-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_end2end.py
376 lines (329 loc) · 18.2 KB
/
train_end2end.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""Train PyramidBox end2end"""
import os
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
import time
import argparse
import logging
import mxnet as mx
from mxnet import autograd, nd
import gluoncv as gcv
from gluoncv import utils as gutils
from gluoncv.data.batchify import Tuple, Stack, Pad
from mxnet import gluon
from pyramidbox.nn import get_pyramidbox
from pyramidbox.data import PyramidBoxTrainTransform, PyramidBoxValTransform
from pyramidbox.data import WiderDetection, WiderFaceMetric, WiderFaceEvalMetric
from gluoncv.utils import LRScheduler, LRSequential
import tqdm
def parse_args():
parser = argparse.ArgumentParser(description='Train PyramidBox end2end')
parser.add_argument('--network', type=str, default='VGG16',
help="Base network name which serves as feature extraction base")
parser.add_argument('--use-bn', action='store_true',
help="Whether to use batchnorm layer in base model.")
parser.add_argument('--data-shape', type=int, default=640,
help="Input data shape,only support 640 currently")
parser.add_argument('--dataset', type=str, default='train',
help="Training dataset, Now support train,train,val.")
parser.add_argument('--batch-size', type=int, default=4,
help='Training mini-batch size')
parser.add_argument('--num-workers', '-j', dest='num_workers', type=int, default=-1,
help="Number of data workers.Multi-thread to accelerate data loading.if your CPU and GPU are powerful.")
parser.add_argument('--gpus', type=str, default='0,',
help="Training with GPUs, you can specify 1,2,3 for example.")
parser.add_argument('--epochs', type=int, default=10,
help="Training epochs.")
parser.add_argument("--resume", type=str, default='',
help="Resume from previously saved parameters if not None."
"For example,you can resume from ./pyramidbox_xxx_212.params")
parser.add_argument('--start-epoch', type=int, default=0,
help='Starting epoch for resuming, default is 0 for new training.'
'You can specify it to 100 for example to start from 100 epoch.')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate,default is 0.01.')
parser.add_argument('--lr-decay', type=float, default=0.5,
help='Decay rate of learning rate. default is 0.94.')
parser.add_argument('--lr-decay-epoch', type=str, default='80,160,200',
help='Epoches at which learning rate decay. default is 160,200.')
parser.add_argument('--lr-warmup', type=str, default='',
help='warmup iterations to adjust learning rate, default is 0 for voc.')
parser.add_argument('--warmup-epochs', type=int, default=1,
help='warmup epochs for training schedule.')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum, default is 0.9')
parser.add_argument('--wd', type=float, default=0.0005,
help='Weight decay, default is 5e-4')
parser.add_argument('--grad-clip', type=float, default=2.0,
help='Gradient clip, default is 2.0')
parser.add_argument('--log-interval', type=int, default=50,
help='Logging mini-batch interval. Default is 100.')
parser.add_argument('--save-prefix', type=str, default='models/',
help='Saving parameter prefix')
parser.add_argument('--save-interval', type=int, default=1,
help='Saving parameters epoch interval,best model will always be saved.')
parser.add_argument('--val-interval', type=int, default=1,
help='Epoch interval for validation, increase the number will reduce the '
'training time if validation is slow.')
parser.add_argument('--seed', type=int, default=233,
help='Random seed to be fixed')
parser.add_argument('--match-high-thresh', type=float, default=0.35,
help='High threshold for anchor matching.')
parser.add_argument('--match-low-thresh', type=float, default=0.1,
help='Low threshold for anchor matching.')
parser.add_argument('--match-topk', type=int, default=6,
help='Topk for anchor matching.')
args = parser.parse_args()
args.lr_warmup = args.lr_warmup if args.lr_warmup else 1000
return args
def get_dataset(dataset):
# get train and valid dataset
if dataset == 'train,val':
dataset = ('train', 'val')
else:
assert dataset == 'train', "Invalid training dataset: {}".format(dataset)
train_dataset = WiderDetection(root='widerface', splits=dataset)
val_dataset = WiderDetection(root='widerface', splits='custom')
val_metric = WiderFaceMetric(iou_thresh=0.5)
return train_dataset, val_dataset, val_metric
def get_dataloader(net, train_dataset, val_dataset, data_shape, batch_size, num_workers, args):
"""Get dataloader: transform and batchify."""
