-
Notifications
You must be signed in to change notification settings - Fork 233
/
Copy pathdata_input.py
422 lines (389 loc) · 15.5 KB
/
data_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#!/usr/bin/env python
# encoding=utf-8
from inspect import getblock
import json
import os
from os import read
from numpy.core.fromnumeric import mean
import numpy as np
import paddlehub as hub
import six
import math
import random
import sys
from util import read_file
from config import Config
# 配置文件
conf = Config()
class Vocabulary(object):
def __init__(self, meta_file, max_len, allow_unk=0, unk="$UNK$", pad="$PAD$",):
self.voc2id = {}
self.id2voc = {}
self.unk = unk
self.pad = pad
self.max_len = max_len
self.allow_unk = allow_unk
with open(meta_file, encoding='utf-8') as f:
for i, line in enumerate(f):
line = convert_to_unicode(line.strip("\n"))
self.voc2id[line] = i
self.id2voc[i] = line
self.size = len(self.voc2id)
self.oov_num = self.size + 1
def fit(self, words_list):
"""
:param words_list: [[w11, w12, ...], [w21, w22, ...], ...]
:return:
"""
word_lst = []
word_lst_append = word_lst.append
for words in words_list:
if not isinstance(words, list):
print(words)
continue
for word in words:
word = convert_to_unicode(word)
word_lst_append(word)
word_counts = Counter(word_lst)
if self.max_num_word < 0:
self.max_num_word = len(word_counts)
sorted_voc = [w for w, c in word_counts.most_common(self.max_num_word)]
self.max_num_word = len(sorted_voc)
self.oov_index = self.max_num_word + 1
self.voc2id = dict(zip(sorted_voc, range(1, self.max_num_word + 1)))
return self
def _transform2id(self, word):
word = convert_to_unicode(word)
if word in self.voc2id:
return self.voc2id[word]
elif self.allow_unk:
return self.voc2id[self.unk]
else:
print(word)
raise ValueError("word:{} Not in voc2id, please check".format(word))
def _transform_seq2id(self, words, padding=0):
out_ids = []
words = convert_to_unicode(words)
if self.max_len:
words = words[:self.max_len]
for w in words:
out_ids.append(self._transform2id(w))
if padding and self.max_len:
while len(out_ids) < self.max_len:
out_ids.append(0)
return out_ids
def _transform_intent2ont_hot(self, words, padding=0):
# 将多标签意图转为 one_hot
out_ids = np.zeros(self.size, dtype=np.float32)
words = convert_to_unicode(words)
for w in words:
out_ids[self._transform2id(w)] = 1.0
return out_ids
def _transform_seq2bert_id(self, words, padding=0):
out_ids, seq_len = [], 0
words = convert_to_unicode(words)
if self.max_len:
words = words[:self.max_len]
seq_len = len(words)
# 插入 [CLS], [SEP]
out_ids.append(self._transform2id("[CLS]"))
for w in words:
out_ids.append(self._transform2id(w))
mask_ids = [1 for _ in out_ids]
if padding and self.max_len:
while len(out_ids) < self.max_len + 1:
out_ids.append(0)
mask_ids.append(0)
seg_ids = [0 for _ in out_ids]
return out_ids, mask_ids, seg_ids, seq_len
@staticmethod
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def _transform_2seq2bert_id(self, seq1, seq2, padding=0):
out_ids, seg_ids, seq_len = [], [1], 0
seq1 = [x for x in convert_to_unicode(seq1)]
seq2 = [x for x in convert_to_unicode(seq2)]
# 截断
self._truncate_seq_pair(seq1, seq2, self.max_len - 2)
# 插入 [CLS], [SEP]
out_ids.append(self._transform2id("[CLS]"))
for w in seq1:
out_ids.append(self._transform2id(w))
seg_ids.append(0)
out_ids.append(self._transform2id("[SEP]"))
seg_ids.append(0)
for w in seq2:
out_ids.append(self._transform2id(w))
seg_ids.append(1)
mask_ids = [1 for _ in out_ids]
if padding and self.max_len:
while len(out_ids) < self.max_len + 1:
out_ids.append(0)
mask_ids.append(0)
seg_ids.append(0)
return out_ids, mask_ids, seg_ids, seq_len
def transform(self, seq_list, is_bert=0):
if is_bert:
return [self._transform_seq2bert_id(seq) for seq in seq_list]
else:
return [self._transform_seq2id(seq) for seq in seq_list]
def __len__(self):
return len(self.voc2id)
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode):
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def gen_word_set(file_path, out_path='./data/words.txt'):
word_set = set()
with open(file_path, encoding='utf-8') as f:
for line in f.readlines():
spline = line.strip().split('\t')
if len(spline) < 4:
continue
prefix, query_pred, title, tag, label = spline
if label == '0':
continue
cur_arr = [prefix, title]
query_pred = json.loads(query_pred)
for w in prefix:
word_set.add(w)
for each in query_pred:
for w in each:
word_set.add(w)
with open(word_set, 'w', encoding='utf-8') as o:
for w in word_set:
o.write(w + '\n')
pass
def convert_word2id(query, vocab_map):
ids = []
for w in query:
if w in vocab_map:
ids.append(vocab_map[w])
else:
ids.append(vocab_map[conf.unk])
while len(ids) < conf.max_seq_len:
ids.append(vocab_map[conf.pad])
return ids[:conf.max_seq_len]
def convert_seq2bow(query, vocab_map):
bow_ids = np.zeros(conf.nwords)
for w in query:
if w in vocab_map:
bow_ids[vocab_map[w]] += 1
else:
bow_ids[vocab_map[conf.unk]] += 1
return bow_ids
def get_data(file_path):
"""
gen datasets, convert word into word ids.
