forked from thanhdtran/RME
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcofactor.py
417 lines (353 loc) · 14.8 KB
/
cofactor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
import sys
import time
import numpy as np
from numpy import linalg as LA
from joblib import Parallel, delayed
from sklearn.base import BaseEstimator, TransformerMixin
import rec_eval
class CoFacto(BaseEstimator, TransformerMixin):
def __init__(self, n_components=100, max_iter=10, batch_size=1000,
init_std=0.01, dtype='float32', n_jobs=8, random_state=None,
save_params=False, save_dir='.', early_stopping=False,
verbose=False, **kwargs):
'''
CoFacto
Parameters
---------
n_components : int
Number of latent factors
max_iter : int
Maximal number of iterations to perform
batch_size: int
Batch size to perform parallel update
init_std: float
The latent factors will be initialized as Normal(0, init_std**2)
dtype: str or type
Data-type for the parameters, default 'float32' (np.float32)
n_jobs: int
Number of parallel jobs to update latent factors
random_state : int or RandomState
Pseudo random number generator used for sampling
save_params: bool
Whether to save parameters after each iteration
save_dir: str
The directory to save the parameters
early_stopping: bool
Whether to early stop the training by monitoring performance on
validation set
verbose : bool
Whether to show progress during model fitting
**kwargs: dict
Model hyperparameters
'''
self.n_components = n_components
self.max_iter = max_iter
self.batch_size = batch_size
self.init_std = init_std
self.dtype = dtype
self.n_jobs = n_jobs
self.random_state = random_state
self.save_params = save_params
self.save_dir = save_dir
self.early_stopping = early_stopping
self.verbose = verbose
if type(self.random_state) is int:
np.random.seed(self.random_state)
elif self.random_state is not None:
np.random.setstate(self.random_state)
self._parse_kwargs(**kwargs)
def _parse_kwargs(self, **kwargs):
''' Model hyperparameters
Parameters
---------
lambda_theta, lambda_beta, lambda_gamma: float
Regularization parameter for user (lambda_theta), item factors (
lambda_beta), and context factors (lambda_gamma).
c0, c1: float
Confidence for 0 and 1 in Hu et al., c0 must be less than c1
'''
self.lam_theta = float(kwargs.get('lambda_theta', 1e-5))
self.lam_beta = float(kwargs.get('lambda_beta', 1e-5))
self.lam_gamma = float(kwargs.get('lambda_gamma', 1e+0))
self.c0 = float(kwargs.get('c0', 0.01))
self.c1 = float(kwargs.get('c1', 1.0))
print ('c0 : %.2f, c1: %.2f'%(self.c0, self.c1))
print ('theta: %.5f, beta: %.5f, gamma: %.5f'%(self.lam_theta, self.lam_beta, self.lam_gamma))
assert self.c0 < self.c1, "c0 must be smaller than c1"
def _init_params(self, n_users, n_items):
''' Initialize all the latent factors and biases '''
self.theta = self.init_std * \
np.random.randn(n_users, self.n_components).astype(self.dtype)
self.beta = self.init_std * \
np.random.randn(n_items, self.n_components).astype(self.dtype)
self.gamma = self.init_std * \
np.random.randn(n_items, self.n_components).astype(self.dtype)
# bias for beta and gamma
self.bias_b = np.zeros(n_items, dtype=self.dtype)
self.bias_g = np.zeros(n_items, dtype=self.dtype)
# global bias
self.alpha = 0.0
def fit(self, X, M, F=None, vad_data=None, **kwargs):
'''Fit the model to the data in X.
Parameters
----------
X : scipy.sparse.csr_matrix, shape (n_users, n_items)
Training click matrix.
M : scipy.sparse.csr_matrix, shape (n_items, n_items)
Training co-occurrence matrix.
F : scipy.sparse.csr_matrix, shape (n_items, n_items)
The weight for the co-occurrence matrix. If not provided,
weight by default is 1.
vad_data: scipy.sparse.csr_matrix, shape (n_users, n_items)
Validation click data.
**kwargs: dict
Additional keywords to evaluation function call on validation data
Returns
-------
self: object
Returns the instance itself.
'''
n_users, n_items = X.shape
assert M.shape == (n_items, n_items)
self._init_params(n_users, n_items)
self._update(X, M, F, vad_data, **kwargs)
return self
def transform(self, X):
pass
def _update(self, X, M, F, vad_data, **kwargs):
'''Model training and evaluation on validation set'''
XT = X.T.tocsr() # pre-compute this
self.vad_ndcg = -np.inf
for i in xrange(self.max_iter):
if self.verbose:
print('ITERATION #%d' % i)
self._update_factors(X, XT, M, F)
self._update_biases(M, F)
if vad_data is not None:
vad_ndcg = self._validate(X, vad_data, **kwargs)
if self.early_stopping and self.vad_ndcg > vad_ndcg:
break # we will not save the parameter for this iteration
self.vad_ndcg = vad_ndcg
if self.save_params:
self._save_params(i)
pass
def _update_factors(self, X, XT, M, F):
if self.verbose:
start_t = _writeline_and_time('\tUpdating user factors...')