height, width = data_shape, data_shape
# use fake data to generate fixed anchors for target generation
with autograd.train_mode():
_, _, face_anchors, \
_, _, head_anchors, \
_, _, body_anchors = net(mx.nd.zeros((1, 3, height, width)))
anchors = [face_anchors, head_anchors, body_anchors]
# stack image,cls_target box_target
train_batchify_fn = Tuple(Stack(), # source img
Stack(), Stack(), Stack(), # face_cls_targets,head_cls_targets,body_cls_targets
Stack(), Stack(), Stack()) # face_box_targets,head_box_targets,body_cls_targets
# train_batchify_fn = Tuple(Stack(), # source img
# Pad(), Pad(), Pad(), # face_cls_targets,head_cls_targets,body_cls_targets
# Pad(), Pad(), Pad()) # face_box_targets,head_box_targets,body_cls_targets
# getdataloader
train_loader = gluon.data.DataLoader(train_dataset.transform(
PyramidBoxTrainTransform(width, height, anchors)),
batch_size=batch_size, shuffle=True,
batchify_fn=train_batchify_fn, num_workers=num_workers, last_batch='rollover')
val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
val_loader = gluon.data.DataLoader(
val_dataset.transform(PyramidBoxValTransform()),
batch_size=batch_size, shuffle=False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers)
return train_loader, val_loader
def save_params(net, logger, best_map, current_map, maps, epoch, save_interval, prefix):
current_map = float(current_map)
model_path = '{:s}_{:03d}.params'.format(prefix, epoch)
best_path = '{:s}_best.params'.format(prefix)
# msg = '{:03d}:\t{:.4f}\t {:.6f} {:.6f} {:.6f}'.format(epoch, current_map, *maps)
if current_map > best_map[0]:
logger.info('[Epoch {}] mAP {} higher than current best {} saving to {}'.format(
epoch, current_map, best_map, '{:s}_best.params'.format(prefix)))
best_map[0] = current_map
net.save_parameters(best_path)
with open(prefix + '_best_maps.log', 'a') as f:
msg = '{:03d}:\t{:.4f}\t {:.6f} {:.6f} {:.6f}'.format(epoch, current_map, *maps)
f.write(msg + '\n')
if save_interval and (epoch + 1) % save_interval == 0:
logger.info('[Epoch {}] Saving parameters to {}'.format(
epoch, '{:s}_{:04d}_{:.4f}.params').format(prefix, epoch, current_map))
net.save_parameters(model_path)
def validate(net, val_data, ctx, eval_metric):
"""Test on validation dataset."""
# net.input_reshape((1024, 1024))
# net.collect_params().reset_ctx(ctx)
print('start evaluation........')