:param file_path:
:return: [[query, pos sample, 4 neg sample]], shape = [n, 6]
"""
data_map = {'query': [], 'query_len': [], 'doc_pos': [], 'doc_pos_len': [], 'doc_neg': [], 'doc_neg_len': []}
with open(file_path, encoding='utf8') as f:
for line in f.readlines():
spline = line.strip().split('\t')
if len(spline) < 4:
continue
prefix, query_pred, title, tag, label = spline
if label == '0':
continue
cur_arr, cur_len = [], []
query_pred = json.loads(query_pred)
# only 4 negative sample
for each in query_pred:
if each == title:
continue
cur_arr.append(convert_word2id(each, conf.vocab_map))
each_len = len(each) if len(each) < conf.max_seq_len else conf.max_seq_len
cur_len.append(each_len)
if len(cur_arr) >= 4:
data_map['query'].append(convert_word2id(prefix, conf.vocab_map))
data_map['query_len'].append(len(prefix) if len(prefix) < conf.max_seq_len else conf.max_seq_len)
data_map['doc_pos'].append(convert_word2id(title, conf.vocab_map))
data_map['doc_pos_len'].append(len(title) if len(title) < conf.max_seq_len else conf.max_seq_len)
data_map['doc_neg'].extend(cur_arr[:4])
data_map['doc_neg_len'].extend(cur_len[:4])
pass
return data_map
def get_data_siamese_rnn(file_path):
"""
gen datasets, convert word into word ids.
:param file_path:
:return: [[query, pos sample, 4 neg sample]], shape = [n, 6]
"""
data_arr = []
with open(file_path, encoding='utf8') as f:
for line in f.readlines():
spline = line.strip().split('\t')
if len(spline) < 4:
continue
prefix, _, title, tag, label = spline
prefix_seq = convert_word2id(prefix, conf.vocab_map)
title_seq = convert_word2id(title, conf.vocab_map)
data_arr.append([prefix_seq, title_seq, int(label)])
return data_arr
def get_data_bow(file_path):
"""
gen datasets, convert word into word ids.
:param file_path:
:return: [[query, prefix, label]], shape = [n, 3]
"""
data_arr = []
with open(file_path, encoding='utf8') as f:
for line in f.readlines():
spline = line.strip().split('\t')
if len(spline) < 4:
continue
prefix, _, title, tag, label = spline
prefix_ids = convert_seq2bow(prefix, conf.vocab_map)
title_ids = convert_seq2bow(title, conf.vocab_map)
data_arr.append([prefix_ids, title_ids, int(label)])
return data_arr
def trans_lcqmc(dataset):
"""
最大长度
"""
out_arr, text_len = [], []
for each in dataset:
t1, t2, label = each.text_a, each.text_b, int(each.label)
t1_ids = convert_word2id(t1, conf.vocab_map)
t1_len = conf.max_seq_len if len(t1) > conf.max_seq_len else len(t1)
t2_ids = convert_word2id(t2, conf.vocab_map)
t2_len = conf.max_seq_len if len(t2) > conf.max_seq_len else len(t2)
# t2_len = len(t2)
out_arr.append([t1_ids, t1_len, t2_ids, t2_len, label])
# out_arr.append([t1_ids, t1_len, t2_ids, t2_len, label, t1, t2])
text_len.extend([len(t1), len(t2)])
pass
print("max len", max(text_len), "avg len", mean(text_len), "cover rate:", np.mean([x <= conf.max_seq_len for x in text_len]))
return out_arr
def get_lcqmc():
"""
使用LCQMC数据集,并将其转为word_id
"""
dataset = hub.dataset.LCQMC()
train_set = trans_lcqmc(dataset.train_examples)
dev_set = trans_lcqmc(dataset.dev_examples)
test_set = trans_lcqmc(dataset.test_examples)
return train_set, dev_set, test_set
# return test_set, test_set, test_set
def trans_lcqmc_bert(dataset:list, vocab:Vocabulary, is_merge=0):
"""
最大长度
"""
out_arr, text_len = [], []
for each in dataset:
t1, t2, label = each.text_a, each.text_b, int(each.label)
if is_merge:
out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_2seq2bert_id(t1, t2, padding=1)
out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1, label])
text_len.extend([len(t1) + len(t2)])
else:
out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_seq2bert_id(t1, padding=1)