self.theta = update_theta(self.beta, X, self.c0,
self.c1, self.lam_theta,
self.n_jobs,
batch_size=self.batch_size)
if self.verbose:
print('\r\tUpdating user factors: time=%.2f'
% (time.time() - start_t))
start_t = _writeline_and_time('\tUpdating item factors...')
self.beta = update_beta(self.theta, self.gamma,
self.bias_b, self.bias_g, self.alpha,
XT, M, F, self.c0, self.c1, self.lam_beta,
self.n_jobs,
batch_size=self.batch_size)
if self.verbose:
print('\r\tUpdating item factors: time=%.2f'
% (time.time() - start_t))
start_t = _writeline_and_time('\tUpdating context factors...')
# here it really should be M^T and F^T, but both are symmetric
self.gamma = update_gamma(self.beta, self.bias_b, self.bias_g,
self.alpha, M, F, self.lam_gamma,
self.n_jobs,
batch_size=self.batch_size)
if self.verbose:
print('\r\tUpdating context factors: time=%.2f'
% (time.time() - start_t))
# print 'theta:\n', self.theta
# print '\n'
#print 'beta:\n', self.beta
#print '\n'
# print 'gamma:\n', self.gamma
pass
def _update_biases(self, M, F):
if self.verbose:
start_t = _writeline_and_time('\tUpdating bias terms...')
self.bias_b = update_bias(self.beta, self.gamma,
self.bias_g, self.alpha, M, F,
self.n_jobs, batch_size=self.batch_size)
# here it really should be M^T and F^T, but both are symmetric
self.bias_g = update_bias(self.gamma, self.beta,
self.bias_b, self.alpha, M, F,
self.n_jobs, batch_size=self.batch_size)
self.alpha = update_alpha(self.beta, self.gamma,
self.bias_b, self.bias_g, M, F,
self.n_jobs, batch_size=self.batch_size)
if self.verbose:
print('\r\tUpdating bias terms: time=%.2f'
% (time.time() - start_t))
pass
def _validate(self, X, vad_data, **kwargs):
vad_ndcg = rec_eval.parallel_normalized_dcg_at_k(X, vad_data,
self.theta,
self.beta,
**kwargs)
if self.verbose:
print('\tValidation NDCG@k: %.5f' % vad_ndcg)
return vad_ndcg
def _save_params(self, iter):
'''Save the parameters'''
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
filename = 'CoFacto_K%d_iter%d.npz' % (self.n_components, iter)
np.savez(os.path.join(self.save_dir, filename), U=self.theta,
V=self.beta)
# Utility functions #
def _writeline_and_time(s):
sys.stdout.write(s)
sys.stdout.flush()
return time.time()
def get_row(Y, i):
'''Given a scipy.sparse.csr_matrix Y, get the values and indices of the
non-zero values in i_th row'''
lo, hi = Y.indptr[i], Y.indptr[i + 1]
return Y.data[lo:hi], Y.indices[lo:hi]
def update_theta(beta, X, c0, c1, lam_theta, n_jobs, batch_size=1000):
'''Update user latent factors'''
m, n = X.shape # m: number of users, n: number of items
f = beta.shape[1] # f: number of factors
BTB = c0 * np.dot(beta.T, beta) # precompute this
BTBpR = BTB + lam_theta * np.eye(f, dtype=beta.dtype)
start_idx = range(0, m, batch_size)
end_idx = start_idx[1:] + [m]
res = Parallel(n_jobs=n_jobs)(
delayed(_solve_weighted_factor)(
lo, hi, beta, X, BTBpR, c0, c1, f, lam_theta)
for lo, hi in zip(start_idx, end_idx))
theta = np.vstack(res)
return theta
def _solve_weighted_factor(lo, hi, beta, X, BTBpR, c0, c1, f, lam_theta):
theta_batch = np.empty((hi - lo, f), dtype=beta.dtype)
for ib, u in enumerate(xrange(lo, hi)):
x_u, idx_u = get_row(X, u)
B_u = beta[idx_u]
a = x_u.dot(c1 * B_u)
B = BTBpR + B_u.T.dot((c1 - c0) * B_u)
theta_batch[ib] = LA.solve(B, a)
return theta_batch
def update_beta(theta, gamma, bias_b, bias_g, alpha, XT, M, F, c0, c1,
lam_beta, n_jobs, batch_size=1000):
'''Update item latent factors/embeddings'''
n, m = XT.shape # m: number of users, n: number of items
f = theta.shape[1]
assert theta.shape[0] == m
assert gamma.shape == (n, f)
TTT = c0 * np.dot(theta.T, theta) # precompute this
