-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
186 lines (157 loc) · 4.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import warnings
import numpy as np
import nrrd
import pandas as pd
from skimage.util import montage
import torch
import torchio as tio
import matplotlib.pyplot as plt
def load_image(path):
data, header = nrrd.read(path)
data = data.astype(np.float32)
affine = np.eye(4)
return data, affine
class Visualizer:
def montage_nrrd(self, image):
if len(image.shape) > 2:
return montage(image)
else:
warnings.warn('Pass a 3D volume', RuntimeWarning)
return image
def visualize(self, image, mask=None, path_save=None):
if mask is None:
fig, axes = plt.subplots(1, 1, figsize=(10, 10))
axes.imshow(self.montage_nrrd(image))
axes.set_axis_off()
else:
fig, axes = plt.subplots(1, 2, figsize=(40, 40))
for i, data in enumerate([image, mask]):
axes[i].imshow(self.montage_nrrd(data))
axes[i].set_axis_off()
plt.savefig(path_save)
plt.close(fig)
def get_subjects(file_spect_data, folder_volumes):
path_data = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
'data'
)
path_volumes = os.path.join(path_data, folder_volumes)
df = pd.read_csv(os.path.join(path_data, 'eda', file_spect_data))
subjects = []
segmentations = list(
df.loc[(df['mask'].isnull()), ['image']].to_records(index=False)
)
segmentations = list(map(
lambda x: os.path.join(path_volumes, x[0]),
segmentations
))
for image_path in segmentations:
subject = tio.Subject(
spect=tio.ScalarImage(image_path, reader=load_image)
)
subjects.append(subject)
print(f"Dataset size: {len(subjects)} subjects")
return subjects
def get_train_valid_data_loaders(
subjects,
training_split_ratio,
training_transform,
validation_transform,
training_batch_size,
validation_batch_size,
num_workers=0
):
num_subjects = len(subjects)
num_training_subjects = int(training_split_ratio * num_subjects)
num_validation_subjects = num_subjects - num_training_subjects
num_split_subjects = (num_training_subjects, num_validation_subjects)
training_subjects, validation_subjects = torch.utils.data.random_split(
subjects, num_split_subjects
)
training_set = tio.SubjectsDataset(
training_subjects,
transform=training_transform
)
validation_set = tio.SubjectsDataset(
validation_subjects,
transform=validation_transform
)
print('Training set:', len(training_set), 'subjects')
print('Validation set:', len(validation_set), 'subjects')
training_loader = torch.utils.data.DataLoader(
training_set,
batch_size=training_batch_size,
shuffle=True,
num_workers=num_workers
)
validation_loader = torch.utils.data.DataLoader(
validation_set,
batch_size=validation_batch_size,
num_workers=num_workers
)
return training_loader, validation_loader
def replace_target_norm_layer_for_group_norm(
model,
target,
desired,
num_groups=8
):
"""
:param model:
:param target:
:param desired:
:param num_groups:
:return:
"""
print(
f"Replacing {target.__name__} layers for {desired.__name__} layers..."
)
for child_name, child in model.named_children():
if isinstance(child, target):
setattr(
model,
child_name,
desired(num_groups=num_groups, num_channels=child.num_features)
)
else:
replace_target_norm_layer_for_group_norm(
child,
target,
desired,
num_groups
)
def get_annotated_subjects(file_spect_data, folder_volumes):
"""
:param file_spect_data:
:param folder_volumes:
:return:
"""
path_data = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
'data'
)
path_volumes = os.path.join(path_data, folder_volumes)
df = pd.read_csv(os.path.join(path_data, 'eda', file_spect_data))
subjects = []
segmentations = list(
df.loc[
(df['mask'].notnull()),
['image', 'mask']
].to_records(index=False)
)
segmentations = list(map(
lambda x: (
os.path.join(path_volumes, x[0]),
os.path.join(path_volumes, x[1])
),
segmentations
))
for image_path, label_path in segmentations:
subject = tio.Subject(
spect=tio.ScalarImage(image_path, reader=load_image),
left_ventricle=tio.LabelMap(label_path, reader=load_image)
)
subjects.append(subject)
print(f"There are {len(subjects)} annotated subjects")
return subjects