-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmake_dataset.py
executable file
·664 lines (594 loc) · 24 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
#!/usr/bin/env python
"""Script to generate Altered and Corrupted Midi Excerpt (ACME) datasets"""
import argparse
import json
import logging
import os
import shutil
import sys
from glob import glob
from pathlib import Path
from zipfile import BadZipfile
import numpy as np
from tqdm import tqdm
from mdtk import degradations, downloaders, fileio
from mdtk.df_utils import get_random_excerpt
from mdtk.formatters import FORMATTERS, create_corpus_csvs
logo_path = Path(__file__, "..", "img", "logo.txt").resolve()
with open(logo_path, "r") as ff:
LOGO = ff.read()
DESCRIPTION = "Make datasets of altered and corrupted midi excerpts."
def parse_degradation_kwargs(kwarg_dict):
"""Convenience function to parse a dictionary of keyword arguments for
the functions within the degradations module. All keys in the kwarg_dict
supplied should start with the function name and be followed by a double
underscore. For example: func_name__kwarg_name. An example supplied
dictionary:
{
'func1__kwarg1': 7,
'func2__kwarg1': "hello",
'func2__kwarg2': "world"
}
This results in the returned dictionary:
{
'func1': {'kwarg1': 7},
'func2': {'kwarg1': "hello", 'kwarg2': "world}
}
Parameters
----------
kwarg_dict : dict
Dict containing keyword arguments to parse
Returns
-------
func_kwargs : dict
Dict with keys matching the names of the functions. The corresponding
value is a dictionary of the keyword arguments for the function.
"""
func_names = degradations.DEGRADATIONS.keys()
func_kwargs = {name: {} for name in func_names}
if kwarg_dict is None:
return func_kwargs
for kk, kwarg_value in kwarg_dict.items():
try:
func_name, kwarg_name = kk.split("__", 1)
except ValueError:
raise ValueError(f"Supplied keyword [{kk}] must have a double underscore")
assert func_name in func_names, f"{func_name} not in {func_names}"
func_kwargs[func_name][kwarg_name] = kwarg_value
return func_kwargs
def clean_download_cache(dir_path=downloaders.DEFAULT_CACHE_PATH, prompt=True):
"""
Delete the download cache directory and all files in it.
Parameters
----------
dir_path : str
The path to the download cache base directory.
prompt : bool
Prompt the user before deleting.
Returns
-------
clean_ok : bool
True if the cache has been cleaned and deleted successfully, the cache
dir doesn't exist, or the user chooses not to delete it at the prompt.
False otherwise.
"""
if not os.path.exists(dir_path):
print(f"Download cache ({dir_path}) is clear and deleted already.")
return True
if prompt:
response = input(f"Delete download cache ({dir_path})? [y/N]: ")
if (not prompt) or response in ["y", "ye", "yes"]:
try:
shutil.rmtree(dir_path)
except Exception:
print("Could not delete download cache. Please do so manually.")
return False
return True
def parse_args(args_input=None):
"""Convenience function for parsing user supplied command line args"""
parser = argparse.ArgumentParser(
description=DESCRIPTION, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
default_outdir = os.path.join(os.getcwd(), "acme")
parser.add_argument(
"-o",
"--output-dir",
type=str,
default=default_outdir,
help="the directory to write the dataset to.",
)
parser.add_argument(
"--config",
default=None,
help="Load a json config "
"file, in the format created by measure_errors.py. "
"This will override --degradations, --degradation-"
"dist, and --clean-prop.",
)
parser.add_argument(
"--formats",
metavar="format",
help="Create "
"custom versions of the acme data for easier loading "
"with our provided pytorch Dataset classes. Choices are"
f" {list(FORMATTERS.keys())}. Specify none to avoid "
"creation",
nargs="*",
default=list(FORMATTERS.keys()),
)
parser.add_argument(
"--local-midi-dirs",
metavar="midi_dir",
type=str,
nargs="*",
help="directories containing midi files to include in the dataset",
default=[],
)
parser.add_argument(
"--local-csv-dirs",
metavar="csv_dir",
type=str,
nargs="*",
help="directories containing csv files to include in the dataset",
default=[],
)
parser.add_argument(
"--recursive",
action="store_true",
help="Search local"
" dataset directories recursively for all midi or csv "
