-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmetric.jl
94 lines (73 loc) · 2.95 KB
/
metric.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
export MetricHeuristic, ManhattanHeuristic, EuclideanHeuristic
"""
MetricHeuristic(metric, fluents[, coeffs])
Heuristic that computes a `metric` distance between the current state and the
goals for the specified numeric `fluents`, which are (optionally) multiplied
by scalar `coeffs` before metric computation.
This heuristic can only be used with goal formulae that contain a list of
equality constraints for the provided `fluents`.
# Arguments
- `metric`
Function that returns a scalar value given a vector of differences between
the fluent values for the current state and the goal.
- `fluents`
A list of `Term`s that refer to numeric fluents in the state.
- `coeffs`
A list of scalar coefficients which each fluent value will be multiplied
by before metric computation. Defaults to `1` for all fluents.
"""
mutable struct MetricHeuristic{M} <: Heuristic
metric::M
fluents::Vector{Term}
coeffs::Vector{Float32}
goalvals::Vector{Float32}
MetricHeuristic(metric::M, fluents, coeffs) where {M} =
new{M}(metric, Vector{Term}(fluents), coeffs)
end
``
MetricHeuristic(metric, fluents) =
MetricHeuristic(metric, fluents, ones(Float32, length(fluents)))
is_precomputed(h::MetricHeuristic) = isdefined(h, :goalvals)
function precompute!(h::MetricHeuristic,
domain::Domain, state::State, spec::Specification)
goals = flatten_conjs(get_goal_terms(spec))
h.goalvals = map(h.fluents) do f
idxs = findall(goals) do g
g.name == :(==) && g.args[1] == f && g.args[2].name isa Real
end
if isempty(idxs)
error("Specification lacks an equality constraint for fluent $f")
elseif length(idxs) > 1
error("More than one equality constraint for fluent $f")
end
return Float32(goals[idxs[1]].args[2].name)
end
return h
end
function compute(h::MetricHeuristic,
domain::Domain, state::State, spec::Specification)
# Compute differences for each fluent
diffs = [c * (v - Float32(evaluate(domain, state, f)))
for (f, c, v) in zip(h.fluents, h.coeffs, h.goalvals)]
# Compute metric distance from fluent differences
dist = h.metric(diffs)
return dist
end
norm1(v) = sum(abs.(v))
norm2(v) = sqrt(sum(abs2.(v)))
"""
ManhattanHeuristic(fluents[, coeffs])
Computes Manhattan distance to the goal for the specified numeric fluents. An
instance of [`MetricHeuristic`](@ref) which uses the L1 norm.
"""
const ManhattanHeuristic = MetricHeuristic{typeof(norm1)}
ManhattanHeuristic(fluents, args...) =
MetricHeuristic(norm1, fluents, args...)
"""
EuclideanHeuristic(fluents[, coeffs])
Computes Euclidean distance to the goal for the specified numeric fluents. An
instance of [`MetricHeuristic`](@ref) which uses the L2 norm.
"""
const EuclideanHeuristic = MetricHeuristic{typeof(norm2)}
EuclideanHeuristic(fluents, args...) =
MetricHeuristic(norm2, fluents, args...)