-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvanilla_gan_model.py
73 lines (58 loc) · 2.14 KB
/
vanilla_gan_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
# Generator model
class Generator(nn.Module):
def __init__(self, device, n_z=128):
super(Generator, self).__init__()
self.device = device
self.hidden_size = 1024 if self.device == 'cuda' else 128
self.n_z = n_z
self.mlp = nn.Sequential(
nn.Linear(self.n_z, self.hidden_size),
nn.LeakyReLU(0.2), #Leaky ReLU
nn.Linear(self.hidden_size, self.hidden_size),
nn.LeakyReLU(0.2),
nn.Linear(self.hidden_size, self.hidden_size),
nn.LeakyReLU(0.2),
nn.Linear(self.hidden_size, 784),
nn.Tanh(),
)
def forward(self, x):
return self.mlp(x).view(-1, 1, 28, 28)
def backprop(self, loss_func, optimizer, Z, discriminator):
optimizer.zero_grad()
output = discriminator(Z)
loss = loss_func(output, torch.ones(Z.size(0), 1, device=self.device))
loss.backward()
optimizer.step()
return loss
# Discriminator model
class Discriminator(nn.Module):
def __init__(self, device):
super(Discriminator, self).__init__()
self.device = device
self.hidden_size = 1024 if self.device == 'cuda' else 128
self.n_input = 784
self.mlp = nn.Sequential(
nn.Linear(self.n_input, self.hidden_size),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(self.hidden_size, self.hidden_size),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(self.hidden_size, self.hidden_size),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(self.hidden_size, 1),
nn.Sigmoid(),
)
def forward(self, x):
return self.mlp(x.view(-1, 784))
def backprop(self, loss_func, optimizer, X, Z):
optimizer.zero_grad()
loss_x = loss_func(self.forward(X), torch.ones(X.size(0), 1, device=self.device))
loss_z = loss_func(self.forward(Z), torch.zeros(Z.size(0), 1, device=self.device))
loss_x.backward()
loss_z.backward()
optimizer.step()
return loss_z + loss_x