"files.",
)
parser.add_argument(
"--datasets",
metavar="dataset_name",
nargs="*",
default=downloaders.DATASETS,
help="datasets to download and use. Must match names "
"of classes in the downloaders module. By default, "
"will use cached downloaded data if available. To clear "
"the cache, run the script with the --clean flag. To "
'download no data, provide an input of "None"',
)
parser.add_argument(
"--degradations",
metavar="deg_name",
nargs="*",
choices=list(degradations.DEGRADATIONS.keys()),
default=list(degradations.DEGRADATIONS.keys()),
help="degradations to use on the data. Must match "
"names of functions in the degradations module. By "
"default, will use them all.",
)
parser.add_argument(
"--excerpt-length",
metavar="ms",
type=int,
help="The length of the excerpt (in ms) to take from "
"each piece. The excerpt will start on a note onset "
"and include all notes whose onset lies within this "
"number of ms after the first note.",
default=5000,
)
parser.add_argument(
"--min-notes",
metavar="N",
type=int,
default=10,
help="The minimum number of notes required for an excerpt to be valid.",
)
parser.add_argument(
"--degradation-kwargs",
metavar="json_file_or_string",
help="json file or json-formatted string with keyword "
"arguments for the degradation functions. First "
"provide the degradation name, then a double "
"underscore, then the keyword argument name, followed "
"by the value to use for the kwarg. e.g. "
'`{"time_shift__align_onset": true, '
'"pitch_shift__min_pitch": 5}`',
default=None,
)
parser.add_argument(
"--degradation-dist",
metavar="relative_probability",
nargs="*",
default=None,
help="A list of relative "
"probabilities that each degradation will used. Must "
"be the same length as --degradations. Defaults to a "
"uniform distribution.",
type=float,
)
parser.add_argument(
"--clean-prop",
type=float,
help="The proportion of excerpts in the final dataset that should be clean.",
default=1 / (1 + len(degradations.DEGRADATIONS)),
)
parser.add_argument(
"--splits",
metavar=("train", "valid", "test"),
nargs=3,
type=float,
help="The relative sizes of the "
"train, validation, and test sets respectively.",
default=[0.8, 0.1, 0.1],
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="The numpy seed to use when creating the dataset.",
)
parser.add_argument(
"--clean",
action="store_true",
help="Clear and delete"
f" the download cache {downloaders.DEFAULT_CACHE_PATH}"
" (and do nothing else).",
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="Verbose printing."
)
parser.add_argument(
"--no-prompt", action="store_true", help="Dont prompt user for response."
)
args = parser.parse_args(args=args_input)
return args
if __name__ == "__main__":
ARGS = parse_args()
if ARGS.clean:
clean_ok = clean_download_cache(
downloaders.DEFAULT_CACHE_PATH, prompt=not ARGS.no_prompt
)
sys.exit(0 if clean_ok else 1)
if ARGS.seed is None:
seed = np.random.randint(0, 2 ** 32)
print(f"No random seed supplied. Setting to {seed}.")
else:
seed = ARGS.seed
print(f"Setting random seed to {seed}.")
np.random.seed(seed)
# Load given degradation_kwargs
degradation_kwargs = {}
if ARGS.degradation_kwargs is not None:
if os.path.exists(ARGS.degradation_kwargs):
# If file exists, assume that is what was passed
with open(ARGS.degradation_kwargs, "r") as json_file:
degradation_kwargs = json.load(json_file)
else:
# File doesn't exist, assume json string was passed
degradation_kwargs = json.loads(ARGS.degradation_kwargs)
degradation_kwargs = parse_degradation_kwargs(degradation_kwargs)
if ARGS.verbose:
print(f"Using degradation kwargs: {degradation_kwargs}")
# Load config
if ARGS.config is not None:
with open(ARGS.config, "r") as file:
config = json.load(file)
if ARGS.verbose:
print(f"Loading from config file {ARGS.config}.")
if "degradation_dist" in config:
ARGS.degradation_dist = np.array(config["degradation_dist"])
ARGS.degradations = list(degradations.DEGRADATIONS.keys())
if "clean_prop" in config:
ARGS.clean_prop = config["clean_prop"]
# Warn user they specified kwargs for degradation not being used
for deg, args in degradation_kwargs.items():
if deg not in ARGS.degradations and len(args) > 0:
logging.warning(
f'--degradation_kwargs contains args for unused degradation "{deg}".'