TTTpR = TTT + lam_beta * np.eye(f, dtype=theta.dtype)
# print 'PRE: \n', TTTpR
start_idx = range(0, n, batch_size)
end_idx = start_idx[1:] + [n]
res = Parallel(n_jobs=n_jobs)(
delayed(_solve_weighted_cofactor)(
lo, hi, theta, gamma, bias_b, bias_g, alpha, XT, M, F, TTTpR, c0,
c1, f, lam_beta)
for lo, hi in zip(start_idx, end_idx))
beta = np.vstack(res)
#print 'Final beta: \n', beta
return beta
def _solve_weighted_cofactor(lo, hi, theta, gamma, bias_b, bias_g, alpha, XT,
M, F, TTTpR, c0, c1, f, lam_beta):
beta_batch = np.empty((hi - lo, f), dtype=theta.dtype)
for ib, i in enumerate(xrange(lo, hi)):
x_i, idx_x_i = get_row(XT, i)
T_i = theta[idx_x_i]
m_i, idx_m_i = get_row(M, i)
G_i = gamma[idx_m_i]
rsd = m_i - bias_b[i] - bias_g[idx_m_i] - alpha
if F is not None:
f_i, _ = get_row(F, i)
GTG = G_i.T.dot(G_i * f_i[:, np.newaxis])
rsd *= f_i
else:
GTG = G_i.T.dot(G_i)
B = TTTpR + T_i.T.dot((c1 - c0) * T_i) + GTG
a = x_i.dot(c1 * T_i) + np.dot(rsd, G_i)
beta_batch[ib] = LA.solve(B, a)
#if lo == 0:
# print 'a is \n', a
# print 'B is \n', B
# print 'RES*****:,', B * beta_batch[ib] - a
return beta_batch
def update_gamma(beta, bias_b, bias_g, alpha, MT, FT, lam_gamma,
n_jobs, batch_size=1000):
'''Update context latent factors'''
n, f = beta.shape # n: number of items, f: number of factors
start_idx = range(0, n, batch_size)
end_idx = start_idx[1:] + [n]
res = Parallel(n_jobs=n_jobs)(
delayed(_solve_factor)(
lo, hi, beta, bias_b, bias_g, alpha, MT, FT, f, lam_gamma)
for lo, hi in zip(start_idx, end_idx))
gamma = np.vstack(res)
return gamma
def _solve_factor(lo, hi, beta, bias_b, bias_g, alpha, MT, FT, f, lam_gamma,
BTBpR=None):
gamma_batch = np.empty((hi - lo, f), dtype=beta.dtype)
for ib, j in enumerate(xrange(lo, hi)):
m_j, idx_j = get_row(MT, j)
rsd = m_j - bias_b[idx_j] - bias_g[j] - alpha
B_j = beta[idx_j]
if FT is not None:
f_j, _ = get_row(FT, j)
BTB = B_j.T.dot(B_j * f_j[:, np.newaxis])
rsd *= f_j
else:
BTB = B_j.T.dot(B_j)
B = BTB + lam_gamma * np.eye(f, dtype=beta.dtype)
a = np.dot(rsd, B_j)
gamma_batch[ib] = LA.solve(B, a)
return gamma_batch
def update_bias(beta, gamma, bias_g, alpha, M, F, n_jobs, batch_size=1000):
''' Update the per-item (or context) bias term.
'''
n = beta.shape[0]
start_idx = range(0, n, batch_size)
end_idx = start_idx[1:] + [n]
res = Parallel(n_jobs=n_jobs)(
delayed(_solve_bias)(lo, hi, beta, gamma, bias_g, alpha, M, F)
for lo, hi in zip(start_idx, end_idx))
bias_b = np.hstack(res)
return bias_b
def _solve_bias(lo, hi, beta, gamma, bias_g, alpha, M, F):
bias_b_batch = np.empty(hi - lo, dtype=beta.dtype)
for ib, i in enumerate(xrange(lo, hi)):
m_i, idx_i = get_row(M, i)
m_i_hat = gamma[idx_i].dot(beta[i]) + bias_g[idx_i] + alpha
rsd = m_i - m_i_hat
if F is not None:
f_i, _ = get_row(F, i)
rsd *= f_i
if rsd.size > 0:
bias_b_batch[ib] = rsd.mean()
else:
bias_b_batch[ib] = 0.
return bias_b_batch
def update_alpha(beta, gamma, bias_b, bias_g, M, F, n_jobs, batch_size=1000):
''' Update the global bias term
'''
n = beta.shape[0]
assert beta.shape == gamma.shape
assert bias_b.shape == bias_g.shape
start_idx = range(0, n, batch_size)
end_idx = start_idx[1:] + [n]
res = Parallel(n_jobs=n_jobs)(
delayed(_solve_alpha)(lo, hi, beta, gamma, bias_b, bias_g, M, F)
for lo, hi in zip(start_idx, end_idx))
return np.sum(res) / M.data.size
def _solve_alpha(lo, hi, beta, gamma, bias_b, bias_g, M, F):
res = 0.
for ib, i in enumerate(xrange(lo, hi)):
m_i, idx_i = get_row(M, i)
m_i_hat = gamma[idx_i].dot(beta[i]) + bias_b[i] + bias_g[idx_i]
rsd = m_i - m_i_hat
if F is not None:
f_i, _ = get_row(F, i)
rsd *= f_i
res += rsd.sum()
return res