forked from InhwanBae/NPSN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_npsn.py
140 lines (109 loc) · 5.53 KB
/
test_npsn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import glob
import pickle
import argparse
import numpy as np
import torch
from tqdm import tqdm
from torch.utils.data.dataloader import DataLoader
from baselines.converter import get_identity
from npsn import *
parser = argparse.ArgumentParser()
parser.add_argument('--baseline', default='sgcn', help='baseline network ["sgcn","stgcnn"]')
parser.add_argument('--method', default='npsn', help='sampling method ["mc","qmc","npsn"]')
parser.add_argument('--tag', default='npsn', help='personal tag for the model')
parser.add_argument('--gpu_num', default='0', type=str)
test_args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = test_args.gpu_num
if test_args.baseline == 'stgcnn':
from baselines.stgcnn import *
elif test_args.baseline == 'sgcn':
from baselines.sgcn import *
@torch.no_grad()
def test(model, model_npsn, loader_test, method='npsn', samples=20, trials=1):
model.eval()
model_npsn.eval()
ade_all, fde_all, tcc_all = [], [], []
if method == 'qmc':
sobol_generator = torch.quasirandom.SobolEngine(dimension=2, scramble=True, seed=0)
for batch in tqdm(loader_test, desc=loader_test.dataset.data_dir):
obs_traj, pred_traj_gt = [tensor.cuda() for tensor in batch[:2]]
if test_args.baseline == 'stgcnn':
V_obs, A_obs, V_tr, A_tr = [tensor.cuda() for tensor in batch[-4:]]
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_tmp, A_obs.squeeze())
V_pred = V_pred.permute(0, 2, 3, 1).detach()
elif test_args.baseline == 'sgcn':
V_obs, V_tr = [tensor.cuda() for tensor in batch[-2:]]
identity = get_identity(V_obs.shape)
V_pred = model(V_obs, identity)
V_obs = V_obs[..., 1:]
mu, cov = generate_statistics_matrices(V_pred.squeeze(dim=0))
if method == 'npsn':
loc = model_npsn(V_obs.permute(0, 2, 3, 1))
V_obs_traj = obs_traj.permute(0, 3, 1, 2).squeeze(dim=0)
V_pred_traj_gt = pred_traj_gt.permute(0, 3, 1, 2).squeeze(dim=0)
ade_stack, fde_stack, tcc_stack = [], [], []
for trial in range(trials):
if method == 'mc':
V_pred_sample = mc_sample(mu, cov, samples)
elif method == 'qmc':
V_pred_sample = qmc_sample(mu, cov, samples, sobol_generator)
elif method == 'npsn':
V_pred_sample = purposive_sample(mu, cov, samples, loc)
else:
raise NotImplementedError
# Evaluate trajectories
V_absl = V_pred_sample.cumsum(dim=1) + V_obs_traj[[-1], :, :]
ADEs, FDEs, TCCs = compute_batch_metric(V_absl, V_pred_traj_gt)
ade_stack.append(ADEs.detach().cpu().numpy())
fde_stack.append(FDEs.detach().cpu().numpy())
tcc_stack.append(TCCs.detach().cpu().numpy())
ade_all.append(np.array(ade_stack))
fde_all.append(np.array(fde_stack))
tcc_all.append(np.array(tcc_stack))
ade_all = np.concatenate(ade_all, axis=1)
fde_all = np.concatenate(fde_all, axis=1)
tcc_all = np.concatenate(tcc_all, axis=1)
mean_ade, mean_fde, mean_tcc = ade_all.mean(axis=0).mean(), fde_all.mean(axis=0).mean(), tcc_all.mean(axis=0).mean()
return mean_ade, mean_fde, mean_tcc
def main():
ADE_ls, FDE_ls, TCC_ls = [], [], []
print("*" * 50)
root_ = './checkpoints/' + test_args.tag + '-' + test_args.baseline + '/'
dataset = ['eth', 'hotel', 'univ', 'zara1', 'zara2']
paths = list(map(lambda x: root_ + x, dataset))
for feta in range(len(paths)):
path = paths[feta]
exps = glob.glob(path)
print('Model being tested are:', exps)
for exp_path in exps:
print("*" * 50)
print("Evaluating model:", exp_path)
args_path = exp_path + '/args.pkl'
with open(args_path, 'rb') as f:
args = pickle.load(f)
data_set = './dataset/' + args.dataset + '/'
model_path = './pretrained/' + test_args.baseline + '/' + args.dataset + '/val_best.pth'
model_npsn_path = exp_path + '/val_best.pth'
dset_test = TrajectoryDataset(data_set + 'test/', obs_len=args.obs_len, pred_len=args.pred_len, skip=1)
loader_test = DataLoader(dset_test, batch_size=1, shuffle=False, num_workers=0)
if test_args.baseline == 'stgcnn':
model = STGCNN(n_stgcnn=1, n_txpcnn=5, output_feat=5, kernel_size=3, seq_len=8, pred_seq_len=12).cuda()
elif test_args.baseline == 'sgcn':
model = SGCN(number_asymmetric_conv_layer=7, embedding_dims=64, number_gcn_layers=1, dropout=0,
obs_len=8, pred_len=12, n_tcn=5, out_dims=5).cuda()
else:
raise NotImplementedError
model.load_state_dict(torch.load(model_path))
model_npsn = NPSN(t_obs=args.obs_len, s=2, n=args.num_samples).cuda()
model_npsn.load_state_dict(torch.load(model_npsn_path))
ADE, FDE, TCC = test(model, model_npsn, loader_test, test_args.method.lower(), args.num_samples)
ADE_ls.append(ADE), FDE_ls.append(FDE), TCC_ls.append(TCC)
print("Method: {} N: {} ADE: {:.8f} FDE: {:.8f} TCC: {:.8f}".format(test_args.method, args.num_samples,
ADE, FDE, TCC))
print("*" * 50)
print("AVG ADE: {:.8f} AVG FDE: {:.8f} AVG TCC: {:.8f}".format(sum(ADE_ls) / 5, sum(FDE_ls) / 5, sum(TCC_ls) / 5))
print("*" * 50)
if __name__ == '__main__':
main()