out_ids2, mask_ids2, seg_ids2, seq_len2 = vocab._transform_seq2bert_id(t2, padding=1)
out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1, out_ids2, mask_ids2, seg_ids2, seq_len2, label])
text_len.extend([len(t1), len(t2)])
pass
print("max len", max(text_len), "avg len", mean(text_len), "cover rate:", np.mean([x <= conf.max_seq_len for x in text_len]))
return out_arr
def get_lcqmc_bert(vocab:Vocabulary, is_merge=0):
"""
使用LCQMC数据集,并将每个query其转为word_id,
"""
dataset = hub.dataset.LCQMC()
train_set = trans_lcqmc_bert(dataset.train_examples, vocab, is_merge)
dev_set = trans_lcqmc_bert(dataset.dev_examples, vocab, is_merge)
test_set = trans_lcqmc_bert(dataset.test_examples, vocab, is_merge)
return train_set, dev_set, test_set
# test_set = test_set[:100]
# return test_set, test_set, test_set
def get_test(file_:str, vocab:Vocabulary):
test_arr = read_file(file_, '\t') # [[q1, q2],...]
out_arr = []
for line in test_arr:
if len(line) != 2:
print('wrong line size=', len(line))
t1, t2 = line # [t1_ids, t1_len, t2_ids, t2_len, label]
t1_ids = vocab._transform_seq2id(t1, padding=1)
t1_len = vocab.max_len if len(t1) > vocab.max_len else len(t1)
t2_ids = vocab._transform_seq2id(t2, padding=1)
t2_len = vocab.max_len if len(t2) > vocab.max_len else len(t2)
out_arr.append([t1_ids, t1_len, t2_ids, t2_len])
return out_arr, test_arr
def get_test_bert(file_:str, vocab:Vocabulary, is_merge=0):
test_arr = read_file(file_, '\t') # [[q1, q2],...]
out_arr, _ = get_test_bert_by_arr(test_arr, vocab, is_merge)
return out_arr, test_arr
def get_test_bert_by_arr(test_arr:list, vocab:Vocabulary, is_merge=0):
# test_arr # [[q1, q2],...]
out_arr = []
for line in test_arr:
if len(line) != 2:
print('wrong line size=', len(line))
t1, t2 = line # [t1_ids, t1_len, t2_ids, t2_len, label]
if is_merge:
out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_2seq2bert_id(t1, t2, padding=1)
out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1])
else:
out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_seq2bert_id(t1, padding=1)
out_ids2, mask_ids2, seg_ids2, seq_len2 = vocab._transform_seq2bert_id(t2, padding=1)
out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1, out_ids2, mask_ids2, seg_ids2, seq_len2])
return out_arr, test_arr
def get_test_bert_single(file_:str, vocab:Vocabulary, is_merge=0):
test_arr = read_file(file_) # [q1,...]
out_arr = []
for line in test_arr:
t1 = line # [t1_ids, t1_len, t2_ids, t2_len, label]
out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_seq2bert_id(t1, padding=1)
out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1])
return out_arr, test_arr
def get_batch(dataset, batch_size=None, is_test=0):
# tf Dataset太难用,不如自己实现
# https://stackoverflow.com/questions/50539342/getting-batches-in-tensorflow
# dataset:每个元素是一个特征,[[x1, x2, x3,...], ...], 如果是测试集,可能就没有标签
if not batch_size:
batch_size = 32
if not is_test:
random.shuffle(dataset)
steps = int(math.ceil(float(len(dataset)) / batch_size))
for i in range(steps):
idx = i * batch_size
cur_set = dataset[idx: idx + batch_size]
cur_set = zip(*cur_set)
yield cur_set
if __name__ == '__main__':
# prefix, query_prediction, title, tag, label
# query_prediction 为json格式。
file_train = './data/oppo_round1_train_20180929.txt'
file_vali = './data/oppo_round1_vali_20180929.txt'
# data_train = get_data(file_train)
# data_train = get_data(file_vali)
# print(len(data_train['query']), len(data_train['doc_pos']), len(data_train['doc_neg']))
dataset = get_lcqmc()
print(dataset[1][:3])
for each in get_batch(dataset[1][:3], batch_size=2):
t1_ids, t1_len, t2_ids, t2_len, label = each
print(each)
pass