)
# Exit if degradation-dist is a diff length to degradations
if ARGS.degradation_dist is None:
ARGS.degradation_dist = np.ones(len(ARGS.degradations))
assert len(ARGS.degradation_dist) == len(ARGS.degradations), (
"Given degradation_dist is not the same length as degradations:\n"
f"len({ARGS.degradation_dist}) != len({ARGS.degradations})"
)
# Check that no probabilities are invalid
assert (
min(ARGS.degradation_dist) >= 0
), "--degradation-dist values must not be negative."
assert (
sum(ARGS.degradation_dist) > 0
), "Some --degradation-dist value must be positive."
assert (
0 <= ARGS.clean_prop <= 1
), "--clean-prop must be between 0 and 1 (inclusive)."
assert min(ARGS.splits) >= 0, "--splits values must not be negative."
assert sum(ARGS.splits) > 0, "Some --splits value must be positive."
# Parse formats
if len(ARGS.formats) == 1 and ARGS.formats[0].lower() == "none":
formats = []
else:
assert all([name in FORMATTERS.keys() for name in ARGS.formats]), (
f"all provided formats {ARGS.formats} must be in the "
"list of available formats {list(FORMATTERS.keys())}"
)
formats = ARGS.formats
# These will be tuples of (dataset, relative_path, full_path, note_df).
# dataset: The name of the dataset the note_df is drawn from. This will be
# the excerpt's base directory within output/clean or
# output/altered in the generated ACME dataset.
# relative_path: The relative path of the corresponding file, including
# basename, representing the excerpts path within its
# dataset base directory.
# full_path: The full path to the input file. Used for printing errors.
# note_df: The cleaned note_df read from the input file with the given
# input_kwargs.
# This list will be sorted before shuffling, and the tuples are structured
# in such a way that the sorting is identical to previous versions of this
# script to ensure backwards compatability.
input_data = []
input_kwargs = {"single_track": True, "non_overlapping": True}
# Instantiate downloaders =================================================
OVERWRITE = None
ds_names = ARGS.datasets
if len(ds_names) == 1 and ds_names[0].lower() == "none":
ds_names = []
else:
assert all([name in downloaders.DATASETS for name in ds_names]), (
f"all provided dataset names {ds_names} must be in the "
"list of available datasets for download "
f"{downloaders.DATASETS}"
)
if not ds_names and not ARGS.local_csv_dirs and not ARGS.local_midi_dirs:
raise ValueError(
"You must provide one of --datasets, --local-csv-dirs, or --local-midi-dirs"
)
# Instantiated downloader classes
downloader_dict = {
ds_name: getattr(downloaders, ds_name)(
cache_path=downloaders.DEFAULT_CACHE_PATH
)
for ds_name in ds_names
}
# Clear and set up output dir =============================================
if os.path.exists(ARGS.output_dir):
if ARGS.verbose:
print(f"Clearing stale data from {ARGS.output_dir}.")
response = None
if not ARGS.no_prompt:
response = input(f"Delete output_dir ({ARGS.output_dir})? [y/N]: ")
if (ARGS.no_prompt) or response in ["y", "ye", "yes"]:
try:
shutil.rmtree(ARGS.output_dir)
except Exception:
print("Could not delete output dir. Please do so manually.")
sys.exit(1)
else:
print(
"You must specify an empty directory as --output-dir, or specify a "
"path which doesn't yet exist"
)
sys.exit(1)
os.makedirs(ARGS.output_dir, exist_ok=True)
for out_subdir in ["clean", "altered"]:
output_dirs = [
os.path.join(ARGS.output_dir, out_subdir, name) for name in ds_names
]
for path in output_dirs:
os.makedirs(path, exist_ok=True)
# Load data from downloaders ==============================================
print("Loading data from downloaders, this could take a while...")