eval_metric.reset()
# set nms threshold and topk constraint
# net.set_nms(nms_thresh=0.3, nms_topk=5000, post_nms=750)
for batch in tqdm.tqdm(val_data):
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False)
label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False)
det_bboxes = []
det_scores = []
gt_bboxes = []
gt_lists = []
for x, y in zip(data, label):
# print('y shape',y.shape)
_, scores, bboxes = net(x)
det_scores.append(scores)
det_bboxes.append(bboxes)
gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
gt_lists.append(y.slice_axis(axis=-1, begin=4, end=7))
# update metric
eval_metric.update(det_bboxes, det_scores, gt_bboxes, gt_lists)
return eval_metric.get()
def get_lr_at_iter(alpha):
return alpha
def train(net, train_samples, train_data, val_data, eval_metric, ctx, args):
"""Training pipline"""
net.collect_params().reset_ctx(ctx)
# training_patterns = '.*vgg'
# net.collect_params(training_patterns).setattr('lr_mult', 0.1)
num_batches = train_samples // args.batch_size
if args.start_epoch == 0:
lr_scheduler = LRSequential([
LRScheduler('linear', base_lr=0, target_lr=args.lr,
nepochs=args.warmup_epochs, iters_per_epoch=num_batches),
LRScheduler('cosine', base_lr=args.lr, target_lr=0,
nepochs=args.epochs - args.warmup_epochs
, iters_per_epoch=num_batches)])
else:
offset = args.start_epoch
lr_scheduler = LRSequential([
LRScheduler('cosine', base_lr=args.lr, target_lr=0,
nepochs=args.epochs - offset
, iters_per_epoch=num_batches)
])
opt_params = {'learning_rate': args.lr, 'momentum': args.momentum, 'wd': args.wd,
'lr_scheduler': lr_scheduler}
trainer = gluon.Trainer(
net.collect_params(),
'nag',
opt_params)
# lr decay policy
# lr_decay = float(args.lr_decay)
# lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
# lr_warmup = float(args.lr_warmup)
face_mbox_loss = gcv.loss.SSDMultiBoxLoss(rho=1.0, lambd=0.5)
head_mbox_loss = gcv.loss.SSDMultiBoxLoss(rho=1.0, lambd=0.5)
body_mbox_loss = gcv.loss.SSDMultiBoxLoss(rho=1.0, lambd=0.5)
face_ce_metric = mx.metric.Loss('FaceCrossEntropy')
face_smoothl1_metric = mx.metric.Loss('FaceSmoothL1')
head_ce_metric = mx.metric.Loss('HeadCrossEntropy')
head_smoothl1_metric = mx.metric.Loss('HeadSmoothL1')
body_ce_metric = mx.metric.Loss('BodyCrossEntropy')
body_smoothl1_metric = mx.metric.Loss('BodySmoothL1')
metrics = [face_ce_metric, face_smoothl1_metric,
head_ce_metric, head_smoothl1_metric,
body_ce_metric, body_smoothl1_metric]
# set up loger
logger = logging.getLogger() # formatter = logging.Formatter('[%(asctime)s] %(message)s')
logger.setLevel(logging.INFO)
log_file_path = args.save_prefix + '_train.log'
log_dir = os.path.dirname(log_file_path)
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
if os.path.exists(log_file_path) and args.start_epoch == 0:
os.remove(log_file_path)
fh = logging.FileHandler(log_file_path)
logger.addHandler(fh)
logger.info(args)
logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
best_map = [0]
total_batch = 0
base_lr = trainer.learning_rate
# names, maps = validate(net, val_data, ctx, eval_metric)
for epoch in range(args.start_epoch, args.epochs + 1):
# while lr_steps and epoch >= lr_steps[0]:
# new_lr = trainer.learning_rate * lr_decay
# lr_steps.pop(0)
# trainer.set_learning_rate(new_lr)
# logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
# every epoch learning rate decay
# if args.start_epoch != 0 or total_batch >= lr_warmup:
# new_lr = trainer.learning_rate * lr_decay
# # lr_steps.pop(0)
# trainer.set_learning_rate(new_lr)
# logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
for m in metrics:
m.reset()
tic = time.time()
btic = time.time()
for i, batch in tqdm.tqdm(enumerate(train_data)):
# if args.start_epoch == 0 and total_batch <= lr_warmup:
# # adjust based on real percentage
# new_lr = base_lr * get_lr_at_iter((total_batch + 1) / lr_warmup)
# if new_lr != trainer.learning_rate:
# if i % args.log_interval == 0:
# logger.info(
# '[Epoch {} Iteration {}] Set learning rate to {}'.format(epoch, total_batch, new_lr))
# trainer.set_learning_rate(new_lr)
total_batch += 1
batch_size = batch[0].shape[0]
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
face_cls_target = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
