-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
287 lines (226 loc) · 9.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import copy
from os import listdir, getcwd, mkdir
from os.path import join
import wandb
from datasets import DataFromFolder
from model import Model
from loss import Loss
from utils import *
from export_image import concat_image
import torch
from torch import optim
from torch.utils.data import DataLoader
from torchsummary import summary
from tqdm import tqdm
def main() :
# Argparse
parser = argparse.ArgumentParser()
parser.add_argument("--project", type = str, required = True)
parser.add_argument("--model-name", type = str, default = "SAR-CAM")
parser.add_argument("--noisy-train-dir", type = str, required = True)
parser.add_argument("--clean-train-dir", type = str, required = True)
parser.add_argument("--noisy-valid-dir", type = str, required = True)
parser.add_argument("--clean-valid-dir", type = str, required = True)
parser.add_argument("--input-shape", type = int, default = 64)
parser.add_argument("--scale", type = int, default = 2)
parser.add_argument("--batch-size", type = int, default = 2)
parser.add_argument("--epochs", type = int, default = 20)
parser.add_argument("--seed", type = int, default = 123)
parser.add_argument("--num-gpu", type = int, default = 1)
parser.add_argument("--device", default = "", help = "cuda device, i.e. 0 or 0,1,2,3 or cpu")
args = parser.parse_args()
# Get Current Namespace
print(args)
# Initialize Weights & Biases Library
wandb.init(
config = args,
resume = "never",
project = args.project
)
# Initialize Project Name
wandb.run.name = args.model_name
# Assign Device
set_logging()
device = select_device(args.model_name, args.device)
# Set Seed
set_seed(args.seed)
# Create Model Instance
model = Model(
scale = 2,
in_channels = 1,
channels = 128,
kernel_size = 3,
stride = 1,
dilation = 1,
bias = True
).to(device)
# Set Seed
set_seed(args.seed)
# Load Dataset
train_dataset = DataFromFolder(
args.noisy_train_dir,
args.clean_train_dir,
"train",
args.seed
)
valid_dataset = DataFromFolder(
args.noisy_valid_dir,
args.clean_valid_dir,
"valid",
args.seed
)
# Create Pytorch DataLoader Instance
train_dataloader = DataLoader(
train_dataset,
batch_size = args.batch_size,
shuffle = True,
num_workers = 4 * args.num_gpu,
pin_memory = True,
drop_last = True)
valid_dataloader = DataLoader(
valid_dataset,
batch_size = args.batch_size,
shuffle = False,
num_workers = 4 * args.num_gpu,
pin_memory = True,
drop_last = True
)
# Get Parameters of Current Model
print(summary(model, (1, args.input_shape, args.input_shape), batch_size = args.batch_size))
# Create Optimizer Instance
optimizer = optim.Adam(
model.parameters(),
lr = 1e-4,
weight_decay = 1e-5
)
# Let wandb Watch Training Process
wandb.watch(model)
# Create Learning Rate Scheduler Instance
scheduler = optim.lr_scheduler.StepLR(
optimizer = optimizer,
step_size = args.epochs // 4,
gamma = 0.1
)
# Initialize Model for Saving
best_model = copy.deepcopy(model.state_dict())
# Initialize Loss Function
loss_function = Loss(device, 2e-4)
# Initialize Variables
best_epoch = 0
best_psnr, best_ssim = 0.0, 0.0
# Create Directory for Saving Weights
if "best_model" not in listdir(getcwd()) :
mkdir(join(getcwd(), "best_model"))
if args.project not in listdir(join(getcwd(), "best_model")) :
mkdir(join(getcwd(), "best_model", args.project))
# Run Training
for epoch in range(args.epochs) :
# Get Current Learning Rate
for param_group in optimizer.param_groups:
current_lr = param_group["lr"]
# Create TQDM Bar Instance
train_bar = tqdm(train_dataloader)
# Train Current Model
model.train()
# Create Metric Instance
train_loss = AverageMeter()
