Code for our paper "Hadamard Domain Training with Integers for Class Incremental Quantized Learning" accepted for Third Conference on Lifelong Learning Agents.
No quant baseline CIL:
python3 main.py -model icarl -p benchmark -seed 42467 --dataset="cifar100" --init_cls=20 --incre=20 --model_type="resnet32" --quantMethod="noq"
HDQT with CIL CIFAR100:
python3 main.py -model icarl -p benchmark -seed 42467 --dataset="cifar100" --init_cls=20 --incre=20 --model_type="resnet32" --quantMethod="ours" --quantBits=4 --quantAccBits=8 --quantFWDWgt="int" --quantFWDAct="int" --quantBWDAct="stoch" --quantBWDWgt="int" --quantBWDGrad1="stoch" --quantBWDGrad2="stoch" --quantBlockSize=32
HDQT with CIL HAR-DSADS:
python3 main.py -model icarl -p benchmark -seed 42467 --dataset="dsads" --init_cls=2 --incre=2 --model_type="fcnet" --fc_hid_dim=405 --init_lr=0.01 --lr=0.01 --epochs=100 --init_epoch=100 --memory_size=200 --init_milestones=50 --milestones=50 --quantMethod="ours" --quantBits=4 --quantAccBits=8 --quantFWDWgt="int" --quantFWDAct="int" --quantBWDAct="stoch" --quantBWDWgt="int" --quantBWDGrad1="stoch" --quantBWDGrad2="stoch" --quantBlockSize=32
LuQ [1] with CIL CIFAR100
python3 main.py -model icarl -p benchmark -seed 42467 --dataset="cifar100" --init_cls=20 --incre=20 --model_type="resnet32" --quantMethod="luq_og" --quantBits=4 --quantAccBits=8
Supported CIL methods: icarl, bic, der, lwf, memo, ours
Supported data sets: cifar100, dsads, hapt, pamap
All packages necessary to run commands can be found in requirements.txt
@article{schiemer2023hadamard,
title={Hadamard Domain Training with Integers for Class Incremental Quantized Learning},
author={Schiemer, Martin and Schaefer, Clemens JS and Vap, Jayden Parker and Horeni, Mark James and Wang, Yu Emma and Ye, Juan and Joshi, Siddharth},
journal={arXiv preprint arXiv:2310.03675},
year={2023}
}
[1] LuQ https://openreview.net/forum?id=yTbNYYcopd