-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_gan_train.py
158 lines (126 loc) · 5.08 KB
/
cluster_gan_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
import torchvision.transforms as transforms
from torchvision.utils import make_grid, save_image
from itertools import chain as ichain
from tqdm import tqdm
import numpy as np
from matplotlib import pyplot as plt
import imageio
from cluster_gan_model import Generator, Encoder, Discriminator
def sample_z(shape=100, z_dim=30, n_class=10, device="cuda", display=False):
z_n = torch.randn(shape, z_dim).to(device)
z_c_val = torch.empty(shape, dtype=torch.long).random_(n_class).to(device)
if display :
z_c_val = torch.tensor(list(range(10))*10).to(device)
z_c = torch.zeros(shape, n_class, device=device).scatter_(1, z_c_val.unsqueeze(1), 1.)
return z_n, z_c, z_c_val
def final_results(imgs, losses):
# save imgs as gif
imgs = [np.array(transforms.ToPILImage()(img)) for img in imgs]
imageio.mimsave('cluster_outputs/generator_results.gif', imgs)
# show trend of losses
plt.figure(1)
plt.plot(losses[0], label='Generator-Encoder loss')
plt.plot(losses[1], label='Discriminator Loss')
plt.legend()
plt.savefig('cluster_outputs/loss.png')
plt.figure(2)
plt.plot(losses[2], label='enc_mse_loss')
plt.legend()
plt.savefig('cluster_outputs/enc_mse_loss.png')
plt.figure(3)
plt.plot(losses[3], label='enc_cross_entropy_loss')
plt.legend()
plt.savefig('cluster_outputs/enc_cross_entropy_loss.png')
n_epochs = 200
batch_size = 100
lr = 0.0001
k = 5
img_size = 28
z_dim = 30
n_class = 10
beta_n = 10
beta_c = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
generator = Generator(z_dim, n_class).to(device)
encoder = Encoder(z_dim, n_class).to(device)
discriminator = Discriminator().to(device)
bce_loss = torch.nn.BCELoss()
ce_loss = torch.nn.CrossEntropyLoss()
mse_loss = torch.nn.MSELoss()
training_data = FashionMNIST(
root="data/",
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor()]
)
)
dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True)
ge_chain = ichain(generator.parameters(), encoder.parameters())
optimizer_GE = torch.optim.Adam(
ge_chain, lr=lr, betas=(0.5, 0.9), weight_decay=2.5*1e-5)
optimizer_D = torch.optim.Adam(
discriminator.parameters(), lr=lr, betas=(0.5, 0.9))
losses = [[], [], [], []] # ge_losses, d_losses
imgs = []
sample_for_display = sample_z(shape=100, z_dim=z_dim, n_class=n_class, device=device)
epochs = tqdm(range(n_epochs))
for epoch in epochs:
epoch_ge_loss, epoch_d_loss = 0, 0
for b_i, data in enumerate(dataloader):
generator.train()
encoder.train()
image, _ = data # only need the image
real_imgs = image.to(device)
z_n, z_c, z_c_val = sample_z(shape=real_imgs.shape[0], z_dim=z_dim, n_class=n_class, device=device)
# G & E
if b_i % k == 0:
optimizer_GE.zero_grad()
fake_imgs = generator(torch.cat((z_n, z_c), 1))
D_fake = discriminator(fake_imgs)
enc_z_n, enc_z_class, enc_z_class_raw = encoder(fake_imgs)
zn_loss = mse_loss(enc_z_n, z_n)
zc_loss = ce_loss(enc_z_class_raw, z_c_val)
d_loss = bce_loss(D_fake, torch.ones(
D_fake.size(0), 1, device=device))
ge_loss = d_loss + beta_n * zn_loss + beta_c * zc_loss
ge_loss.backward(retain_graph=True)
optimizer_GE.step()
epoch_ge_loss += ge_loss.item()
# D
optimizer_D.zero_grad()
fake_imgs = generator(torch.cat((z_n, z_c), 1))
D_fake = discriminator(fake_imgs)
D_real = discriminator(real_imgs)
real_loss = bce_loss(D_real, torch.ones(
D_real.size(0), 1, device=device))
fake_loss = bce_loss(D_fake, torch.zeros(
D_real.size(0), 1, device=device))
real_loss.backward()
fake_loss.backward()
optimizer_D.step()
epoch_d_loss += (real_loss + fake_loss).item()
epoch_ge_loss = epoch_ge_loss / len(dataloader)
epoch_d_loss = epoch_d_loss / len(dataloader)
losses[0].append(epoch_ge_loss)
losses[1].append(epoch_d_loss)
epochs.set_description("epoch_ge_loss: {:.5f}, epoch_d_loss: {:.5f}".format(epoch_ge_loss, epoch_d_loss))
generator.eval()
encoder.eval()
if epoch % 10 == 0: # save imgs for every 10 epoch
generated_img = generator(torch.cat((sample_for_display[0], sample_for_display[1]), 1)).cpu().detach()
generated_img = make_grid(generated_img)
save_image(generated_img, "cluster_outputs/img_{}.png".format(epoch))
imgs.append(generated_img)
n_samp = 100
zn_samp, zc_samp, zc_samp_val = sample_z(shape=100, z_dim=z_dim, n_class=n_class, device=device)
x_samp = generator(torch.cat((zn_samp, zc_samp), 1))
zn_enc, zc_enc, zc_enc_val = encoder(x_samp)
lat_mse_loss = mse_loss(zn_enc, zn_samp)
lat_ce_loss = ce_loss(zc_enc_val, zc_samp_val)
losses[2].append(lat_mse_loss.item())
losses[3].append(lat_ce_loss.item())
final_results(imgs, losses)