train_psnr, train_ssim = AverageMeter(), AverageMeter()
noisy_image_psnr, noisy_image_ssim = AverageMeter(), AverageMeter()
# Trian Data
for data in train_bar :
inputs, targets = data
# Assign Device
inputs = inputs.to(device)
targets = targets.to(device)
# Get Prediction
preds = model(inputs)
# Get Loss
criterion = loss_function(inputs, preds, targets)
# Update Loss
train_loss.update(criterion.item(), len(inputs))
# Update PSNR
train_psnr.update(calc_psnr(preds, targets).item(), len(inputs))
noisy_image_psnr.update(calc_psnr(inputs, targets).item(), len(inputs))
# Update SSIM
train_ssim.update(calc_ssim(preds, targets).item(), len(inputs))
noisy_image_ssim.update(calc_ssim(inputs, targets).item(), len(inputs))
# Set Gradient to Zero
optimizer.zero_grad()
# Backward Pass
criterion.backward()
# Update Model Model
optimizer.step()
# Update TQDM Bar
train_bar.set_description(desc=f"[{epoch}/{args.epochs - 1}] [Train] [Loss : {train_loss.avg:.4f}, PSNR(Noisy) : {noisy_image_psnr.avg:.4f}, SSIM(Noisy) : {noisy_image_ssim.avg:.4f}, PSNR(Denoised) : {train_psnr.avg:.4f}, SSIM(Denoised) : {train_ssim.avg:.4f}]")
# Create TQDM Bar Instance
valid_bar = tqdm(valid_dataloader)
# Validate Model
model.eval()
# Initialize Variables
valid_loss = AverageMeter()
valid_psnr, valid_ssim = AverageMeter(), AverageMeter()
noisy_image_psnr, noisy_image_ssim = AverageMeter(), AverageMeter()
with torch.no_grad() :
for data in valid_bar :
# Assign Training Data
inputs, targets = data
# Assign Device
inputs = inputs.to(device)
targets = targets.to(device)
# Get Prediction
preds = model(inputs)
# Get Loss
criterion = loss_function(inputs, preds, targets)
# Update Train Loss
valid_loss.update(criterion.item(), len(inputs))
# Update PSNR
valid_psnr.update(calc_psnr(preds, targets).item(), len(inputs))
noisy_image_psnr.update(calc_psnr(inputs, targets).item(), len(inputs))
# Update SSIM
valid_ssim.update(calc_ssim(preds, targets).item(), len(inputs))
noisy_image_ssim.update(calc_ssim(inputs, targets).item(), len(inputs))
# Update TQDM Bar
valid_bar.set_description(desc=f"[{epoch}/{args.epochs - 1}] [Validation] [Loss : {valid_loss.avg:.4f}, PSNR(Noisy) : {noisy_image_psnr.avg:.4f}, SSIM(Noisy) : {noisy_image_ssim.avg:.4f}, PSNR(Denoised) : {valid_psnr.avg:.4f}, SSIM(Denoised) : {valid_ssim.avg:.4f}]")
# Create List Instance for Saving Image
sample_list = list()
# Append Image
for i in range(args.batch_size) :
sample_image = concat_image(
torch.clamp(inputs[i].cpu().squeeze(0), min = 0.0, max = 1.0),
torch.clamp(preds[i].cpu().squeeze(0), min =0.0, max = 1.0),
torch.clamp(targets[i].cpu().squeeze(0), min = 0.0, max = 1.0)
)
sample_list.append(wandb.Image(sample_image, caption = f"Sample {i + 1}"))
# Update Log
wandb.log({
"Learning Rate" : current_lr,
"Validation PSNR" : valid_psnr.avg,
"Validation SSIM" : valid_ssim.avg,
"Validation Loss" : valid_loss.avg,
"Image Comparison" : sample_list})
# Save New Values
if valid_psnr.avg > best_psnr :
# Save Best Model
best_model = copy.deepcopy(model.state_dict())
# Update Variables
best_psnr = valid_psnr.avg
best_epoch = epoch
# Save Best Model
torch.save(best_model, f"best_model/{args.project}/{args.model_name}_best.pth")
if valid_ssim.avg > best_ssim :
# Save Best Model
best_model = copy.deepcopy(model.state_dict())
# Update Variables
best_ssim = valid_ssim.avg
best_epoch = epoch
# Save Best Model
torch.save(best_model, f"best_model/{args.project}/{args.model_name}_best.pth")
# Update Learning Rate Scheduler
scheduler.step()
# Print Training Result
print(f"Best Epoch : {best_epoch}")
print(f"Best PSNR : {best_psnr:.6f}")
print(f"Best SSIM : {best_ssim:.6f}")
if __name__ == "__main__" :
main()