积。</p>
<p>对绕任意轴 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">n</span></span></span></span> 旋转 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span> 角,有 Rodrigues’ Rotation Formula 如下:</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold">R</mi><mo stretchy="false">(</mo><mi mathvariant="bold">n</mi><mo separator="true">,</mo><mi>α</mi><mo stretchy="false">)</mo><mo>=</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>α</mi><mo stretchy="false">)</mo><mi mathvariant="bold">I</mi><mo>+</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>cos</mi><mo></mo><mo stretchy="false">(</mo><mi>α</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mi mathvariant="bold">n</mi><msup><mi mathvariant="bold">n</mi><mi mathvariant="bold">T</mi></msup><mo>+</mo><mi>sin</mi><mo></mo><mo stretchy="false">(</mo><mi>α</mi><mo stretchy="false">)</mo><mi mathvariant="bold">N</mi></mrow><annotation encoding="application/x-tex">\bold{R}(\bold{n},\alpha) = \cos(\alpha)\bold{I}+(1-\cos(\alpha))\bold{n}\bold{n^T}+\sin(\alpha)\bold{N}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">R</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">n</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord"><span class="mord mathbf">I</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1432769999999999em;vertical-align:-0.25em;"></span><span class="mop">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mclose">)</span><span class="mord"><span class="mord mathbf">n</span></span><span class="mord"><span class="mord"><span class="mord mathbf">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8932769999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">T</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">sin</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord"><span class="mord mathbf">N</span></span></span></span></span></span></p>
<p>其中</p>
<p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold">N</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><msub><mi>n</mi><mi>z</mi></msub></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>n</mi><mi>y</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>n</mi><mi>z</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><msub><mi>n</mi><mi>x</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><msub><mi>n</mi><mi>y</mi></msub></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>n</mi><mi>x</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">\bold{N}=\begin{bmatrix}
0 & -n_z & n_y \\
n_z & 0 & -n_x \\
-n_y & n_x & 0
\end{bmatrix}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">N</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.6010299999999997em;vertical-align:-1.55002em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em;"><span style="top:-2.2500000000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.8099900000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.05101em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em;"><span style="top:-4.21em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.0099999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.8099999999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em;"><span style="top:-2.2500000000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.8099900000000004em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.05101em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em;"><span></span></span></span></span></span></span></span></span></span></span></span></p>
<p>其中,称 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">N</mi></mrow><annotation encoding="application/x-tex">\bold{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">N</span></span></span></span></span> 为 n 的反对称矩阵,也就是向量 n 的叉积(<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>n</mi><mo>⃗</mo></mover><mo>×</mo><mover accent="true"><mi mathvariant="bold">a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec{n}\times\bold{\vec{a}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.79733em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.72744em;vertical-align:0em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.72744em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">a</span></span></span><span style="top:-3.01344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span> )的矩阵形式。</p>
<p>对于<strong>任意不过原点的旋转</strong>,把其分解为平移原点、旋转、平移回去的过程。</p>
<p>引入四元数是为了更好地对旋转进行插值,关于四元数,另行参考。</p>
<h2 id="跳转"><a class="markdownIt-Anchor" href="#跳转"></a> 跳转</h2>
<p>Home:<a href="GAMES10101.html">GAMES101-1:课程总览与笔记导航</a></p>
<p>Prev:<a href="GAMES10102.html">GAMES101-2:回顾线代</a></p>
<p>Next:<a href="GAMES10104.html">GAMES101-4:视图和投影变换</a></p>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/%E7%AC%94%E8%AE%B0/" rel="tag"><i class="fa fa-tag"></i> 笔记</a>
<a href="/tags/GAMES/" rel="tag"><i class="fa fa-tag"></i> GAMES</a>
<a href="/tags/GAMES101/" rel="tag"><i class="fa fa-tag"></i> GAMES101</a>
<a href="/tags/%E5%9B%BE%E5%BD%A2%E5%AD%A6/" rel="tag"><i class="fa fa-tag"></i> 图形学</a>
<a href="/tags/%E5%9F%BA%E6%9C%AC%E7%BA%BF%E6%80%A7%E5%8F%98%E6%8D%A2/" rel="tag"><i class="fa fa-tag"></i> 基本线性变换</a>
<a href="/tags/%E4%BB%BF%E5%B0%84%E5%8F%98%E6%8D%A2/" rel="tag"><i class="fa fa-tag"></i> 仿射变换</a>
<a href="/tags/%E9%BD%90%E6%AC%A1%E7%9F%A9%E9%98%B5/" rel="tag"><i class="fa fa-tag"></i> 齐次矩阵</a>
</div>
<div class="post-nav">
<div class="post-nav-item">
<a href="/GAMES10102.html" rel="prev" title="GAMES101-2:回顾线代">
<i class="fa fa-angle-left"></i> GAMES101-2:回顾线代
</a>
</div>
<div class="post-nav-item">
<a href="/GAMES10104.html" rel="next" title="GAMES101-4:视图和投影变换">
GAMES101-4:视图和投影变换 <i class="fa fa-angle-right"></i>
</a>
</div>
</div>
</footer>
</article>
</div>
<div class="comments" id="disqus_thread">
<noscript>Please enable JavaScript to view the comments powered by Disqus.</noscript>
</div>
</div>
</main>
<footer class="footer">
<div class="footer-inner">
<div class="copyright">
© 2020 –
<span itemprop="copyrightYear">2025</span>
<span class="with-love">
<i class="fa fa-heart"></i>
</span>
<span class="author" itemprop="copyrightHolder">LeeKa</span>
</div>
<div class="wordcount">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-chart-line"></i>
</span>
<span>站点总字数:</span>
<span title="站点总字数">126k</span>
</span>
</div>
<div class="powered-by">由 <a href="https://hexo.io/" rel="noopener" target="_blank">Hexo</a> & <a href="https://theme-next.js.org/pisces/" rel="noopener" target="_blank">NexT.Pisces</a> 强力驱动
</div>
</div>
</footer>
<div class="toggle sidebar-toggle" role="button">
<span class="toggle-line"></span>
<span class="toggle-line"></span>
<span class="toggle-line"></span>
</div>
<div class="sidebar-dimmer"></div>
<div class="back-to-top" role="button" aria-label="返回顶部">
<i class="fa fa-arrow-up fa-lg"></i>
<span>0%</span>
</div>
<noscript>
<div class="noscript-warning">Theme NexT works best with JavaScript enabled</div>
</noscript>
<script src="https://cdnjs.cloudflare.com/ajax/libs/animejs/3.2.1/anime.min.js" integrity="sha256-XL2inqUJaslATFnHdJOi9GfQ60on8Wx1C2H8DYiN1xY=" crossorigin="anonymous"></script>
<script src="/js/comments.js"></script><script src="/js/utils.js"></script><script src="/js/motion.js"></script><script src="/js/sidebar.js"></script><script src="/js/next-boot.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/hexo-generator-searchdb/1.4.1/search.js" integrity="sha256-1kfA5uHPf65M5cphT2dvymhkuyHPQp5A53EGZOnOLmc=" crossorigin="anonymous"></script>
<script src="/js/third-party/search/local-search.js"></script>
<script src="/js/third-party/pace.js"></script>
<script class="next-config" data-name="disqus" type="application/json">{"enable":true,"shortname":"leekapub","count":true,"i18n":{"disqus":"disqus"}}</script>
<script src="/js/third-party/comments/disqus.js"></script>
</body>
</html>