-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dpe.py
323 lines (280 loc) · 10.7 KB
/
train_dpe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
Description:
Author: Jiaqi Gu (jqgu@utexas.edu)
Date: 2021-05-10 20:34:02
LastEditors: Jiaqi Gu (jqgu@utexas.edu)
LastEditTime: 2021-12-26 00:11:01
"""
#!/usr/bin/env python
# coding=UTF-8
import argparse
import os
from typing import Callable, Dict, Iterable, List, Optional, Tuple
import mlflow
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pyutils.config import configs
from pyutils.general import AverageMeter, logger as lg
from pyutils.torch_train import (
BestKModelSaver,
count_parameters,
get_learning_rate,
load_model,
set_torch_deterministic,
)
from pyutils.typing import Criterion, DataLoader, Optimizer, Scheduler
import torch.fft
from core import builder
from core.datasets.mixup import Mixup, MixupAll
import torch.cuda.amp as amp
def train(
model: nn.Module,
train_loader: DataLoader,
optimizer: Optimizer,
scheduler: Scheduler,
epoch: int,
criterion: Criterion,
aux_criterions: Dict,
mixup_fn: Callable = None,
device: torch.device = torch.device("cuda:0"),
grad_scaler: Optional[Callable] = None,
) -> None:
model.train()
step = epoch * len(train_loader)
mse_meter = AverageMeter("mse")
aux_meters = {name: AverageMeter(name) for name in aux_criterions}
aux_output_weight = getattr(configs.criterion, "aux_output_weight", 0)
data_counter = 0
total_data = len(train_loader.dataset)
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to(device, non_blocking=True)
data_counter += data.shape[0]
target = target.to(device, non_blocking=True)
if mixup_fn is not None:
data, target = mixup_fn(data, target)
with amp.autocast(enabled=grad_scaler._enabled):
output = model(data)
regression_loss = criterion(output, target)
mse_meter.update(regression_loss.item())
loss = regression_loss
for name, config in aux_criterions.items():
aux_criterion, weight = config
aux_loss = 0
loss = loss + aux_loss
aux_meters[name].update(aux_loss.item())
optimizer.zero_grad()
grad_scaler.scale(loss).backward()
grad_scaler.unscale_(optimizer)
## sam optimizer
if "sam" in configs.optimizer.name.lower():
optimizer.first_step(zero_grad=True)
for m in model.modules():
if isinstance(m, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
m.eval()
criterion(model(data), target).backward()
optimizer.second_step()
for m in model.modules():
if isinstance(m, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
m.train()
else:
grad_scaler.step(optimizer)
grad_scaler.update()
step += 1
if batch_idx % int(configs.run.log_interval) == 0:
log = "Train Epoch: {} [{:7d}/{:7d} ({:3.0f}%)] Loss: {:.4e} Regression Loss: {:.4e}".format(
epoch,
data_counter,
total_data,
100.0 * data_counter / total_data,
loss.data.item(),
regression_loss.data.item(),
)
for name, aux_meter in aux_meters.items():
log += f" {name}: {aux_meter.val:.4e}"
lg.info(log)
mlflow.log_metrics({"train_loss": loss.item()}, step=step)
scheduler.step()
avg_regression_loss = mse_meter.avg
lg.info(f"Train Regression Loss: {avg_regression_loss:.4e}")
mlflow.log_metrics({"train_regression": avg_regression_loss, "lr": get_learning_rate(optimizer)}, step=epoch)
lg.info(f"{model.freq.data}")
lg.info(f"{model.phase_bias.data}")
return avg_regression_loss
def validate(
model: nn.Module,
validation_loader: DataLoader,
epoch: int,
criterion: Criterion,
loss_vector: Iterable,
accuracy_vector: Iterable,
device: torch.device,
mixup_fn: Callable = None,
) -> None:
model.eval()
val_loss = 0
mse_meter = AverageMeter("mse")
with torch.no_grad():
for i, (data, target) in enumerate(validation_loader):
data = data.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
if mixup_fn is not None:
data, target = mixup_fn(data, target, random_state=i, vflip=False)
output = model(data)
val_loss = criterion(output, target)
mse_meter.update(val_loss.item())
loss_vector.append(mse_meter.avg)
lg.info("\nValidation set: Average loss: {:.4e}\n".format(mse_meter.avg))
mlflow.log_metrics({"val_loss": mse_meter.avg}, step=epoch)
def test(
model: nn.Module,
test_loader: DataLoader,
epoch: int,
criterion: Criterion,
loss_vector: Iterable,
accuracy_vector: Iterable,
device: torch.device,
mixup_fn: Callable = None,
) -> None:
model.eval()
val_loss = 0
mse_meter = AverageMeter("mse")
with torch.no_grad():
for i, (data, target) in enumerate(test_loader):
