-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
218 lines (155 loc) · 6.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import random as random
import numpy as np
import pygame
from pygame.locals import *
from training_game import Game
from time import time
import sys
def convert_to_rgb(val, minval=-1, maxval=+1, colors=[(0, 255, 0), (255, 0, 0)]):
i_f = float(val-minval) / float(maxval-minval) * (len(colors)-1)
i, f = int(i_f // 1), i_f % 1
if f < sys.float_info.epsilon:
return colors[i]
else:
(r1, g1, b1), (r2, g2, b2) = colors[i], colors[i+1]
return int(r1 + f*(r2-r1)), int(g1 + f*(g2-g1)), int(b1 + f*(b2-b1))
def new_network(struct):
w1 = (np.random.rand(struct[1], struct[0]) - 0.5) * 1e-3
w2 = (np.random.rand(struct[2], struct[1]) - 0.5) * 1e-3
return w1, w2
def feed_forward(inp, w1, w2, display=False):
hid = np.dot(w1, inp)
o_hid = np.tanh(hid)
out = np.dot(w2, o_hid)
o_out = np.tanh(out)
o_out[0] = 0 if o_out[0] < 0 else 1
o_out[1] = 0 if o_out[1] < 0 else 1
o_out = {K_LEFT: int(o_out[0]), K_RIGHT: int(o_out[1])}
return o_out
def display(w1, w2):
cap = 1e-3
surf = pygame.Surface((200, 40+20*len(w1[0])+10))
surf.fill((240, 240, 240))
if (np.abs(w1) > cap).any():
cap = (int(np.max(np.abs(w1))*100) + 1) / 100
if (np.abs(w2) > cap).any():
cap = (int(np.max(np.abs(w2))*100) + 1) / 100
# Weights
for i in range(len(w1)):
for j in range(len(w1[i])):
pygame.draw.line(surf, convert_to_rgb(w1[i][j], -cap, cap), (20, 20 + 20 * i), (80, 20 + 20 * j), width=2)
for i in range(len(w2)):
for j in range(len(w2[i])):
pygame.draw.line(surf, convert_to_rgb(w1[i][j], -cap, cap), (80, 20 + 20 * j), (140, 30 + 20 * (i + len(w1[0]) // 2 - 1)), width=2)
# Layer 1 Circles
for i in range(len(w1[0])):
pygame.draw.circle(surf, (10, 10, 10), (20, 20 + 20 * i), 8, width=0)
# Layer 2 Circles
for i in range(len(w1[1])):
pygame.draw.circle(surf, (10, 10, 10), (80, 20 + 20 * i), 8, width=0)
# Layer 3 Circles
for i in range(2):
pygame.draw.circle(surf, (10, 10, 10), (140, 30 + 20 * (i + len(w1[0]) // 2 - 1)), 8, width=0)
# Heatmap Key
font = pygame.font.Font(None, 20)
textSurface = font.render(f"-{cap}", 1, (0, 0, 255))
textSurface1 = font.render("0", 1, (0, 255, 0))
textSurface2 = font.render(f"{cap}", 1, (255, 0, 0))
textRect = textSurface.get_rect()
textRect1 = textSurface1.get_rect()
textRect2 = textSurface2.get_rect()
textRect.center = (180, 80)
textRect1.center = (180, 50)
textRect2.center = (180, 20)
surf.blit(textSurface, textRect)
surf.blit(textSurface1, textRect1)
surf.blit(textSurface2, textRect2)
return surf
def merge(w_1, w_2, lr=1e-6, cap=1):
w1_1, w2_1 = w_1
w1_2, w2_2 = w_2
w1 = w1_1 - w1_2 * lr
w2 = w2_1 - w2_2 * lr
if np.max(np.abs(w1)) > cap:
w1 = w1 / np.max(np.abs(w1)) * cap
if np.max(np.abs(w2)) > cap:
w2 = w2 / np.max(np.abs(w2)) * cap
return w1, w2
class GeneticTraining:
def __init__(self, gen_size, mutation_rate, mutation_size, num_pendulums=1):
# Genetic Algorithm Parameters
self.gen_size = gen_size
self.mutation_rate = mutation_rate
self.mutation_size = mutation_size
self._running = True
self.size = self.width, self.height = 640, 350
self.screen = pygame.display.set_mode(self.size)
# Game Parameters
self.num_pends = num_pendulums
self.struct = [self.num_pends * 2 + 1,
self.num_pends * 2 + 1,
2]
# Neural Network Parameters
self.gen = [new_network(self.struct) for _ in range(gen_size)]
self.fitness = [0 for _ in range(gen_size)]
self.best = None
self.best_fitness = 0
self.generation = 0
pygame.init()
def check_quit(self):
for event in pygame.event.get():
if event.type == QUIT:
self._running = False
def title(self, string):
font = pygame.font.Font(None, 20)
textSurface = font.render(string , 1, (10, 10, 10))
textRect = textSurface.get_rect()
textRect.center = (self.width // 2, 20)
return textSurface, textRect
def run_generation(self):
games = [Game(self.screen, self.size, num_pends=self.num_pends) for _ in self.gen]
any_running = True
frame_count = 0
background = pygame.Surface(self.screen.get_size())
background = background.convert()
background.fill((240, 240, 240))
title_str = f"Generation Number {self.generation} | Size: {len(self.gen)} | Prev Best: {self.best_fitness:.2f}"
frame_st = time()
while any_running:
for event in pygame.event.get():
if event.type == QUIT:
sys.exit()
self.fitness = [frame_count / 60 if game._running else self.fitness[i] for i, game in enumerate(games)]
self.screen.blit(background, (0, 0))
best = self.gen[np.argmax(self.fitness)]
surf = display(*best)
self.screen.blit(surf, (420, 40))
for i, game in enumerate(games):
if game._running:
game.run_step(feed_forward(game.inputs(), *self.gen[i]))
any_running = any(game._running for game in games)
self.screen.blit(*self.title(title_str + f" | Current Best: {(frame_count / 60):.2f} | Frame: {frame_count} | FPS: {(1 / (time() - frame_st)):.2f}"))
frame_st = time()
# Show the best ones network
best = self.gen[np.argmax(self.fitness)]
surf = display(*best)
self.screen.blit(surf, (420, 40))
pygame.display.flip()
frame_count += 1
self.generation += 1
def mutate(self, w1, w2):
n_w1, n_w2 = new_network(self.struct)
return w1 + n_w1, w2 + n_w2
def evolve(self):
self.best = self.gen[np.argmax(self.fitness)]
self.best_fitness = max(self.fitness)
self.gen = [self.best]
self.gen += [merge(self.best, random.choice(self.gen)) for _ in range(self.gen_size - 1)]
self.gen = [self.mutate(w1, w2) for w1, w2 in self.gen]
def run(self, epochs):
for _ in range(epochs):
self.run_generation()
self.evolve()
print(f"Generation {self.generation} best fitness: {self.best_fitness}")
g = GeneticTraining(500, 0.1, 1e-2, 1)
g.run(100)