-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencode_keywords.py
223 lines (186 loc) · 7.58 KB
/
encode_keywords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import time
import torch
import json
import os
import numpy as np
import scipy.io as sio
import argparse
import gensim.downloader as api
import pickle
import argparse
from transformers import GPT2Tokenizer
os.environ['GENSIM_DATA_DIR']='./gensim-data'
word_embedding = {
'glove': "glove-wiki-gigaword-300",
'word2vec': "word2vec-google-news-300"
}
CACHE_DIR='/mnt/data0/tuhq21/.cache/torch/transformers'
def create_enc_dict(folder_name, file_name, embedding, task):
embedding_file = word_embedding[embedding]
# if task == 'key2article':
# folder_name = file_name
# else:
# folder_name = os.path.dirname(file_name)
file_name = os.path.join(folder_name, file_name)
print('file_name: ', file_name)
print('folder_name: ', folder_name)
print('word_embedding: ', embedding)
######## Load word embedding data
print('{} word embeddings loading...'.format(embedding))
encoder = api.load(embedding_file)
print('{} word embeddings loaded'.format(embedding))
glove_dict = {}
if task == 'key2article':
file1 = open(file_name, "r+")
lines = file1.readlines()
i = 0
for line in lines:
keywords = list(line.strip().split(", "))
print(keywords)
for word in keywords:
glove_dict[word] = encoder[word]
# save_path = folder_name + '/' + str(embedding) + '_set_' +str(i) + '.npy'
# np.save(save_path, glove_words)
i = i + 1
elif task == "obj2caption":
keyword_sets = set()
file1 = json.load(open(file_name))
feas = {}
for key in file1.keys():
keywords = list(file1[key])
for keyword in keywords:
keyword_sets.add(keyword)
for word in list(keyword_sets):
word_sp = word.split(" ")
if len(word_sp) > 1:
encoded = encoder[word_sp[0]]
for item in word_sp[1:]:
encoded = encoded + encoder[item]
encoded = encoded / len(word_sp)
else:
encoded = encoder[word]
glove_dict[word] = encoded
for key in file1.keys():
tmp = []
keywords = list(file1[key])
for word in keywords:
tmp.append(glove_dict[word])
feas[key] = tmp
else:
keyword_sets = []
for filename in os.listdir(folder_name):
if filename.endswith('txt'):
file1 = open(folder_name + filename, "r+")
lines = file1.readlines()
keywords = list(lines[2].strip().split(", "))
in_text = lines[1].split()[:30]
keyword_sets.append((' '.join(in_text), keywords))
for word in keywords:
glove_dict[word] = encoder[word]
save_path_dict = folder_name + '/dict_visnews_obj_' + str(embedding) + '.pkl'
with open(save_path_dict, 'wb') as f:
pickle.dump(glove_dict, f)
if task == "obj2caption":
save_path_arr = folder_name + '/dict_line_visnews_obj_' + str(embedding) + '.pkl'
with open(save_path_arr, 'wb') as f:
pickle.dump(feas, f)
def checker(string):
string = string.replace("'ve", '')
string = string.replace("@", '')
string = string.replace("'re", '')
string = string.replace("'d", '')
string = string.replace("?", '')
string = string.replace("'s", '')
string = string.replace(":", '')
string = string.replace("!", '')
string = string.replace('"', '')
string = string.replace(".", '')
string = string.replace("--", '')
string = string.replace("'", '')
string = string.replace(",", '')
string = string.replace(';', '')
string = string.replace('‘', '')
string = string.replace('(', '')
string = string.replace(')', '')
string = string.replace('\'', '')
string = string.replace(' ', '')
return(string)
def converter_table_glove(gpt_version):
import gensim.downloader as api
glove_encoder = api.load("glove-wiki-gigaword-300")
path = 'npy_data/converter_table_glove'
# load gpt-2 model
tokenizer = GPT2Tokenizer.from_pretrained(gpt_version, cache_dir=CACHE_DIR)
sos_token, pad_token = r'<-start_of_text->', r'<-pad->'
tokenizer.add_tokens([sos_token])
tokenizer.add_tokens([pad_token])
print(f"Tokenizer Vocab Size: {tokenizer.vocab_size}.")
holder = np.zeros((tokenizer.vocab_size, 300))
# translate every word from the gpt-2 space into a glove representation
for i in range(tokenizer.vocab_size):
try:
word = tokenizer.decode([i])
word = checker(word.strip().lower())
glove = glove_encoder[word]
holder[i, :] = glove
except:
word = tokenizer.decode([i])
holder[i, :] = np.zeros((300)) # + 500
# Save all 50'000 glove representations of the gpt-2 words
np.save(file=path, arr=holder)
print('Table was generated')
def converter_table_word2vec(gpt_version):
import gensim.downloader as api
word2vec_encoder = api.load("word2vec-google-news-300")
path = 'npy_data/converter_table_word2vec'
# load gpt-2 model
tokenizer = GPT2Tokenizer.from_pretrained(gpt_version, cache_dir=CACHE_DIR)
sos_token, pad_token = r'<-start_of_text->', r'<-pad->'
tokenizer.add_tokens([sos_token])
tokenizer.add_tokens([pad_token])
holder = np.zeros((tokenizer.vocab_size, 300))
# translate every word from the gpt-2 space into a word2vec representation
for i in range(tokenizer.vocab_size):
try:
word = tokenizer.decode([i])
word = checker(word.strip().lower())
word2vec = word2vec_encoder[word]
holder[i, :] = word2vec
except:
word = tokenizer.decode([i])
holder[i, :] = np.zeros((300)) # + 500
# Save all 50'000 word2vec representations of the gpt-2 words
np.save(file=path, arr=holder)
print('Table was generated')
# if encode_articles == True:
# for n in [4, 5, 8, 9, 10, 12, 13, 14, 15, 16]:
# print(n)
# file1 = open(str(os.path.dirname(os.path.abspath(__file__))) +
# "/data/keyword_to_articles/test_" + str(n) + ".txt", "r+")
# lines = file1.readlines()
# keywords = list(lines[2].strip().split(", "))
# print(keywords)
# glove_words = []
# for word in keywords:
# glove = encoder[word]
# glove_words.append(glove)
# save_path = str(os.path.dirname(
# os.path.abspath(__file__))) + '/data/keyword_to_articles/test_' +str(n) + '.npy'
# np.save(save_path, glove_words)
if __name__ == "__main__":
# converter_table_glove("cambridgeltl/magic_mscoco")
# converter_table_word2vec("cambridgeltl/magic_mscoco")
######## Parse arguments
# parser = argparse.ArgumentParser()
# parser.add_argument('-file', default='test_image_obj.json', type=str)
# parser.add_argument('-folder_name', default='/data/tuhq/multimodal/flickr30k/ctg-data', type=str)
# parser.add_argument('-word_embedding', type=str, default='glove',
# choices=list(word_embedding.keys()), help='word_embedding')
# parser.add_argument('-task', type=str, default='obj2caption') # 'key2article', 'commongen'
# args = parser.parse_args()
file_name = "test_image_obj.json"
folder_name = "/mnt/data0/tuhq21/dataset/visnews/origin"
embedding = 'glove'
task = 'obj2caption'
create_enc_dict(folder_name, file_name, embedding, task)
# a = json.load(open("/data/tuhq/multimodal/coco14/test_image_obj.json"))