data = data.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
if mixup_fn is not None:
data, target = mixup_fn(data, target, random_state=i + 10000, vflip=False)
output = model(data)
val_loss = criterion(output, target)
mse_meter.update(val_loss.item())
print(output[0])
print(target[0])
loss_vector.append(mse_meter.avg)
lg.info("\nTest set: Average loss: {:.4e}\n".format(mse_meter.avg))
mlflow.log_metrics({"test_loss": mse_meter.avg}, step=epoch)
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("config", metavar="FILE", help="config file")
# parser.add_argument('--run-dir', metavar='DIR', help='run directory')
# parser.add_argument('--pdb', action='store_true', help='pdb')
args, opts = parser.parse_known_args()
configs.load(args.config, recursive=True)
configs.update(opts)
if torch.cuda.is_available() and int(configs.run.use_cuda):
torch.cuda.set_device(configs.run.gpu_id)
device = torch.device("cuda:" + str(configs.run.gpu_id))
torch.backends.cudnn.benchmark = True
else:
device = torch.device("cpu")
torch.backends.cudnn.benchmark = False
if int(configs.run.deterministic) == True:
set_torch_deterministic()
train_loader, validation_loader, test_loader = builder.make_dataloader(splits=["train", "test"])
model = builder.make_model(
device,
model_cfg=configs.model,
random_state=int(configs.run.random_state) if int(configs.run.deterministic) else None,
)
optimizer = builder.make_optimizer(
[p for p in model.parameters() if p.requires_grad],
name=configs.optimizer.name,
configs=configs.optimizer,
)
scheduler = builder.make_scheduler(optimizer)
criterion = builder.make_criterion(configs.criterion.name, configs.criterion).to(device)
aux_criterions = (
{
name: [builder.make_criterion(name, cfg=config), float(config.weight)]
for name, config in configs.aux_criterion.items()
if float(config.weight) > 0
}
if configs.aux_criterion is not None
else {}
)
print(aux_criterions)
mixup_config = configs.dataset.augment
mixup_fn = MixupAll(**mixup_config) if mixup_config is not None else None
test_mixup_fn = MixupAll(**configs.dataset.test_augment) if mixup_config is not None else None
saver = BestKModelSaver(
k=int(configs.checkpoint.save_best_model_k),
descend=False,
truncate=6,
metric_name="err",
format="{:.6f}",
)
grad_scaler = amp.GradScaler(enabled=getattr(configs.run, "amp", False))
lg.info(f"Number of parameters: {count_parameters(model)}")
model_name = f"{configs.model.name}"
checkpoint = f"./checkpoint/{configs.checkpoint.checkpoint_dir}/{model_name}_{configs.checkpoint.model_comment}.pt"
lg.info(f"Current checkpoint: {checkpoint}")
mlflow.set_experiment(configs.run.experiment)
experiment = mlflow.get_experiment_by_name(configs.run.experiment)
# run_id_prefix = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
mlflow.start_run(run_name=model_name)
mlflow.log_params(
{
"exp_name": configs.run.experiment,
"exp_id": experiment.experiment_id,
"run_id": mlflow.active_run().info.run_id,
"init_lr": configs.optimizer.lr,
"checkpoint": checkpoint,
"restore_checkpoint": configs.checkpoint.restore_checkpoint,
"pid": os.getpid(),
}
)
lossv, accv = [0], [0]
epoch = 0
try:
lg.info(
f"Experiment {configs.run.experiment} ({experiment.experiment_id}) starts. Run ID: ({mlflow.active_run().info.run_id}). PID: ({os.getpid()}). PPID: ({os.getppid()}). Host: ({os.uname()[1]})"
)
lg.info(configs)
if int(configs.checkpoint.resume) and len(configs.checkpoint.restore_checkpoint) > 0:
load_model(
model,
configs.checkpoint.restore_checkpoint,
ignore_size_mismatch=int(configs.checkpoint.no_linear),
)
lg.info("Validate resumed model...")
test(model, validation_loader, 0, criterion, lossv, accv, device)
for epoch in range(1, int(configs.run.n_epochs) + 1):
train_loss = train(
model,
train_loader,
optimizer,
scheduler,
epoch,
criterion,
aux_criterions,
mixup_fn,
device,
grad_scaler=grad_scaler,
)
if validation_loader is not None:
validate(
model,
validation_loader,
epoch,
criterion,
lossv,
accv,
device,
mixup_fn=test_mixup_fn,
)
test(
model,
test_loader,
epoch,
criterion,
lossv if validation_loader is None else [],
accv if validation_loader is None else [],
device,
mixup_fn=test_mixup_fn,
)
saver.save_model(model, train_loss, epoch=epoch, path=checkpoint, save_model=False, print_msg=True)
except KeyboardInterrupt:
lg.warning("Ctrl-C Stopped")
if __name__ == "__main__":
main()