-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
201 lines (167 loc) · 5.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from threading import Thread
from typing import Iterator, Optional
import torch
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
BitsAndBytesConfig,
)
from flask import Flask, request, jsonify, Response, stream_with_context
import torch.distributed as dist
from flask_cors import CORS
import json
# CodeLlama model
model_id = "codellama/CodeLlama-7b-Instruct-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
# llm_int8_enable_fp32_cpu_offload=True
)
if torch.cuda.is_available():
config = AutoConfig.from_pretrained(model_id)
config.pretraining_tp = 1
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
quantization_config=quantization_config,
device_map="auto",
# use_safetensors=False,
)
else:
model = None
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Flask API
app = Flask(__name__)
CORS(app)
@app.route("/v1/completions", methods=["POST"])
def completions():
content = request.json
# Is used by Continue to generate a relevant title corresponding to the
# model's response, however, the current prompt passed by Continue is not
# good at obtaining a title from Code Llama's completion feature so we
# use chat completion instead.
messages = [
{
"role": "user",
"content": content["prompt"]
}
]
print("-------------------")
print(content["prompt"])
print("-------------------")
# Perform Code Llama chat completion.
response = run_chat_completion(messages)
# get outputs
outputs = []
if not response is None:
for text in response:
outputs.append(text)
else:
print("response is None")
# Send back the response.
return jsonify({"choices": [{"text": "".join(outputs)}]})
@app.route("/v1/chat/completions", methods=["POST"])
def chat_completions():
content = request.json
messages = content["messages"]
temperature = content.get("temperature", 0.1)
top_p = content.get("top_p", 0.9)
top_k = content.get("top_k", 10)
stream = content.get("stream", False)
max_new_tokens = content.get("max_tokens", 1024)
# Process messages
if messages[0]["role"] == "assistant":
messages[0]["role"] = "system"
last_role = None
remove_elements = []
for i in range(len(messages)):
if messages[i]["role"] == last_role:
messages[i - 1]["content"] += "\n\n" + messages[i]["content"]
remove_elements.append(i)
else:
last_role = messages[i]["role"]
# remove messages in remove_elements
finalMessages = []
for i in range(len(messages)):
if not i in remove_elements:
finalMessages.append(messages[i])
response = run_chat_completion(
finalMessages, max_new_tokens, temperature, top_p, top_k
)
if stream:
def generate():
outputs = []
for text in response:
outputs.append(text)
yield "data: " + json.dumps(
{"choices": [{"delta": {"role": "assistant", "content": text}}]}
) + "\n\n"
return Response(stream_with_context(generate()), mimetype="text/event-stream")
# get outputs
outputs = []
if not response is None:
for text in response:
outputs.append(text)
else:
print("response is None")
# Return response
return jsonify(
{"choices": [{"delta": {"role": "assistant", "content": "".join(outputs)}}]}
)
def get_prompt(messages: list[dict], system_prompt: str) -> str:
texts = [f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"]
do_strip = False
for message in messages:
messageContent = message["content"].strip() if do_strip else message["content"]
if message["role"] == "user":
texts.append(f"{messageContent} [/INST] ")
else:
texts.append(f" {messageContent.strip()} </s><s>[INST] ")
do_strip = True
print("-------------------")
print("".join(texts))
print("-------------------")
return "".join(texts)
def run_chat_completion(
messages: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.1,
top_p: float = 0.9,
top_k: int = 10,
) -> str:
system_prompt: str = (
"The following is a conversation with an AI assistant. The assistant is helpful, harmless, and honest.",
)
# get system prompt from messages
system_prompt = ""
for message in messages:
if message["role"] == "system":
system_prompt = message["content"]
messages.remove(message)
break
prompt = get_prompt(messages, system_prompt)
inputs = tokenizer([prompt], return_tensors="pt", add_special_tokens=False).to(
"cuda"
)
streamer = TextIteratorStreamer(
tokenizer, timeout=1000.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
eos_token_id=2,
pad_token_id=2
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
return streamer
if __name__ == "__main__":
app.run()