for dataset in downloader_dict:
downloader = downloader_dict[dataset]
dataset_base = os.path.join(downloaders.DEFAULT_CACHE_PATH, dataset)
dataset_base_len = len(dataset_base) + len(os.path.sep)
output_path = os.path.join(dataset_base, "data")
try:
try:
downloader.download_csv(
output_path=output_path, overwrite=OVERWRITE, verbose=ARGS.verbose
)
ext = "csv"
input_func = fileio.csv_to_df
except NotImplementedError:
downloader.download_midi(
output_path=output_path, overwrite=OVERWRITE, verbose=ARGS.verbose
)
ext = "mid"
input_func = fileio.midi_to_df
except BadZipfile:
print(
"The download cache contains invalid data. Run "
"`make_dataset.py --clean` to clean the cache, then try to "
"re-create the ACME dataset.",
file=sys.stderr,
)
sys.exit(1)
for filename in tqdm(
glob(os.path.join(output_path, "**", f"*.{ext}"), recursive=True),
desc=f"Loading data from {dataset}",
):
note_df = input_func(filename, **input_kwargs)
if note_df is not None:
rel_path = filename[(dataset_base_len + 5) :]
input_data.append((dataset, rel_path, filename, note_df))
# Load user data ==========================================================
for data_type in ["midi", "csv"]:
if data_type == "midi":
local_dirs = ARGS.local_midi_dirs
ext = "mid"
df_load_func = fileio.midi_to_df
else:
local_dirs = ARGS.local_csv_dirs
ext = "csv"
df_load_func = fileio.csv_to_df
for path in local_dirs:
# Bugfix for paths ending in /
if len(path) > 1 and path[-1] == os.path.sep:
path = path[:-1]
dataset = f"local_{os.path.basename(path)}"
dataset_base_len = len(path) + len(os.path.sep)
if ARGS.recursive:
path = os.path.join(path, "**")
for filepath in tqdm(
glob(os.path.join(path, f"*.{ext}"), recursive=ARGS.recursive),
desc=f"Loading user {data_type} from {path}",
):
note_df = df_load_func(filepath, **input_kwargs)
if note_df is not None:
rel_path = filepath[dataset_base_len:]
input_data.append((dataset, rel_path, filepath, note_df))
# All data is loaded. Sort and shuffle. ===================================
# output to output_dir/clean/dataset_name/filename.csv
# The reason for this is we know there will be no filename duplicates
input_data.sort()
np.random.shuffle(input_data) # This is important for join_notes
meta_file = open(os.path.join(ARGS.output_dir, "metadata.csv"), "w")
# Perform degradations and write degraded data to output ==================
# output to output_dir/degraded/dataset_name/filename.csv
# The reason for this is that there could be filename duplicates (as above,
# it's assumed there shouldn't be duplicates within each dataset!), and
# this allows for easy matching of source and target data
deg_choices = ARGS.degradations
goal_deg_dist = ARGS.degradation_dist
# Remove any degs with goal_deg_dist == 0 and normalize
non_zero = [i for i, p in enumerate(goal_deg_dist) if p != 0]
deg_choices = np.array(deg_choices)[non_zero]
goal_deg_dist = np.array(goal_deg_dist)[non_zero]
goal_deg_dist /= np.sum(goal_deg_dist)
# Add none for no degradation
if 0 < ARGS.clean_prop < 1:
deg_choices = np.insert(deg_choices, 0, "none")
goal_deg_dist *= 1 - ARGS.clean_prop
goal_deg_dist = np.insert(goal_deg_dist, 0, ARGS.clean_prop)
elif ARGS.clean_prop == 1:
deg_choices = np.array(["none"])
goal_deg_dist = np.array([1])
nr_degs = len(goal_deg_dist)
# Normalize split proportions and remove 0s
split_names = ["train", "valid", "test"]
split_props = np.array(ARGS.splits)
split_props /= np.sum(split_props)
non_zero = [i for i, p in enumerate(split_props) if p != 0]
split_names = np.array(split_names)[non_zero]
split_props = np.array(split_props)[non_zero]
nr_splits = len(split_names)
# Write out deg_choices to degradation_ids.csv
with open(os.path.join(ARGS.output_dir, "degradation_ids.csv"), "w") as file:
file.write("id,degradation_name\n")
for i, deg_name in enumerate(deg_choices):
file.write(f"{i},{deg_name}\n")
# The idea is to keep track of the current distribution of degradations
# and then sample in reverse order of the difference between this and
# the goal distribution. We do the same for splits.
deg_counts = np.zeros(nr_degs)
split_counts = np.zeros(nr_splits)
meta_file.write("altered_csv_path,degraded,degradation_id,clean_csv_path,split\n")
for i, data in enumerate(tqdm(input_data, desc="Degrading data")):
dataset, rel_path, file_path, note_df = data
rel_path = f"{rel_path[:-3]}csv"
