-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_pre.py
405 lines (326 loc) · 15.7 KB
/
data_pre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os, torch
import numpy as np
from termcolor import cprint
from scipy.sparse import csr_matrix
import scipy.sparse as sp
from scipy import sparse
from tqdm import tqdm
from utils import *
class DataBuilder:
def __init__(self, path, device):
super(DataBuilder, self).__init__()
dataPath_train = path + '/train.txt'
dataPath_test = path + '/test.txt'
self.trainMatrix, self.n_users, self.m_items = self.load_matrix(dataPath_train)
self.numpy_matrix_train = self.trainMatrix
self.trainMatrix = torch.tensor(self.trainMatrix, dtype=torch.float32).to(device)
self.testMatrix, _, _ = self.load_matrix(dataPath_test)
self.numpy_matrix_test = self.testMatrix
self.testMatrix = torch.tensor(self.testMatrix, dtype=torch.float32).to(device)
self.construct()
def construct(self):
# for train data
datalist = self.TransformMatrix2DataList(self.numpy_matrix_train)
self.trainDataSize = len(datalist)
trainUser, trainItem = [], []
for interact in datalist:
src, trg = interact[0], interact[1]
trainUser.append(src)
trainItem.append(trg)
self.trainUser = np.array(trainUser)
self.trainItem = np.array(trainItem)
# for test data
datalist = self.TransformMatrix2DataList(self.numpy_matrix_test)
self.testDataSize = len(datalist)
testUser, testItem = [], []
for interact in datalist:
src, trg = interact[0], interact[1]
testUser.append(src)
testItem.append(trg)
self.testUser = np.array(testUser)
self.testItem = np.array(testItem)
# (users,items), bipartite graph
self.UserItemNet = csr_matrix(self.numpy_matrix_train)
# 每个user的交互数量
self.users_D = np.array(self.UserItemNet.sum(axis=1)).squeeze()
self.users_D[self.users_D == 0.] = 1
# 每个item的交互数量
self.items_D = np.array(self.UserItemNet.sum(axis=0)).squeeze()
self.items_D[self.items_D == 0.] = 1.
# 每个user的交互记录
self.allPos = self.getUserPosItems(list(range(self.n_users)))
# user-list : item-list
self.testDict = self.__build_test()
def load_matrix(self, dataPath):
user_id_list, dataDict = [], {}
n_users, n_items = -1, -1
with open(dataPath, 'r') as f:
for line in f.readlines():
if line == '' or line is None:
break
l = line.strip('\n').split(' ')
user_id = int(l[0])
items_id = [int(i) for i in l[1:]]
n_items = max(n_items, max(items_id))
user_id_list.append(user_id)
dataDict[l[0]] = items_id
n_users = max(user_id_list)
dataMatrix = np.zeros((n_users + 1, n_items + 1))
for user_id, items_id in dataDict.items():
dataMatrix[int(user_id), items_id] = 1.0
return dataMatrix, n_users + 1, n_items + 1
def TransformMatrix2DataList(self, matrix):
if isinstance(matrix, torch.Tensor):
matrix = matrix.numpy()
sparse_matrix = sparse.coo_matrix(matrix)
row = sparse_matrix.row
column = sparse_matrix.col
rating = sparse_matrix.data
return list(zip(row, column, rating))
def updata_dataset(self, fake_data):
numpy_fake_data = fake_data.clone().detach().cpu().numpy()
self.numpy_matrix_train = np.concatenate((self.numpy_matrix_train, numpy_fake_data), axis=0)
self.n_users += numpy_fake_data.shape[0]
self.trainMatrix = torch.concat((self.trainMatrix, fake_data), dim=0)
self.construct()
def update_graph(self, fake_data, device):
fake_data = fake_data.to(device)
numpy_fake_data = fake_data.clone().detach().cpu().numpy()
self.numpy_matrix_train = np.concatenate((self.numpy_matrix_train, numpy_fake_data), axis=0)
self.n_users += numpy_fake_data.shape[0]
self.trainMatrix = torch.concat((self.trainMatrix, fake_data), dim=0)
self.construct()
self.Graph = self.getSparseGraph()
def _convert_sp_mat_to_sp_tensor(self, X):
coo = X.tocoo().astype(np.float32)
row = torch.Tensor(coo.row).long()
col = torch.Tensor(coo.col).long()
index = torch.stack([row, col])
data = torch.FloatTensor(coo.data)
return torch.sparse.FloatTensor(index, data, torch.Size(coo.shape))
def getSparseGraph(self, device):