head_cls_target = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0)
body_cls_target = gluon.utils.split_and_load(batch[3], ctx_list=ctx, batch_axis=0)
face_box_target = gluon.utils.split_and_load(batch[4], ctx_list=ctx, batch_axis=0)
head_box_target = gluon.utils.split_and_load(batch[5], ctx_list=ctx, batch_axis=0)
body_box_target = gluon.utils.split_and_load(batch[6], ctx_list=ctx, batch_axis=0)
with autograd.record():
face_cls_preds = []
face_box_preds = []
head_cls_preds = []
head_box_preds = []
body_cls_preds = []
body_box_preds = []
for x in data:
face_cls_predict, face_box_predict, _, \
head_cls_predict, head_box_predict, _, \
body_cls_predict, body_box_predict, _ = net(x)
face_cls_preds.append(face_cls_predict)
face_box_preds.append(face_box_predict)
head_cls_preds.append(head_cls_predict)
head_box_preds.append(head_box_predict)
body_cls_preds.append(body_cls_predict)
body_box_preds.append(body_box_predict)
# calculate the loss
face_sum_loss, face_cls_loss, face_box_loss = face_mbox_loss(
face_cls_preds, face_box_preds, face_cls_target, face_box_target)
head_sum_loss, head_cls_loss, head_box_loss = head_mbox_loss(
head_cls_preds, head_box_preds, head_cls_target, head_box_target)
body_sum_loss, body_cls_loss, body_box_loss = body_mbox_loss(
body_cls_preds, body_box_preds, body_cls_target, body_box_target)
# use 1:0.5:0.2 to backward loss
# totalloss = [face_sum_loss,head_sum_loss,body_sum_loss]
totalloss = [f + 0.5 * h + 0.1 * b for f, h, b in zip(face_sum_loss, head_sum_loss, body_sum_loss)]
# totalloss = face_sum_loss+head_sum_loss
# autograd.backward(totalloss)
autograd.backward(totalloss)
# since we have already normalized the loss, we don't want to normalize
# by batch-size anymore
trainer.step(1)
# logger training info
face_ce_metric.update(0, [l * batch_size for l in face_cls_loss])
face_smoothl1_metric.update(0, [l * batch_size for l in face_box_loss])
head_ce_metric.update(0, [l * batch_size for l in head_cls_loss])
head_smoothl1_metric.update(0, [l * batch_size for l in head_box_loss])
body_ce_metric.update(0, [l * batch_size for l in body_cls_loss])
body_smoothl1_metric.update(0, [l * batch_size for l in body_box_loss])
# save_params(net, logger, [0], 0, None, total_batch, args.save_interval, args.save_prefix)
if args.log_interval and not (i + 1) % args.log_interval:
info = ','.join(['{}={:.4f}'.format(*metric.get()) for metric in metrics])
# print(info)
logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec , lr: {:.5f} ,{:s}'.format(
epoch, i, batch_size / (time.time() - btic), trainer.learning_rate, info))
btic = time.time()
info = ','.join(['{}={:.4f}'.format(*metric.get()) for metric in metrics])
logger.info('[Epoch {}] lr: {:.5f} Training cost: {:s}'.format(epoch, trainer.learning_rate, info))
if args.val_interval and not (epoch + 1) % args.val_interval:
# consider reduce the frequency of validation to save time
vtic = time.time()
names, maps = validate(net, val_data, ctx, eval_metric)
val_msg = '\n'.join(['{:7}MAP = {}'.format(k, v) for k, v in zip(names, maps)])
logger.info('[Epoch {}] Validation: {:.3f}\n{}'.format(epoch, (time.time() - vtic), val_msg))
current_map = sum(maps) / len(maps)
save_params(net, logger,best_map, current_map, maps, epoch, args.save_interval, args.save_prefix)
else:
current_map = 0.
maps = None
save_params(net, logger, best_map, current_map, maps, epoch, args.save_interval, args.save_prefix)
if __name__ == '__main__':
args = parse_args()
gutils.random.seed(args.seed)
# training contexts
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
# network
net = get_pyramidbox(args.network, args.use_bn, pretrained=args.resume)
# net.initialize(mx.init.Xavier())
network = args.network + ('_bn' if args.use_bn else '')
args.save_prefix = os.path.join(args.save_prefix, network, 'pyramidbox')
# training data
train_dataset, val_dataset, eval_metric = get_dataset(args.dataset)
train_samples = len(train_dataset)
train_data, val_data = get_dataloader(
net, train_dataset, val_dataset, args.data_shape, args.batch_size, args.num_workers, args)
# training
train(net, train_samples, train_data, val_data, eval_metric, ctx, args)