forked from InhwanBae/NPSN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_npsn.py
190 lines (151 loc) · 7.81 KB
/
train_npsn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import random
import pickle
import argparse
import numpy as np
import torch
from tqdm import tqdm
from torch.utils.data.dataloader import DataLoader
from baselines.converter import get_identity
from npsn import *
# Reproducibility
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
parser = argparse.ArgumentParser()
parser.add_argument('--obs_len', type=int, default=8)
parser.add_argument('--pred_len', type=int, default=12)
parser.add_argument('--dataset', default='zara2', help='scene ["eth","hotel","univ","zara1","zara2"]')
parser.add_argument('--baseline', default='sgcn', help='baseline network ["sgcn","stgcnn"]')
parser.add_argument('--batch_size', type=int, default=512, help='minibatch size')
parser.add_argument('--num_epochs', type=int, default=128, help='number of epochs')
parser.add_argument('--num_samples', type=int, default=20, help='number of samples for npsn')
parser.add_argument('--clip_grad', type=float, default=1, help='gradient clipping')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--lr_sh_rate', type=int, default=32, help='number of steps to drop the lr')
parser.add_argument('--use_lrschd', action="store_true", default=True, help='Use lr rate scheduler')
parser.add_argument('--tag', default='npsn', help='personal tag for the model ')
parser.add_argument('--gpu_num', default='0', type=str)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
metrics = {'train_loss': [], 'val_loss': []}
constant_metrics = {'min_val_epoch': -1, 'min_val_loss': 1e10}
if args.baseline == 'stgcnn':
from baselines.stgcnn import *
elif args.baseline == 'sgcn':
from baselines.sgcn import *
def train(epoch, model, model_npsn, optimizer_npsn, loader_train):
global metrics, constant_metrics
model_npsn.train()
loss_batch = 0.
loader_len = len(loader_train)
for cnt, batch in enumerate(tqdm(loader_train, desc='Train Epoch: {}'.format(epoch), mininterval=1)):
if cnt % args.batch_size == 0:
optimizer_npsn.zero_grad()
if args.baseline == 'stgcnn':
V_obs, V_tr, A_obs, A_tr = data_sampler(*[tensor.cuda() for tensor in batch[[-4, -2, -3, -1]]])
with torch.no_grad():
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_tmp, A_obs.squeeze())
V_pred = V_pred.permute(0, 2, 3, 1).detach()
elif args.baseline == 'sgcn':
V_obs, V_tr, _, _ = data_sampler(*[tensor.cuda() for tensor in batch[-2:]])
identity = get_identity(V_obs.shape)
with torch.no_grad():
V_pred = model(V_obs, identity).detach()
V_obs = V_obs[..., 1:]
mu, cov = generate_statistics_matrices(V_pred.squeeze(dim=0))
loc = model_npsn(V_obs.permute(0, 2, 3, 1))
loss_dist, loss_disc = model_npsn.get_loss(loc, mu, cov, V_tr.permute(0, 2, 3, 1))
loss = loss_dist * 1.0 + loss_disc * 0.01
loss.backward()
loss_batch += loss.item()
if cnt % args.batch_size + 1 == args.batch_size: # or cnt + 1 == loader_len: # drop last
if args.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(model_npsn.parameters(), args.clip_grad)
optimizer_npsn.step()
metrics['train_loss'].append(loss_batch / loader_len)
@torch.no_grad()
def valid(epoch, model, model_npsn, checkpoint_dir, loader_val):
global metrics, constant_metrics
model_npsn.eval()
loss_batch = 0.