# build tensor graph
# linked sparse matrix(tolil will be much faster than dok matrix/coo matrix)
# adj_matrix = sparse.coo_matrix(self.trainMatrix, dtype=np.float32)
# rowsum = np.array(adj_matrix.sum(axis=1))
# d_inv = np.power(rowsum, -0.5).flatten()
# d_inv[np.isinf(d_inv)] = 0.
# d_mat = sp.diags(d_inv)
#
# norm_adj = d_mat.dot(adj_matrix)
# norm_adj = norm_adj.dot(d_mat)
#
# indices = torch.from_numpy(
# np.vstack((norm_adj.row, norm_adj.col)).astype(np.int64)
# )
# values = torch.from_numpy(norm_adj.data)
# shape = torch.Size(norm_adj.shape)
#
#
# return torch.sparse.FloatTensor(indices, values, shape)
# -------------------------------------------------------------------------------------
# adj_mat = sparse.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items),
# dtype=np.float32).tolil()
# R = self.UserItemNet.tolil()
# adj_mat[:self.n_users, self.n_users:] = R
# adj_mat[self.n_users:, :self.n_users] = R.T
# adj_mat = adj_mat.todok()
#
# rowsum = np.array(adj_mat.sum(axis=1))
# d_inv = np.power(rowsum, -0.5).flatten()
# d_inv[np.isinf(d_inv)] = 0.
# d_mat = sp.diags(d_inv)
#
# norm_adj = d_mat.dot(adj_mat)
# norm_adj = norm_adj.dot(d_mat)
# norm_adj = norm_adj.tocsr()
#
# self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj)
# self.Graph = self.Graph.coalesce().to(config.DEVICE)
# -------------------------------------------------------------------------------------
assert isinstance(self.trainMatrix, torch.Tensor), 'only support tensor matrix'
n, m = self.trainMatrix.shape
row = torch.concat((torch.zeros(n, n).to(device), self.trainMatrix), dim=1)
col = torch.concat((self.trainMatrix.T, torch.zeros(m, m).to(device)), dim=1)
graph = torch.concat((row, col), dim=0).to_sparse()
nor_graph = self.normalize_tensor(graph)
self.Graph = nor_graph
return self.Graph
def __build_test(self):
"""
return:
dict: {user: [items]}
"""
test_data = {}
for i, item in enumerate(self.testItem):
user = self.testUser[i]
if test_data.get(user):
test_data[user].append(item)
else:
test_data[user] = [item]
return test_data
def getUserItemFeedback(self, users, items):
return np.array(self.UserItemNet[users, items]).astype('uint8').reshape((-1,))
def getUserPosItems(self, users):
posItems = []
for user in users:
posItems.append(self.UserItemNet[user].nonzero()[1])
return posItems
def GetPopularItem(self, p=0.01):
arg_popular = np.argsort(self.items_D)[::-1]
hot = int(p * self.m_items)
return arg_popular[:hot]
def GetColdItem(self, p=0.05):
arg_popular = np.argsort(self.items_D)
cold = int(p * self.m_items)
return arg_popular[-cold:]
def load_data(fname, seed=1234, verbose=True):
def map_data(data):
uniq = list(set(data))
id_dict = {old: new for new, old in enumerate(sorted(uniq))}
data = np.array(list(map(lambda x: id_dict[x], data)))
n = len(uniq)
return data, id_dict, n
data_dir = 'data/' + fname
files = ['/u.data', '/u.item', '/u.user']
sep = '\t'
filename = data_dir + files[0]
dtypes = {
'u_nodes': np.int32, 'v_nodes': np.int32,
'ratings': np.float32, 'timestamp': np.float64}
data = pd.read_csv(
