-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
129 lines (117 loc) · 6.28 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
layout: page
gh-repo: gorayni/SoccerActionSpotting
gh-badge: [star, watch, fork, follow]
share-description: Official website of A Graph-Based Method for Soccer Action Spotting Using Unsupervised Player Classification
---
<div class="overlay"></div>
<div class="container">
<div class="row">
<div class="col-xl-12 mx-auto text-center">
<h1>A Graph-Based Method for Soccer Action Spotting Using Unsupervised Player Classification</h1>
</div>
<div class="col-md-10 col-lg-8 col-xl-7 mx-auto">
</div>
</div>
</div>
<div class="col-xl-10 col-lg-8 offset-lg-1">
<!-- Testimonials -->
<section class="testimonials text-center">
<div class="container">
<div class="row">
<div class="col-lg-4 text-center" style="">
<div class="testimonial-item mx-auto mb-5 mb-lg-0">
<h3>
<a href="http://gorayni.github.io/"
style="text-decoration: none;">
Alejandro Cartas
</a>
</h3>
<p class="font-weight-light mb-0"></p>
</div>
</div>
<div class="col-lg-4 text-center">
<div class="testimonial-item mx-auto mb-5 mb-lg-0" style="width: 109%">
<h3>
<a href="https://www.upf.edu/web/coloma-ballester"
style="text-decoration: none;">
Coloma Ballester
</a>
</h3>
<p class="font-weight-light mb-0"></p>
</div>
</div>
<div class="col-lg-4 text-center">
<div class="testimonial-item mx-auto mb-5 mb-lg-0">
<h3>
<a href="https://www.upf.edu/web/gloria-haro"
style="text-decoration: none;">
Gloria Haro
</a>
</h3>
<p class="font-weight-light mb-0"></p>
</div>
</div>
</div>
<div class="row">
<div class="offset-lg-3 col-lg-6 padtop" style="padding-bottom: 2rem">
<span class="align-middle">
<p class="mylead2">
<a href="https://www.upf.edu/web/etic" style="color:black">Universitat Pompeu Fabra,<br>Barcelona, Spain</a><br>
<h5 class="mx-auto text-center" style="color: black">Accepted at ACM MMSports'22</h5>
<h4 class="mx-auto text-center">
<a target="_blank" href="https://dl.acm.org/doi/pdf/10.1145/3552437.3555691">[Paper]</a>
<a target="_blank" href="https://github.com/IPCV/soccer_action_spotting">[Code]</a>
<a target="_blank" href="https://drive.google.com/file/d/1D5YUORpFp_LzreEpcMU2rfcS2x7YDJIF/view?usp=sharing">[Data]</a>
</h4>
</span>
</div>
</div>
</div>
</section>
<!-- Image Showcases -->
<div class="row justify-content-center">
<div style="text-align: center;">
<img class="round" src="assets/img/pipeline.png" width="900px">
</div>
</div>
</br>
<!-- <h2 style="text-align: center">Abstract</h2> -->
<p class="lead mb-0" align="justify">
Action spotting in soccer videos is the task of identifying the specific time when a certain key action of the game occurs. Lately, it has received a large amount of attention and powerful methods have been introduced. Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences. Most approaches have focused on the latter, given that their models exploit the global visual features of the sequences. In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs. For the player identification, or player classification task, we obtain an accuracy of 97.72% in our annotated benchmark. For the action spotting task, our method obtains an overall performance of 57.83% average-mAP by combining it with other audiovisual modalities. This performance surpasses similar graph-based methods and has competitive results with heavy computing methods.
</p>
</br>
<div class="mx-auto">
<br>
<h5>Citation</h5>
<pre class="hightlight" style="background-color:rgba(0,0,0, 0.1)"><p class="mb-0" align="justify">@inproceedings{cartas2022GraphActionSpotting,
author = {Cartas, Alejandro and Ballester, Coloma and Haro, Gloria},
title = {A Graph-Based Method for Soccer Action Spotting Using Unsupervised Player Classification},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
booktitle = {Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in Sports},
series = {MMSports '22}
pages = {93–102},
location = {Lisboa, Portugal},
year = {2022},
}
</p></pre>
</div>
<div class="mx-auto">
<br>
<h5>Video presentation at ACM MMSports 2022</h5>
</div>
<iframe width="100%" height="400" src="https://www.youtube.com/embed/1F-GrXCYCCw?autoplay=1&mute=1" title="A Graph-Based Method for Soccer Action Spotting Using Unsupervised Player Classification" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<div class="mx-auto">
<br>
<h5>Acknowledgements</h5>
<p class="lead mb-0" align="justify">
The authors acknowledge support by MICINN/FEDER UE project, ref. PID2021-127643NB-I00, H2020-MSCA-RISE-2017 project, ref. 777826 NoMADS, and ReAViPeRo network, ref. RED2018-102511-T.
</div>
<div class="row justify-content-center">
<div style="text-align: center;">
<img class="round" src="assets/logo_ministerio.png" width="700px">
</div>
</div>
</div>