loader_len = 0
for cnt, batch in enumerate(tqdm(loader_val, desc='Valid Epoch: {}'.format(epoch), mininterval=1)):
obs_traj, pred_traj_gt = [tensor.cuda() for tensor in batch[:2]]
if args.baseline == 'stgcnn':
V_obs, A_obs, V_tr, A_tr = [tensor.cuda() for tensor in batch[-4:]]
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_tmp, A_obs.squeeze())
V_pred = V_pred.permute(0, 2, 3, 1).detach()
elif args.baseline == 'sgcn':
V_obs, V_tr = [tensor.cuda() for tensor in batch[-2:]]
identity = get_identity(V_obs.shape)
V_pred = model(V_obs, identity)
V_obs = V_obs[..., 1:]
mu, cov = generate_statistics_matrices(V_pred.squeeze(dim=0))
loc = model_npsn(V_obs.permute(0, 2, 3, 1))
V_obs_traj = obs_traj.permute(0, 3, 1, 2).squeeze(dim=0)
V_pred_traj_gt = pred_traj_gt.permute(0, 3, 1, 2).squeeze(dim=0)
# Randomly sampling predict trajectories
V_pred_sample = purposive_sample(mu, cov, loc.size(2), loc)
# Evaluate trajectories
V_absl = V_pred_sample.cumsum(dim=1) + V_obs_traj[[-1], :, :]
ADEs, FDEs, TCCs = compute_batch_metric(V_absl, V_pred_traj_gt)
loss_batch += FDEs.sum().item()
loader_len += FDEs.size(0)
metrics['val_loss'].append(loss_batch / loader_len)
if metrics['val_loss'][-1] < constant_metrics['min_val_loss']:
constant_metrics['min_val_loss'] = metrics['val_loss'][-1]
constant_metrics['min_val_epoch'] = epoch
torch.save(model_npsn.state_dict(), checkpoint_dir + 'val_best.pth') # OK
def main(args):
print("Training initiating....")
print(args)
data_set = './dataset/' + args.dataset + '/'
model_path = './pretrained/' + args.baseline + '/' + args.dataset + '/val_best.pth'
checkpoint_dir = './checkpoints/' + args.tag + '/' + args.dataset + '/'
dset_train = TrajectoryDataset(data_set + 'train/', obs_len=args.obs_len, pred_len=args.pred_len, skip=1)
loader_train = DataLoader(dset_train, batch_size=1, shuffle=True, num_workers=0)
dset_val = TrajectoryDataset(data_set + 'val/', obs_len=args.obs_len, pred_len=args.pred_len, skip=1)
loader_val = DataLoader(dset_val, batch_size=1, shuffle=False, num_workers=0)
# Load baseline network model and npsn
if args.baseline == 'stgcnn':
model = STGCNN(n_stgcnn=1, n_txpcnn=5, output_feat=5, kernel_size=3, seq_len=8, pred_seq_len=12).cuda()
elif args.baseline == 'sgcn':
model = SGCN(number_asymmetric_conv_layer=7, embedding_dims=64, number_gcn_layers=1, dropout=0,
obs_len=8, pred_len=12, n_tcn=5, out_dims=5).cuda()
else:
raise NotImplementedError
model.load_state_dict(torch.load(model_path))
model.eval()
model_npsn = NPSN(t_obs=args.obs_len, s=2, n=args.num_samples).cuda()
print('{} parameters:'.format(args.baseline), count_parameters(model))
print('npsn parameters:', count_parameters(model_npsn))
optimizer_npsn = torch.optim.AdamW(model_npsn.parameters(), lr=args.lr)
if args.use_lrschd:
scheduler_npsn = torch.optim.lr_scheduler.StepLR(optimizer_npsn, step_size=args.lr_sh_rate, gamma=0.5)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
with open(checkpoint_dir + 'args.pkl', 'wb') as fp:
pickle.dump(args, fp)
print('Data and model loaded')
print('Checkpoint dir:', checkpoint_dir)
for epoch in range(args.num_epochs):
train(epoch, model, model_npsn, optimizer_npsn, loader_train)
valid(epoch, model, model_npsn, checkpoint_dir, loader_val)
if args.use_lrschd:
scheduler_npsn.step()
print(" ")
print("Dataset: {0}, Epoch: {1}".format(args.dataset, epoch))
print("Train_loss: {0}, Val_los: {1}".format(metrics['train_loss'][-1], metrics['val_loss'][-1]))
print("Min_val_epoch: {0}, Min_val_loss: {1}".format(constant_metrics['min_val_epoch'],
constant_metrics['min_val_loss']))
print(" ")
with open(checkpoint_dir + 'constant_metrics.pkl', 'wb') as fp:
pickle.dump(constant_metrics, fp)
if __name__ == '__main__':
args = parser.parse_args()
main(args)