filename, sep=sep, header=None,
names=['u_nodes', 'v_nodes', 'ratings', 'timestamp'], dtype=dtypes)
# shuffle here like cf-nade paper with python's own random class
# make sure to convert to list, otherwise random.shuffle acts weird on it without a warning
data_array = data.to_numpy()
random.seed(seed)
random.shuffle(data_array)
u_nodes_ratings = data_array[:, 0].astype(dtypes['u_nodes'])
v_nodes_ratings = data_array[:, 1].astype(dtypes['v_nodes'])
ratings = data_array[:, 2].astype(dtypes['ratings'])
u_nodes_ratings, u_dict, num_users = map_data(u_nodes_ratings)
v_nodes_ratings, v_dict, num_items = map_data(v_nodes_ratings)
u_nodes_ratings, v_nodes_ratings = u_nodes_ratings.astype(np.int64), v_nodes_ratings.astype(np.int32)
ratings = ratings.astype(np.float64)
# calculate feature
# Movie features (genres)
sep = r'|'
movie_file = data_dir + files[1]
movie_headers = ['movie id', 'movie title', 'release date', 'video release date',
'IMDb URL', 'unknown', 'Action', 'Adventure', 'Animation',
'Childrens', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy',
'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi',
'Thriller', 'War', 'Western']
movie_df = pd.read_csv(movie_file, sep=sep, header=None,
names=movie_headers, engine='python', encoding = 'latin-1')
genre_headers = movie_df.columns.values[6:]
num_genres = genre_headers.shape[0]
v_features = np.zeros((num_items, num_genres), dtype=np.float32)
for movie_id, g_vec in zip(movie_df['movie id'].values.tolist(), movie_df[genre_headers].values.tolist()):
# Check if movie_id was listed in ratings file and therefore in mapping dictionary
if movie_id in v_dict.keys():
v_features[v_dict[movie_id], :] = g_vec
# User features
sep = r'|'
users_file = data_dir + files[2]
users_headers = ['user id', 'age', 'gender', 'occupation', 'zip code']
users_df = pd.read_csv(users_file, sep=sep, header=None,
names=users_headers, engine='python', encoding = 'latin-1')
occupation = set(users_df['occupation'].values.tolist())
gender_dict = {'M': 0., 'F': 1.}
occupation_dict = {f: i for i, f in enumerate(occupation, start=2)}
num_feats = 2 + len(occupation_dict)
u_features = np.zeros((num_users, num_feats), dtype=np.float32)
for _, row in users_df.iterrows():
u_id = row['user id']
if u_id in u_dict.keys():
# age
u_features[u_dict[u_id], 0] = row['age']
# gender
u_features[u_dict[u_id], 1] = gender_dict[row['gender']]
# occupation
u_features[u_dict[u_id], occupation_dict[row['occupation']]] = 1.
u_features = sp.csr_matrix(u_features)
v_features = sp.csr_matrix(v_features)
# user_feat = torch.load(f'graph/saved/init_embedding/{filename}/user_feat.pt')
# item_feat = torch.load(f'graph/saved/init_embedding/{filename}/item_feat.pt')
return num_users, num_items, u_nodes_ratings, v_nodes_ratings, ratings, u_features, v_features
def create_trainvaltest_split(dataset, seed=1234, testing=False, datasplit_path=None, datasplit_from_file=False,
verbose=True):
if datasplit_from_file and os.path.isfile(datasplit_path):
print('Reading dataset splits from file...')
