-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathestimate_autocorr
executable file
·58 lines (52 loc) · 1.6 KB
/
estimate_autocorr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python3
import nibabel as nib
import numpy as np
import argh
import os.path
import math
from matplotlib import pyplot as plt
def main(data="~/ni_data/rsfM/preprocessing/bandpass/sub-5692/ses-rsfM/func/sub-5692_ses-rsfM_trial-EPI_CBV.nii.gz",
voxels="~/ni_data/templates/DSURQEc_200micron_mask.nii.gz", save_acf_as='/home/wguest/acf.npy'):
roi = nib.load(os.path.expanduser(voxels))
vox = np.nonzero(roi.get_data())
img = nib.load(os.path.expanduser(data))
data = img.get_data()[vox]
print(data.shape)
a = np.empty((2,data.shape[1]-1))
avnoise = np.zeros(data.shape[1])
corrcoeff = 0
n = data.shape[0]
for i in range(data.shape[0]):
a[0,:] = data[i,:data.shape[1]-1]
a[1,:] = data[i,1:]
avnoise += data[i,:]
tmp = np.corrcoef(a)[0,1]
if math.isnan(tmp):
#print(a)
#print("Skipped the voxel shown above because it's temporal correlation is 'nan'.")
n -= 1
continue
corrcoeff += tmp
print("{0} of {1} voxels were used for the calculation.".format(n,data.shape[0]))
print("The first order auto correlation parameter is approximately " + str(corrcoeff/n))
if save_acf_as is not None:
avnoise = avnoise/data.shape[0]
#plt.plot(avnoise)
#plt.savefig('/home/wguest/avnoise.pdf')
n = len(avnoise)
r = np.zeros(n)
for i in range(n):
a1 = avnoise[:n-i]
a1 = a1 - a1.mean()
a1 = a1 / a1.std()
a2 = avnoise[i:]
a2 = a2 - a2.mean()
a2 = a2 / a2.std()
r[i] = np.dot(a1,a2)
result = r/np.arange(n,0,-1)
np.save(save_acf_as,result)
#plt.figure()
#plt.plot(result)
#plt.savefig('/home/wguest/acf.pdf')
if __name__ == '__main__':
argh.dispatch_command(main)