# First, get the degradation order for this iteration.
# Get the current distribution of degradations
if np.sum(deg_counts) == 0: # First iteration, set to uniform
current_deg_dist = np.ones(nr_degs) / nr_degs
current_split_dist = np.ones(nr_splits) / nr_splits
else:
current_deg_dist = deg_counts / np.sum(deg_counts)
current_split_dist = split_counts / np.sum(split_counts)
# Grab an excerpt from this df
excerpt = get_random_excerpt(
note_df,
min_notes=ARGS.min_notes,
excerpt_length=ARGS.excerpt_length,
first_onset_range=(0, 200),
iterations=10,
)
# If no valid excerpt was found, skip this piece
if excerpt is None:
logging.warning(
"Unable to find valid excerpt from file "
f"{file_path}. Lengthen --excerpt-length or "
"lower --min-notes. Skipping.",
)
continue
# Try degradations in reverse order of the difference between
# their current distribution and their desired distribution.
diffs = goal_deg_dist - current_deg_dist
degs_sorted = sorted(zip(diffs, deg_choices, list(range(len(deg_choices)))))[
::-1
]
# Calculate split in the same way (but only save the first)
split_diffs = split_props - current_split_dist
_, split_name, split_num = sorted(
zip(split_diffs, split_names, list(range(nr_splits)))
)[-1]
# Make default labels for no degradation
clean_path = os.path.join("clean", dataset, rel_path)
altered_path = clean_path
deg_binary = 0
# Try to perform a degradation
degraded = None
for diff, deg_name, deg_num in degs_sorted:
# Break for no degradation
if deg_name == "none":
break
# Try the degradation
deg_fun = degradations.DEGRADATIONS[deg_name]
deg_fun_kwargs = degradation_kwargs[deg_name] # degradation_kwargs
# at top of main call
logging.disable(logging.WARNING)
degraded = deg_fun(excerpt, **deg_fun_kwargs)
logging.disable(logging.NOTSET)
if degraded is not None:
# Update labels
deg_binary = 1
altered_path = os.path.join("altered", dataset, rel_path)
# Write degraded csv
altered_outpath = os.path.join(ARGS.output_dir, altered_path)
fileio.df_to_csv(degraded, altered_outpath)
break
# Write data
if not (degraded is None and ARGS.clean_prop == 0):
# Update counts
deg_counts[deg_num] += 1
split_counts[split_num] += 1
# Write clean csv
clean_outpath = os.path.join(ARGS.output_dir, clean_path)
fileio.df_to_csv(excerpt, clean_outpath)
# Write metadata
meta_file.write(
f"{altered_path},{deg_binary},{deg_num}," f"{clean_path},{split_name}\n"
)
else:
logging.warning(
"Unable to degrade chosen excerpt from "
f"{file_path} and no clean excerpts requested."
" Skipping.",
)
meta_file.close()
for f in formats:
create_corpus_csvs(ARGS.output_dir, FORMATTERS[f])
print(f'\n{10*"="} Finished! {10*"="}\n')
print("Count of degradations:")
for deg_name, count in zip(deg_choices, deg_counts):
print(f"\t* {deg_name}: {int(count)}")
print(
f"\nYou will find the generated data at {ARGS.output_dir} "
"with subdirectories"
)
print("\t* clean - contains the extracted clean excerpts")
print(
"\t* altered - contains the excerpts altered by the degradations "
"described in metadata.csv"
)
print("\nmetadata.csv describes:")
print("\t* (the id number for) the type of degradation used for the alteration")
print("\t* the path for the altered and clean files")
print("\t* which split (train, valid, test) the file should be used in")
print("\t* in which corpus and on what line the file is located")
print(
"\ndegradation_ids.csv is a mapping of degradation name to the id "
"number used in metadata.csv"
)
for f in formats:
print(f"\n{FORMATTERS[f]['message']}")
print(
"\nTo reproduce this dataset again, run the script with argument "
f"--seed {seed}"
)
print(LOGO)