with open(datasplit_path) as f:
num_users, num_items, u_nodes, v_nodes, ratings, u_features, v_features = pkl.load(f)
else:
num_users, num_items, u_nodes, v_nodes, ratings, u_features, v_features = load_data(dataset, seed=seed,
verbose=verbose)
with open(datasplit_path, 'wb') as f:
pkl.dump([num_users, num_items, u_nodes, v_nodes, ratings, u_features, v_features], f)
neutral_rating = -1
rating_dict = {r: i for i, r in enumerate(np.sort(np.unique(ratings)).tolist())}
labels = np.full((num_users, num_items), neutral_rating, dtype=np.int32)
labels[u_nodes, v_nodes] = np.array([rating_dict[r] for r in ratings])
labels = labels.reshape([-1])
# number of test and validation edges
num_test = int(np.ceil(ratings.shape[0] * 0.1))
if dataset == 'ml-100k':
num_val = int(np.ceil(ratings.shape[0] * 0.9 * 0.05))
else:
num_val = int(np.ceil(ratings.shape[0] * 0.9 * 0.05))
num_train = ratings.shape[0] - num_val - num_test
pairs_nonzero = np.array([[u, v] for u, v in zip(u_nodes, v_nodes)])
idx_nonzero = np.array([u * num_items + v for u, v in pairs_nonzero])
train_idx = idx_nonzero[0:num_train]
# make training adjacency matrix
rating_mx_train = np.zeros(num_users * num_items, dtype=np.float32)
rating_mx_train[train_idx] = labels[train_idx].astype(np.float32) + 1.
rating_mx_train = sp.csr_matrix(rating_mx_train.reshape(num_users, num_items))
class_values = np.sort(np.unique(ratings))
return u_features, v_features, rating_mx_train, class_values
def get_loader(dataName):
datasplit_path = 'data/' + dataName + '/features.pickle'
# 得到user / item
u_features, v_features, adj_train, class_values = create_trainvaltest_split(dataName, datasplit_path=datasplit_path)
num_users, num_items = adj_train.shape
print("Normalizing feature vectors...")
# node id's for node input features
id_csr_u = sp.identity(num_users, format='csr')
id_csr_v = sp.identity(num_items, format='csr')
u_features, v_features = preprocess_user_item_features(id_csr_u, id_csr_v)
u_features = u_features.toarray()
v_features = v_features.toarray()
features_dim = u_features.shape[1]
return len(class_values), features_dim, u_features, v_features, adj_train
def loadFeatures(dataset, graph, model_path):
recmodel = model(dataset, graph).cuda()
recmodel.load_state_dict(torch.load(model_path))
users_emb, items_emb = recmodel.computer()
users_emb = users_emb + users_features
items_emb = items_emb + items_features
torch.save(users_emb, 'user.pt')
torch.save(items_emb, 'item.pt')
return users_emb, items_emb
def init_emb_by_feature(trainMatrix, name=None):
user_feat, item_feat = None, None
if os.path.exists(f'saved/init_embedding/{name}/user_feat.pt'):
user_feat = torch.load(f'saved/init_embedding/{name}/user_feat.pt')
if os.path.exists(f'/Users/edisonchen/Desktop/graph/saved/init_embedding/{name}/item_feat.pt'):
item_feat = torch.load(f'/Users/edisonchen/Desktop/graph/saved/init_embedding/{name}/item_feat.pt')
if user_feat is not None and item_feat is not None:
return user_feat, item_feat
feat = Feature(trainMatrix)
user_feat, item_feat = [], []
for user in tqdm(range(trainMatrix.shape[0])):
user_feat.append(feat.get_feature(user))
user_feat = torch.tensor(user_feat, dtype=torch.float)
torch.save(user_feat, f'/Users/edisonchen/Desktop/graph/saved/init_embedding/{name}/user_feat.pt')
feat = Feature(trainMatrix.T)
for item in tqdm(range(trainMatrix.shape[1])):
item_feat.append(feat.get_feature(item))
item_feat = torch.tensor(item_feat, dtype=torch.float)
torch.save(item_feat, f'/Users/edisonchen/Desktop/graph/saved/init_embedding/{name}/item_feat.pt')
cprint('\n----- loading the init embeddings by dataset features, before senting to the model, it should be scaled -----\n', 'yellow')
return user_feat, item_feat
if __name__ == '__main__':
get_loader('ml-100k')